
PS	 141	 © 2010 The Psychonomic Society, Inc.
PS

Much of our knowledge concerning human memory
comes from asking participants to recall a list of studied
items either freely or in some prescribed order (e.g., for-
ward or backward). In most of these studies, researchers
ask participants to write their responses on paper for sub-
sequent scoring and analysis. Using modern computers,
which have come to dominate psychological experimenta-
tion over the last 25 years, one can also easily record par-
ticipants’ typed responses and use the computer to assist
in scoring the recall protocols for both accuracy and order.
Although collecting responses using a computer keyboard
has advantages over using hand-written responses, spoken
recall provides even further benefits.

With spoken recall, participants can respond more natu-
rally and quickly, leading to a purer assay of memory func-
tion. Having participants type their responses forces them
to actively engage with both the keyboard and the computer
screen as they attempt to minimize their spelling mistakes.
This interaction can result in marked interference. Further-
more, spoken recall lends itself more easily to measuring
interresponse latency data, which has proven valuable in
testing various theories of memory function (Kahana, 1996;
Murdock & Okada, 1970; Patterson, Meltzer, & Mandler,
1971; Pollio, Richards, & Lucas, 1969; Polyn, Norman, &
Kahana, 2009; Rohrer & Wixted, 1994; Wingfield, Lind-
field, & Kahana, 1998). With keyboard responses, retrieval
is often assumed to coincide with the first keystroke, but this

is not always true. For instance, a participant may remember
that a word on the list begins with the letter “S” (and press
“S” on the keyboard), but not recall the rest of the word for
some time thereafter. This adds noise to the latency data and
makes subsequent analysis more difficult.

In view of these advantages, it may seem surprising that
most modern researchers still rely on written or typed re-
sponses rather than on spoken recall. We believe that this is
largely a consequence of the technical difficulties of scor-
ing spoken recall using existing software. For example,
consider the free recall task. After studying a list of items
(typically words), participants are asked to recall the items
in any order. Figure 1 illustrates a digitized recording of a
sequence of spoken words. The approximate onset of each
word is shown along with its identity. When presented with
a large data set, locating the onset of each word with a high
degree of accuracy and consistency is a formidable task.
There is also no standard way of storing this information
so that it is later easily accessible for analysis.

When faced with the challenge of scoring interresponse
times in a spoken recall study in 1992, one of the authors
of the present article (M.J.K.) began developing a set of
software libraries to help run experiments involving spoken
responses and to score the resulting data. After several gen-
erations of programming languages and numerous collabo-
rators, this effort resulted in the development of the Python
Experimental Programming Library (PyEPL), described in

PyParse: A semiautomated system for
scoring spoken recall data

Alec Solway
Princeton University, Princeton, New Jersey

Aaron S. Geller
Technion–Israel Institute of Technology, Technion City, Israel

Per B. Sederberg
Princeton University, Princeton, New Jersey

and

Michael J. Kahana
University of Pennsylvania, Philadelphia, Pennsylvania

Studies of human memory often generate data on the sequence and timing of recalled items, but scoring such
data using conventional methods is difficult or impossible. We describe a Python-based semiautomated system
that greatly simplifies this task. This software, called PyParse, can easily be used in conjunction with many
common experiment authoring systems. Scored data is output in a simple ASCII format and can be accessed
with the programming language of choice, allowing for the identification of features such as correct responses,
prior-list intrusions, extra-list intrusions, and repetitions.

Behavior Research Methods
2010, 42 (1), 141-147
doi:10.3758/BRM.42.1.141

M. J. Kahana, kahana@psych.upenn.edu

142     Solway, Geller, Sederberg, and Kahana

Usage

The PyParse software, along with installation instruc-
tions and documentation, may be obtained from the Com-
putational Memory Lab’s Web site (http://memory.psych
.upenn.edu).

