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bstract

Spectral analysis methods are now routinely used in electrophysiological studies of human and animal cognition. Although a wide variety
f spectral methods has been used, the ways in which these methods differ are not generally understood. Here we use simulation methods to
haracterize the similarities and differences between three spectral analysis methods: wavelets, multitapers and Pepisode. Pepisode is a novel method
hat quantifies the fraction of time that oscillations exceed amplitude and duration thresholds. We show that wavelets and Pepisode used side-by-side
elps to disentangle length and amplitude of a signal. Pepisode is especially sensitive to fluctuations around its thresholds, puts frequencies on a
ore equal footing, and is sensitive to long but low-amplitude signals. In contrast, multitaper methods are less sensitive to weak signals, but are
ery frequency-specific. If frequency specificity is not essential, then wavelets and Pepisode are recommended.
 2006 Elsevier B.V. All rights reserved.
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designed for stationary2 and regular signals (Mallat, 1998; Zhan
et al., 2006). Because of the fixed window length, Fourier anal-
eywords: Oscillations; EEG; Wavelets; Multitapers; Pepisode

. Introduction

Oscillations arise from an interaction between the intrinsic
roperties of neurons (excitability) and their interconnectiv-
ty, giving rise to synchronous activity (Buzsáki and Draguhn,
004). Oscillations at various frequencies may be readily seen
n electroencephalographic (EEG) recordings across species and
re known to correlate with an animal’s behavior and with the
timulating conditions present in the environment. Although
arly studies relied on visual inspection of the EEG signal to
dentify epochs of oscillatory activity and their behavioral cor-
elates (Berger, 1929), the advent of modern computers now
nables researchers to quantify the presence of oscillatory com-
onents in the EEG using spectral analysis methods. Spectral
ethods are widely used throughout the neurosciences and have

ielded many new findings concerning the electrophysiology of
oth animal and human cognition (e.g., Klimesch et al., 1994;

ahana et al., 2001; Bastiaansen and Hagoort, 2003; Buzsáki

nd Draguhn, 2004; Kahana, 2006).

∗ Corresponding author. Tel.: +1 215 746 3500; fax: +1 215 646 6848.
E-mail address: kahana@psych.upenn.edu (M.J. Kahana).
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A myriad of spectral methods exist, which differ in the as-
ects of the data they highlight. However, exactly what aspects
re highlighted by each method is often unclear. Our goal in
his paper is to compare three methods used in the analysis of
EG oscillations. All three methods involve Fourier analysis.
hat is, they all seek to decompose the time series of EEG ac-

ivity into sinusoidal functions whose amplitude and phase vary
cross frequency, but the shape of these functions differ for each
ethod. In a traditional Fourier analysis, the function with which

he signal is convolved1 is a sinusoid of fixed length, and in or-
er to improve temporal specificity, the analysis is performed
n short windows (“windowing”). However, traditional Fourier
nalysis has a number of shortcomings: it has relatively poor
ime–frequency resolution (Bruns, 2004), the length of the win-
ow fixes the scale of the to-be-detected signal, and it is mainly
sis is only useful in a limited frequency range that is optimized

1 A convolution measures the overlap between two functions by shifting them
ver one another and integrating over all shifts.
2 ‘Stationary’ means that the signal has no significant change in its mean over

ime.

mailto:kahana@psych.upenn.edu
dx.doi.org/10.1016/j.jneumeth.2006.12.004
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onal frequencies–the discrete wavelet transform). However, it
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or your time window (Perrier et al., 1995). Moreover, none of
he conventional oscillatory analysis methods differentiate oscil-
ations from artifacts and evoked potentials, which can manifest
s short events in Fourier space. Therefore, several alternatives
ave been proposed for analyzing brain oscillations, some of
hich will be discussed here.
We will examine three methods, namely wavelets (introduced

or neural data in Kemerait and Childers (1972) and Schiff et al.
1994)), multitapers (introduced for the analysis of neural data
n Mitra and Pesaran (1999)) and Pepisode (introduced in Caplan
t al. (2001)). Wavelets are functions that can come in many
hapes, and the analyzed signal is decomposed into scaled and
hifted versions of the oscillating waveform you are using. Be-
ause the wavelet functions are shifted and scaled versions of one
nother, the proportion between temporal width and frequency
andwidth remains the same for all frequencies. Therefore, a
rucial difference from windowed Fourier analysis is that the
ize of the window depends on the frequency, which gives rise to
ore temporal precision for higher frequencies. Wavelets have
very good time–frequency resolution trade-off (Sinkkonen et

l., 1995), making them quite useful for the analysis of non-
tationary signals.