PyParse must be called from the command line and ac-
cepts values for two arguments: the sound file to be scored
(parsed) and a text file listing candidate words to be identi-
fied (the word pool). Although one could pass a very large
word pool containing virtually any possible response, it
is often satisfactory to define the word pool as the list of
words used in the experiment. For many of the studies in
our own laboratory, we use the nouns found in the Toronto
Word Pool (Friendly, Franklin, Hoffman, & Rubin, 1982).
PyParse accepts a number of options via the command line
to identify properties of the sound file, including the sam-
pling rate, the number of channels (1 5 mono or 2 5 ste-
reo), the background noise profile, and the file format (for
a full list, see Table 1). In most cases (when using standard
.wav files), PyParse automatically detects the values of
these properties. PyParse can also be given multiple sound

Geller, Schleifer, Sederberg, Jacobs, and Kahana (2007), and
the Python-based Recall Parser (PyParse), described in this
article. We illustrate how the PyParse software can be used
to rapidly score recall data for the sequence of responses
and interresponse times while simultaneously maintaining
a high level of accuracy and consistency. PyParse takes as
input the audio files recorded during the course of an exper-
iment, along with the list of presented words. It can thus be
used with any experiment-authoring software that provides
function calls for recording and storing digitized speech,
including E-Prime, Psychtoolbox, PsyScript, and PyEPL.

Note that, in general, PyParse does not perform speech
recognition on the recorded files. Although one could con-
ceivably develop a speaker-independent voice recognition
system for use in large verbal recall studies, our prelimi-
nary investigation of such technology suggests that much
work is needed before such systems achieve the stringent
accuracy requirements of memory studies. However, Py-
Parse can automatically label the data from experiments
involving a relatively small set of valid responses (e.g.,
recognition and confidence judgment experiments) with
greater than 99% accuracy.

Figure 1. A typical PyParse session. The top half of the screen displays the waveform of a previously recorded study. The bottom half
contains, from left to right, the response box and word pool, a list of the vocalizations marked so far along with their corresponding
onsets, a volume slider, a playback speed display, and command buttons for closing the application in one of two ways (both of which
are explained in the text).

PyParse     143

accurately timed intervals. The study–test procedure is
repeated for several lists, and the recall period for each is
stored in a file whose name corresponds to the list index
(0.wav, 1.wav, etc.). For convenience (though optional),
the words that make up each list are stored in a parallel set
of files (0.lst, 1.lst, etc.), again with one word per line.

In order to begin parsing the first file, we issue the fol-
lowing command: pyparse –w wordpool.txt 0.
wav. This tells PyParse that we want to score the file 0.wav
and that valid responses were drawn from the list of words
found in wordpool.txt. PyParse filters the given sound file
with a band-pass range of 1000–16000 Hz (although the
range can be changed using a command-line option, we
have found this default value to work well for isolating
human speech) and shows the resulting waveform on a
screen similar to the one in Figure 1. The user can modify

files at once (e.g., one can easily reference all of the sound
files stored in a particular directory), in which case it then
conveniently presents them for scoring one at a time.

Sample Run
We describe the basic parsing procedure by way of ex-

ample. All of the keystrokes corresponding to the com-
mands referenced in this example are listed in Table 2.
Consider again a basic free recall experiment. A par-
ticipant is presented with a short list of words and is in-
structed to recall the list in any order following the last
word presentation. Words are randomly drawn from the
Toronto Word Pool (Friendly et al., 1982), which is stored
(with one word per line) in a file named wordpool.txt. The
experiment is controlled using a software package that
supports digital voice recording and can present text at

Table 1
Command-Line Options Recognized by PyParse

-a, –raw 5 Read in raw sound data.
-c, –channels 5 Number of channels in recording (mono or stereo).
-b, –bandpass 5 Band-pass filter range (e.g., -b1000,16000).
-e, –bigendian 5 Set sound data endianness to big.
-d, –diffmode 5 Display difference between channels in stereo sound file(s).
-f, –format 5 Sample width in bits. Possible values: 8, 16, 24, 32.
-h, –help 5 Show usage info.
-o, –onsets 5 Automatically guess sound onsets.
-n, –noise 5 Path to a .wav file with a recording of typical background

noise. Useful for more accurate onset detection.
-r, –rate 5 Sampling rate of sound files.
-w, –wordpool 5 Wordpool file.
-z, –zerobased 5 Start wordpool indexing from zero.

Table 2
Commands That PyParse Accepts and Their Default Keyboard Mappings

Playback Space bar Starts and stops playback.
Ctrl 1 Z Replays the last 200 msec prior to the cursor’s current position.
Ctrl 1 X Decreases playback speed.
Ctrl 1 C Increases playback speed.
Ctrl 1 V Resets playback speed to normal.

Cursor left arrow Moves cursor to the left.
right arrow Moves cursor to the right.
When the above two commands are used in conjunction with the Ctrl key, the step size is larger. When used in conjunction
with both the Ctrl and Shift keys simultaneously, the step size is larger still (1,000 msec).
Ctrl 1 / Centers the screen on the cursor’s current position.

Anchoring Ctrl 1 A (first time) Sets the first anchor point.
Ctrl 1 A (second time) Sets the second anchor point and enters anchor mode.
Ctrl 1 A (third time) Exits anchor mode.
left arrow In anchor mode, moves the second anchor point left.
right arrow In anchor mode, moves the second anchor point right.
Ctrl 1 left arrow In anchor mode, moves the first anchor point left.
Ctrl 1 right arrow In anchor mode, moves the first anchor point right.

Scoring (A–Z) Types in the response box to narrow the list of candidate words from the word pool.
Tab Autocompletes the response box with the first word in the list matching what’s been typed so far.
Enter Enters the selected word at the cursor’s current position.
Ctrl 1 Shift 1 I Enters an intrusion at the cursor’s current position.
Ctrl 1 Delete Deletes the current word marker.
Ctrl 1 M Moves the word marker that was last selected to the cursor’s current position.

Magnification Ctrl 1 up arrow Zooms in on the y-axis (amplitude).
Ctrl 1 down arrow Zooms out on the y-axis (amplitude).
Ctrl 1 . Zooms in on the x-axis (time).
Ctrl 1 , Zooms out on the x-axis (time).
If the above four zoom commands are used in conjunction with the Shift key, the step size is larger.

Note—The key mapping for each command can be changed in a configuration file.

144     Solway, Geller, Sederberg, and Kahana

also mark them at each 1-sec interval. These time stamps
can then be used to identify the corresponding neural data
(if measured during the experiment) so that they can be
treated with caution or discarded altogether.

Output file. After labeling a vocalization, PyParse writes
a line entry to a temporary file (this file has the same base
name as the sound file being scored and the extension .tpa)
with the following three columns of information: the onset
of the vocalization in milliseconds, the index of the word in
the word pool file (21 for intrusions), and the word itself.

Finishing the session. After labeling the first vocaliza-
tion, we proceed to scoring the remainder of the file in a
similar fashion. One can quit PyParse in one of two ways,
depending on whether the entire file has been scored. If the
entire file has not been scored, clicking the “Quit” com-
mand button will close PyParse while leaving the tempo-
rary .tpa file in place. Relaunching PyParse with the same
sound file will automatically load the information stored in
the .tpa file and allow the user to pick up where he or she
left off. Once the entire file is traversed at least once, the
“Done” button becomes available. Clicking it changes the
extension of the .tpa file to .par, signifying that this sound
file has been scored. The resulting .par file can then be
processed with the programming language of choice.

Automatic Onset Detection
We have put considerable effort into optimizing the ac-

curacy, consistency, and speed with which recordings can
be manually scored (cf. the Usage Statistics section). In
general, scoring audio recordings consists of two steps:
finding the onset of the vocalization and labeling the vo-
calization. Recordings made in a laboratory setting are
usually of very high quality, and one can label a vocaliza-
tion rather quickly. However, locating accurate and con-
sistent onsets is difficult even in a recording with a high
signal-to-noise ratio. Automating this task thus has the
potential to save a great deal of time.