Multitapers are sets of functions that were designed to re-
uce bleeding between frequencies, rendering them well-suited
or non-stationary processes with high dynamic ranges and/or
apid variations (Walden et al., 1998). An important distinction
rom wavelets is that the width of the function stays the same in
bsolute time across frequencies (similar to a Fourier transform).
inally, because multitapers imply that the signal is convolved
ith multiple orthogonal tapers,3 which are then averaged, the
ariance of this oscillation detection method across repeated
easurements is reduced. In other words, the amplitude mea-

urements taken with multitapers will have smaller error bars
han, for example, wavelets.

Both wavelets and multitapers do not discriminate between
hort, high-amplitude power fluctuations and longer oscilla-
ions. The Pepisode method addresses this issue because it was
esigned to detect “oscillatory episodes” and ignore transient
oltage fluctuations (Caplan et al., 2001). This method charac-
erizes whether oscillations at a given frequency are present or
bsent at a given time point in an ongoing EEG signal. It uses
avelets to determine the amplitude of oscillatory activity at a
iven frequency and time, and then applies an amplitude and
uration threshold to characterize whether the signal is in an
scillatory state. Instead of measuring mean oscillatory power,
aplan et al.’s method measures the fraction of a time inter-
al during which the signal exceeds the amplitude and duration
hreshold at a given frequency. This fraction is then termed the
robability of being in an oscillatory episode at frequency f,
r Pepisode(f ). It is likely that the number of oscillatory cycles

s more relevant than absolute length for information process-
ng and computation (for an example see Jensen, 2006; Ward,
003). Therefore, we will perform most analyses in this paper

3 Tapers are functions that smooth the data by having a value of one in the
iddle and then slowly tapering off to zero at the edges.
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n units of oscillatory cycles at a given frequency as opposed
o time in seconds, an alternative way of quantifying oscillatory
ower.

We will compare these methods by first analyzing simulated
EG data where the signal to be recovered is known. We then
pply the three methods to empirical data. Comparing the results
rom simulations to effects in real data will allow us to highlight
he differences between the three methods. We end the paper by
ffering recommendations to scientists interested in measuring
scillatory effects in EEG data.

. Methods

.1. Specifications of analysis methods

The first method we consider is wavelet analysis (Fig. 1a and
). Wavelets come in many shapes, each designed to capture dif-
erent aspects of a time series. The Morlet wavelet is commonly
sed for the analysis of human EEG (Schiff et al., 1994) because
ts sinusoidal shape, which tapers at the ends, matches the signal
e expect to extract from the EEG. This is crucial, because the

uccess of wavelet analysis depends upon the suitability of the
avelet for detecting the desired signal (Özdemir et al., 2005).
small disadvantage of the wavelet is that it is non-orthogonal,

ence computationally inefficient.4 The Morlet wavelet is de-
ned as follows (illustrated in Fig. 1g):

W = s(t) ∗ 1

(σt

√
π)1/2 e−(t2/2σ2

t ) e2iπ ft (1)

In this equation, SW denotes the wavelet-transformed signal,
(t) is the original signal, t and f represent time and frequency,
espectively, and ∗ means convolution. The square root term
auses the wavelet to be normalized to have an energy (squared
ntegral) of 1. After the convolution, the absolute magnitude of
he square of Eq. (1) will be taken. Wavelets have a length that
cales inversely with frequency, such that the time–frequency
roduct, or alternatively the number of cycles of oscillations
ithin a wavelet, remains constant (the actual number of oscil-

ations is set by the wavenumber k in σt = k/πf ). It also means,
owever, that for higher frequencies the frequency resolution
ecreases and the temporal resolution increases (i.e., tempo-
al and frequency resolution trade-off). In this paper, we use a
avenumber of 6, which is often used in human EEG analy-

is to strike a balance between temporal and frequency speci-
city (e.g., Sederberg et al., 2003, in press). In addition, the
ecomposition we use is a continuous wavelet transform, which
as the advantage that we can investigate signals at arbitrary
cales (as opposed to a decomposition at a fixed set of orthog-
as the disadvantage that the wavelets used are not necessarily
rthogonal (as is the case when the frequencies used are not loga-
ithmically spaced) and, hence, the obtained power estimates are

4 Non-orthogonal refers to overlap or correlation between the different
avelets, which essentially means that the overlapping part is convolved with
our data twice. This is what is meant by ‘computationally inefficient’.
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edundant. The latter causes imprecision in the power estimates
Farge, 1992).