While recent advances in automatic endpoint detection
have focused on algorithms that improve accuracy in high-
noise environments, an algorithm that remains popular
for use in low-noise environments is that of Rabiner and
Sambur (1975). We have implemented their algorithm in a
PyParse add-on called PyWR (Python word recognition).

The onset detection feature can be invoked in two ways:
via the -o command line option given to PyParse (for a list
of all command-line options, see Table 1), and via a stand-
alone program capable of processing multiple files at once.
When the -o option is chosen, PyParse first checks whether
a previous session is saved in a corresponding .tpa file. If
so, the -o option is ignored, and the previous session is re-
stored. If a previous session is not found, PyParse runs the
onset recognition algorithm on the given file. Each onset
is labeled with a question mark, signifying that it has yet
to be labeled. If the recordings were not made in a noise-
free environment, the -n or -bgFile options are used to
point PyWR to an audio file containing a 1-sec recording
of typical background noise. PyWR uses this file to tweak
its parameters. Note, however, that the algorithm still as-
sumes that the overall signal-to-noise ratio is high and that
whatever little background noise exists is stationary.

the level of magnification on both the y-axis (affecting the
amplitude of the display) and the x-axis (affecting how
much of the waveform is shown on the screen at any one
time) with a single keystroke. The bottom half of the screen
contains, from left to right, the response box and word pool,
a list of the vocalizations marked so far, along with their
corresponding onsets, a volume slider, a playback speed
display, and command buttons for closing the application
in one of two ways (both of which are explained later).

We begin scoring the file by listening to the first vocal-
ization shown on the screen (see, e.g., Figure 1), using the
space bar to start and stop playback. The left arrow key
is then used (possibly in conjunction with one or more
modifiers to traverse a larger distance; see Table 2) to re-
position the cursor prior to the start of the vocalization,
allowing for ample slack room.

Locating the vocalization’s onset. The best estimate
of the vocalization’s onset can be found in one of two ways.
The first method involves incrementally moving the cur-
sor using the right arrow key (without any modifiers, this
is the smallest step size and corresponds to a 5-msec de-
fault). After each step, Ctrl1Z is used to play back the last
200 msec of the file and gauge whether the vocalization has
started. Although this method works well for most vocaliza-
tions, a more flexible method is sometimes required, espe-
cially when marking words that start with soft fricatives.
This second method involves dropping two anchor points to
restrict playback to a precise area of the waveform. The first
anchor point is dropped (Ctrl1A by default) prior to the
hypothesized onset of the vocalization, and a second anchor
point is dropped to the right of the first by pressing Ctrl1A
again after repositioning the cursor. In anchor mode, the left
and right arrow keys are used to move the right anchor point
and, in conjunction with the Ctrl key, the left anchor point.
Pressing the space bar plays only the part of the file that
falls between the two anchor points. This allows the user to
define an arbitrary window and shift it in small increments
until a precise estimate of the onset is found.

Labeling vocalizations. Once we obtain the best esti-
mate of the onset using one of the two methods described
above, we type the word that was previously played back. As
more and more of the word’s prefix is typed into the response
box, the word list is filtered to display only the matching
words. If a corresponding (optional) .lst file is found as de-
scribed above, the words contained in the file appear at the
top of the word list in bold. This allows the user to more eas-
ily identify a mumbled word if it resembles a word that was
on the list being scored. Once enough characters of a word
are typed to uniquely identify it, the Tab key can be used
to auto-complete the word in the response box. Finally, the
Enter key is used to place the word at the onset’s location.

Marking intrusions. If the vocal response corre-
sponds to a word that does not appear in the word list, it is
marked as an intrusion by pressing Ctrl1Shift1I, instead
of the Enter key. If the response was nonsensical or con-
sists of the participant talking to him- or herself or to the
person running the experiment, it is marked in a special
way by first typing “VV” in the response box and then
pressing Ctrl1Shift1I, as if marking an intrusion. In our
laboratory, if such vocalizations last more than 1 sec, we

PyParse     145

ing of the word being repeated multiple times, with a
short pause between repetitions. The stand-alone program
pywr_train.py is used to train the classifier and takes
as its single argument the directory containing the audio
files to use: pywr_train.py [train_dir]. PyWR
looks at each .wav file in the directory and creates a cor-
responding .hmm file with the model parameters to use
for classification.

The stand-alone program pywr_classify.py
is used to classify a set of unlabeled audio files: pywr_
classify.py wordpool_file model_dir
file1.wav [file2.wav file3.wav ..]. Here,
wordpool_file is the path to the word pool file used
during the experiment (i.e., the file that would be passed to
PyParse if the data were classified manually), model_dir
is the directory containing the .hmm files generated dur-
ing the training phase, and the rest of the arguments are the
audio files to classify. A .tpa file is generated for each .wav
file, which can then be loaded into PyParse to quickly check
the accuracy of the labels.

In our laboratory, we collect training data for each
participant and use it to train a unique classifier for their
voice. Although this may be excessive for classifying
words from a very small word pool, it allows us to adapt
the classifier to individual differences and achieve very
high recognition accuracy.

As a final note, the current implementation assumes
that participants are not trying to trick the system with
invalid responses. This assumption is reasonable, since the
data in most such cases should probably be discarded.

Implementation

The front-end interface and most of the higher level fea-
tures were written in Python, making use of wxPython
for the GUI, and SciPy and NumPy for postprocessing
the audio data. At a lower level, audio data are processed
by a thin wrapper around RtAudio, libsndfile,
libsamprate, and SoundTouch, written in C11
and made available to Python using SWIG.

We forgo a detailed discussion of many implementation
details, since they are not in themselves novel. The source
code is available on the Computational Memory Lab’s
Web site (http://memory.psych.upenn.edu) and is acces-
sible to anyone with Python programming experience.
We do, however, discuss the details surrounding the cur-
rent endpoint detection and word recognition algorithms.
Not only is their application to scoring psychological data
novel, but they represent the features of PyParse that we
believe can use the most improvement.

The Automatic Endpoint Detection Algorithm
We describe a slightly modified version of the endpoint

detection algorithm of Rabiner and Sambur (1975). For
further details, we refer the reader to the original article.

Both automatic and manual (human) endpoint detec-
tion is an especially challenging problem in the presence
of background noise. In the case of automatic detection,
successfully separating speech from background noise
requires a sophisticated filtering scheme and a detailed

The second way to invoke the onset detection feature
is via the stand-alone program pywr_onsets.py:
pywr_onsets.py file1.wav [file2.wav
file3.wav . . .]. A .tpa file with the detected onsets
is generated for each .wav file given to the program. These
files can later be loaded into PyParse so that the onsets can
be double-checked and labeled. If the recordings were not
made in a noise-free environment, the -bgFile option
can be used to specify a background noise profile as was
described above. This batch mode feature, which allows
multiple files to be marked without user interaction, can
save a lot of time when scoring a large number of files.

Although conceptually simple, the algorithm of Rabiner
and Sambur (1975) accurately identifies onsets for a large
percentage of vocalizations. It does, however, have two
limitations and represents only a first step in automating
onset detection in PyParse. First, as it was described in its
original form, the algorithm expects only one vocalization
within the recording. Although this restriction has been
lifted in our implementation, the modified algorithm does
a poor job of separating words that are spoken in rapid
succession. In such cases, the algorithm treats the entire
segment as one vocalization and only marks the onset of
the very first word.

The second limitation of the algorithm is that it often
overshoots the onsets of words that begin with weak frica-
tives (e.g., /f/), because their energies ramp up slowly. Al-
though Rabiner and Sambur (1975) addressed this short-
coming with a secondary refinement phase, it does not
work as well as would be expected when vocalizations
are made in relatively rapid succession and stored within
a single file (see the Implementation section below). The
user must be mindful of both of these shortcomings and
manually mark the onsets that the algorithm misses.