Researchers have recently begun to adopt multitapers
Thomson, 1982; Percival and Walden, 1993; Mitra and Pe-
aran, 1999) for EEG analysis (Raghavachari et al., 2001;
oogenboom et al., 2006) (also see Fig. 1b and e). In the mul-

itaper method, the data are multiplied with special windows
efore the frequency decomposition. The windows used are of-
en Slepian windows or Discrete Prolate Spheroidal Sequences
DPSS), examples of which are shown in Fig. 1h. These window
unctions are designed to prevent bleeding of power to neighbor-
ng frequencies, as often tends to happen for wavelets. After this
peration, a Fourier transform is performed, and the absolute
quare is taken of the resulting signal (an alternative procedure
s to convolve the data with the DPSS window directly).5 The
onvolution is repeated with a number of K different (orthogo-
al) windows (where the number K depends on the window size
T) and bandwidth (W), K = 2TW − 1). Each repetition reduces
he variance in the estimate by

√
K (Raghavachari et al., 2001).

n fact, each window gives an independent estimate of the signal
ecause the windows are orthogonal, thereby making the power
stimate more reliable for noisy data. The complete estimate of
he oscillatory power through this method then becomes:

M = 1

K

K∑
k=1

�t|
N∑

t=1

DPSSt,ks(t) e−i2πft �t|2 (2)

ere again t and f represent the time and frequency, and s(t)
enotes the signal. DPSSt,k is the kth taper function at time
oint t. The DPSS functions at frequency f are defined as
he Fourier transforms of the solutions to the following in-
egral equation, and can be obtained easily from programs
ike MATLAB™:

W

−W

sin Tπ(f − f ′)
sin π(f − f ′)

Uk(T, W ; f ′) df ′ = λk(T, W)Uk(T, W ; f ′)

(3)

In the simulations presented below, we use a bandwidth of
for the DPSS functions, giving us a frequency resolution of
1 Hz, and a window size of 0.3 s (size of the taper), unless

therwise noted (note that this gives rise to only a single taper).
he effect of using different parameters is considered in Section
.

The advantage of multitapers is that they are designed to de-
ect non-stationary signals with large-amplitude transients and
lso have good anti-frequency leakage properties. An impor-
ant difference from wavelets is that, whereas the wavelet width
hanges with frequency, the width of the DPSS function (the
nvelope) remains constant, while periodicity varies with taper

umber.

Finally, the Pepisode method (Caplan et al., 2001, 2003;
kstrom et al., 2005) was designed to measure sustained os-
illations, and is used after oscillatory power has been com-

5 This alternative approach is identical because the convolution of two func-
ions is identical to the multiplication of their Fourier transforms.
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uted by another method (typically wavelets; Fig. 1c and f).
his method was designed to detect sustained oscillatory pro-
esses, whereas conventional methods will detect any process
hat exhibits a partial oscillation cycle, such as artifacts (e.g.,
pikes) or evoked potentials. For example, Pepisode could make
he distinction between the sustained hippocampal slow oscilla-
ion and large-amplitude irregular activity that has been reported
n rats (Wolansky et al., 2006). Even though an autocorrelation
nalysis can also detect differences between oscillatory activity
f longer and shorter duration, it does not do so very well on a
rial-by-trial basis. Pepisode not only detects periodicity, but also
uantifies the fraction of time spent in an oscillatory episode,
nd can thereby detect graded differences in the distributions of
ignal lengths between different conditions. In addition, when
ne does not use a pre-whitening or other filtering procedure to
ompensate for the 1/fα fall-off of the spectrum, autocorrelation
nalyses will detect high-frequency oscillations poorly because
igh-amplitude oscillations at lower frequencies dominate the
orrelation spectrum.

To compute Pepisode, one first estimates the “background”
pectrum by taking the mean wavelet power over all experi-
ental time. We typically include the entire experiment in the

ackground estimation because we are interested in oscillations
hat exceed a baseline during certain periods of the task. This

ethod of background estimation was introduced in Schiff et al.
1994), but alternative background epochs could be used (e.g.,
ime spent looking at a fixation cross before the task starts). This
ackground is then fit with a linear function in log–log space, in
ccordance with the theoretical 1/fα power spectrum that EEG
s thought to have (Freeman, 2006). This procedure will remove
he frequency bias (higher power at lower frequencies).

We then process the entire EEG signal and mark, for every
requency, the time intervals that exceed the power threshold for
period exceeding the duration threshold (DT ) in cycles (usually
et to 3). The power threshold is defined as the P th

T , usually 95th
ercentile of the fit to the background power spectrum, meaning
hat on average 95% of the background signal is eliminated.
episode is then defined as the fraction of the time interval of

nterest that exceeds both thresholds. The duration and power
hresholds were chosen based on experimentation with different
arameters but are quite robust to the exact choice of parameters
see e.g., Caplan et al., 2001; Fig. 6). The Pepisode computation
s illustrated in Fig. 1i.

The advantage of the Pepisode approach is that it puts all
requencies on equal footing, whereas both wavelets and
ultitapers lose information at higher frequencies due to the
/fα fall-off of the power spectrum (Linkenkaer-Hansen et
l., 2001). In addition, Pepisode only quantifies oscillations that
re truly periodic because they must be sustained for a certain
umber of oscillatory cycles.