In recognition experiments run in our laboratory, where
responses are limited to two words (e.g., “yes” and “no”),
we modify the responses so that they start with the same
sound. For instance, instead of saying “yes” or “no,” par-
ticipants say “pes” or “po.” Since the energy of the /p/
sound ramps up quickly, the algorithm is very good at ac-
curately locating the onsets of these words. Also, since
both start with the same sound, onset estimates are consis-
tent across words. Such a feature is important when look-
ing at response time data.1

Word Recognition
Automatic word recognition is available for use with

experiments in which the pool of possible responses is
relatively small. For example, we have successfully au-
tomated scoring data from a recognition experiment in
which the pool of responses consists of the words “pes”
and “po” (for “yes” and “no”). This feature is part of the
PyWR add-on and is accessible via a command-line inter-
face to facilitate the ability to score data in batch mode.
Using this feature involves two steps: training a classifier
on labeled data collected during a pre-experimental train-
ing phase and pointing the classifier to unlabeled data col-
lected during the experiment.

For the training step, PyWR expects as input one audio
file for each valid word. The file must contain a record-

146     Solway, Geller, Sederberg, and Kahana

ever, we have found mixed results in practice when using
this approach for recordings made in a laboratory setting
and containing multiple vocalizations per file. Although
it provides an accurate correction in some cases, in oth-
ers it positions the onset estimate prior to where a human
operator would. This problem occurred often enough dur-
ing testing to warrant turning the refinement step off by
default.

The Automatic Word Recognition Algorithm
The current implementation of the word recognition

feature can automatically score data from experiments in
which the pool of possible responses is relatively small.
In particular, we have successfully used it to score data
from a recognition experiment with a response pool of
two words (“pes” and “po”). Here, we briefly describe
the current implementation, based largely on the work of
Rabiner, Juang, Levinson, and Sondhi (1985). The modu-
lar form of PyParse and PyWR allows one to easily drop
in a more sophisticated algorithm capable of recognizing
words from a larger lexicon at a later date.

Training data are obtained from each participant by hav-
ing them repeat each of the possible responses several times.
In our recording environment, we can achieve an average
classification rate (across participants) of over 99% using a
training set consisting of 30 repetitions of each word.

The training data are band-pass filtered between 1000
and 16000 Hz to remove noise, and a pre-emphasis filter
is applied to boost the attenuated energy that is typical at
higher frequencies of human speech. The endpoint detec-
tion algorithm outlined above is used to identify the voiced
portions of the signal. Mel-frequency cepstral coefficients,
which have been employed in speech recognition for some
time (Davis & Mermelstein, 1980), are computed for a
moving window of the voiced segment of the signal. They
constitute the features used for classification.

A hidden Markov model in which the observations in
each state are modeled as a mixture of Gaussians is fit
separately to each word. Parameter estimates are obtained
using the standard Baum–Welch algorithm, an iterative
procedure that finds estimates that maximize the likeli-
hood of the training data (e.g., Rabiner, 1989).

Unlabeled data are preprocessed in exactly the same
way as the training data. To label a vocalization, the Viterbi
algorithm is first used to find the most likely sequence of
state transitions under each model. From these, the most
likely overall sequence is selected, and the label associ-
ated with the corresponding model is used.

Usage Statistics

Onset Consistency
PyParse allows multiple people to score different por-

tions of the same data set without sacrificing the consis-
tency with which onsets are marked. Five research assis-
tants who use PyParse on a regular basis scored the same
set of three recall periods from a random participant of a
large free recall experiment. Together, the three recall peri-
ods contained 43 responses. The mean (across responses)

statistical model of the signal. Since recording conditions
in the laboratory are under the experimenter’s complete
control, we assume that background noise is minimal and
that the signal-to-noise ratio is very high.

A 10-msec window is first swept across the signal while
the energy of each frame is noted. By energy here, we sim-
ply mean the sum of the magnitudes of all of the samples
that fall within the boundaries of the window. An analo-
gous operation is performed on 100 msec of background
noise, recorded in the testing room. Two statistics are com-
puted, based on the peak energy of the input signal (IMX)
and the mean energy of the background signal (IMN):

	 ITL 5 min(0.03  (IMX 2 IMN) 1 IMN, 4  IMN)	 (1)

	 ITU 5 5  ITL		 (2)

Respectively, these two values represent the lower and
upper thresholds used to segment voiced parts of the re-
cording, as is described below.

A 10-msec window is then again swept across the sig-
nal. If a frame whose energy exceeds the lower thresh-
old (ITL) is found, the center of the frame is marked as
a potential onset. The window is further swept across the
signal until one of four things occurs. If a frame whose en-
ergy exceeds the upper threshold (ITU) is found or if the
signal’s energy is maintained above the lower threshold for
a predetermined amount of time (200 msec by default),
the previously marked sample is confirmed to be an onset.
If a frame whose energy falls below the lower threshold is
found before meeting either of these two conditions, the
hypothesized onset is discarded. This filters out artifacts
that arise from false starts. A hypothesized onset is also
discarded upon reaching the end of the signal.

After locating an onset, a window continues to be swept
across the signal looking for the corresponding offset. Al-
though we are not explicitly interested in knowing where
a vocalization ends, we locate the offset for two reasons.
First, since the signal can contain multiple vocalizations,
we know to start looking for the next vocalization in the
frame following the offset. Second, if the length of a vo-
calization falls below a configurable threshold (100 msec
by default), the vocalization is usually too short to be of
value and the endpoints are discarded.

Rabiner and Sambur (1975) described a refinement
phase meant to correct the onsets of words that begin with
weak fricatives. A 10-msec window is swept across the
250-msec segment of the recording preceding the first
onset estimate (for offsets, they look at the next 250-msec
segment) while the number of zero-crossings in each
frame is calculated. A large number of zero-crossings
is taken as evidence of a vocalization. If the number of
zero-crossings in three or more frames is further than two
standard deviations away from the mean number of zero-
crossings in a typical frame of silence, the onset (or offset)
is adjusted to be at the center of the earliest (or latest)
frame exceeding this threshold.

This approach is reported to work well in the domain
addressed by Rabiner and Sambur (1975), where they ex-
pected recordings to contain a single vocalization. How-

PyParse     147

of the sequence of recalled items could open a wide range
of new areas of study in verbal recall. Finally, because re-
call tasks are playing an increasingly important role in de-
tecting memory impairments associated with neurological
disease, automatic data collection and scoring can become
an important part of remote (e.g., phone-based) monitoring
systems. PyParse is only a first step toward these far more
ambitious aims, but it highlights the richness of data that
can be gleaned from recall experiments and will hopefully
stimulate the development of more sophisticated tools for
scoring verbal recall protocols.

Author Note

The authors gratefully acknowledge support from National Institutes of
Health Grant MH55687 and the Dana Foundation. Correspondence con-
cerning this article should be addressed to M. J. Kahana, 3401 Walnut St.,
Suite 303C, Philadelphia, PA 19104 (e-mail: kahana@psych.upenn.edu).

References

Davis, S., & Mermelstein, P. (1980). Comparison of parametric repre-
sentations for monosyllabic word recognition in continuously spoken
sentences. IEEE Transactions on Acoustics, Speech, & Signal Pro-
cessing, 28, 357-366.

Friendly, M., Franklin, P. E., Hoffman, D., & Rubin, D. C. (1982).
The Toronto Word Pool: Norms for imagery, concreteness, ortho-
graphic variables, and grammatical usage for 1,080 words. Behavior
Research Methods & Instrumentation, 14, 375-399.

Geller, A. S., Schleifer, I. K., Sederberg, P. B., Jacobs, J., & Kahana,
M. J. (2007). PyEPL: A cross-platform experiment-programming li-
brary. Behavior Research Methods, 39, 950-958.

Kahana, M. J. (1996). Associative retrieval processes in free recall.
Memory & Cognition, 24, 103-109.

Murdock, B. B., & Okada, R. (1970). Interresponse times in single-
trial free recall. Journal of Experimental Psychology, 86, 263-267.

Patterson, K. E., Meltzer, R. H., & Mandler, G. (1971). Inter-
response times in categorized free recall. Journal of Verbal Learning
& Verbal Behavior, 10, 417-426.

Pollio, H. R., Richards, S., & Lucas, R. (1969). Temporal properties
of category recall. Journal of Verbal Learning & Verbal Behavior, 8,
529-536.

Polyn, S. M., Norman, K. A., & Kahana, M. J. (2009). A context
maintenance and retrieval model of organizational processes in free
recall. Psychological Review, 116, 129-156.

Rabiner, L. (1989). A tutorial on hidden Markov models and selected
applications in speech recognition. Proceedings of the IEEE, 77,
257-286.

Rabiner, L., Juang, B.-H., Levinson, S., & Sondhi, M. (1985). Rec-
ognition of isolated digits using hidden Markov models with continu-
ous mixture densities. AT&T Technical Journal, 64, 1211-1234.

Rabiner, L., & Sambur, M. (1975). An algorithm for determining the
endpoints of isolated utterances. Bell System Technical Journal, 54,
297-315.

Rohrer, D., & Wixted, J. T. (1994). An analysis of latency and inter-
response time in free recall. Memory & Cognition, 22, 511-524.

Wingfield, A., Lindfield, K. C., & Kahana, M. J. (1998). Adult age
differences in the temporal characteristics of category free recall. Psy-
chology & Aging, 13, 256-266.

Note

1. We thank Professor Saul Sternberg for suggesting the “pes”/“po”
variant described above.

(Manuscript received August 7, 2009;
accepted for publication September 13, 2009.)

of the standard deviation between research assistants was
12 msec (62 msec). The mean deviation between two of
the most experienced users was 3 msec (60.5 msec).

Efficiency
A typical parsing session was timed for each of five

research assistants. On average, it took less than 30 sec to
listen to a vocalization, to rewind the cursor and use one of
the methods described in the Usage section to find the best
estimate of the onset, and to label the vocalization.

Word Recognition Accuracy
A recognition experiment in which the pool of valid

responses was limited to two words (“pes” and “po”) was
scored both manually and using the automatic word recog-
nition feature. The data set contained 24 participants with
an average of 1,475 responses each. The mean classifica-
tion accuracy across participants was over 99.4%, whereas
the worst accuracy for any 1 participant was 97.1%.

Future Enhancement

Although the current version of PyParse has enabled
us to efficiently collect interresponse time and output
order data in numerous studies, there are a number of
major limitations that should be addressed in future work.
The most significant limitation is the need to manually
identify spoken words in data collected from most stud-
ies. With advances in computer technology and speech
recognition algorithms, it should be possible to accurately
identify a large portion of words, letting the user identify
only those words that the speech recognition algorithm
could not identify with high confidence.

Another limitation is the unreliable nature of the onset
detection algorithm under the conditions previously de-
scribed. We have experimented with a number of primitive
algorithms, none of which were completely satisfactory
(especially in cases where words were slurred together).
By using a more sophisticated word model, it should be
possible to automatically detect voice onsets with a higher
degree of accuracy. As with word recognition, one could
envision an algorithm that gauges its own confidence, al-
lowing the user to manually identify onsets for trouble-
some words. A word model incorporating both acoustic
and semantic information could potentially solve both of
these problems simultaneously.

The possibility of automatic parsing raises the prospect
of providing real-time performance feedback. Several sce-
narios come to mind. First, in neuropsychological assess-
ment procedures, one could have the computer automati-
cally adjust the difficulty of the lists on the basis of patient
performance. Second, in studies of learning, the computer
could repeat study–test trials until some performance level
is achieved. Third, by dynamically monitoring interresponse
times, one could adjust the recall period depending on the
amount of time that has elapsed since the last response. The
possibility of triggering experimental events as a function