.2. Simulations
In order to examine the characteristics of the different oscil-
atory analysis methods, we used simulated EEG in which the
signal” was known. Here, the signal s is defined as a simple
inusoid of known frequency f, phase φ, time course [t1, t2] and
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mplitude a:

(t) =
{

a sin(2πft + φ), t1 < t < t2

0, otherwise
(4)

This signal was added to a background EEG, which has a
/fα frequency spectrum, in agreement with human EEG. The
ackground EEG was constructed as described in Yeung et al.
2004). Briefly, 500 sinusoids of the desired duration, with ran-
om phase and frequency where summed. The amplitude of each
inusoid was adjusted to create a 1/fα fall-off of the power spec-
rum. Sampling rate in this simulated EEG was set to 256 Hz, in
greement with most of our experimental data.

Trials were then simulated as 2-s sequences of EEG, over
hich power was averaged (the signal length of 2 s was chosen to

acilitate comparison with empirical data). To avoid edge effects,
uffers with one more second of data were appended to these se-
uences at each side and were discarded after wavelet/multitaper
onvolution. A non-parametric Wilcoxon rank sum test was con-
ucted between samples of 100 trials with the added oscillatory
ignal and samples of 100 trials comprising only background
EG. A signal is “detected” when the p-value of this rank sum

est is lower than 0.05. Each signal in such a test has a fixed
ength, frequency and amplitude; only the background varies.

The criteria we consider for comparing the three methods
f interest are detection threshold, temporal characteristics, and
requency specificity. Detection threshold is a measure of the
ensitivity of the method, i.e., how small can the signal be and
till be detected? To determine the temporal characteristics of
he methods, we investigate the effect of increases in amplitude
ersus signal length on the detected power. Finally, to assess
requency specificity we quantify the frequency spread of the
etected signal.

.3. Empirical data

In addition to the simulated data, we applied these analy-
is methods to a large dataset of human EEG described more
xtensively in Sederberg et al. (in press). Intracranial EEG
iEEG) was collected from 35 subjects who underwent long-
erm invasive monitoring to determine seizure focus in cases
f pharmacologically intractable epilepsy. These patients had
rrays of subdural and/or depth electrodes implanted for a pe-
iod of 1–2 weeks to determine the focus of the epilepsy.
he placement of the electrodes was determined by the pa-

ients’ medical needs. The signal was amplified and sampled
t 200, 256, 500, 512 or 1024 Hz by means of a Bio-Logic,
LTek, Neurofile or Nicolet EEG system (depending on the

ite). Signals were band-pass sfiltered between 0.3 and 70 Hz
r 0.1 and 100 Hz (depending on the amplifier). Data were
lso notch-filtered at 50 or 60 Hz (depending on the country),
o eliminate electrical line and equipment noise. A kurtosis
hreshold of five was used to identify and discard events with

rtifacts (Delorme et al., 2001).

While the iEEG was being recorded, subjects performed a
elayed free recall task, which involved learning lists of 15 or 20
ords, then solving simple arithmetic problems for ∼ 20 s. After

l
b
i

ience Methods  162 (2007) 49–63

he arithmetic task, subjects recalled the words from the just-
resented list in any order. Electrophysiological signals were
ynchronized with behavioral events to a precision of < 4 ms.

Sederberg et al. (in press) were primarily interested in the
ubsequent memory effect (SME) (Karis et al., 1984; Fell et al.,
001; Paller and Wagner, 2002)—the electrophysiological ac-
ivity measured during the item presentations that distinguishes
ords that will subsequently be recalled from those that will not.
his was investigated by comparing 2-s sequences of EEG (over
hich the power was averaged) for recalled versus not-recalled
ords. As with the simulated data, they avoided edge artifacts
y including a 1-s buffer on either side of the 2-s epoch, which
as discarded after wavelet/multitaper convolution.

. Results

.1. Basic characteristics of the three methods

To visualize the basic spectral properties of the three meth-
ds, spectrograms for simulated data are shown in Fig. 1. In this
gure, we added a signal to background EEG activity between
00 and 800 ms, with a frequency of 10 Hz and an amplitude
f 5% of the background activity at that frequency. Note that
oth the strength with which the signal is distinguished from the
ackground activity and the structure detected in the background
ctivity itself differ between the three methods. In particular,
ultitapers and Pepisode tend to detect more structure in the ran-

om background EEG than wavelets. Also notice that Pepisode
oes not fall off as a function of frequency, as both wavelets
nd multitapers do (however, this could be prevented by pre-
hitening the data, i.e., removing autocorrelations such that the
ower spectrum becomes flat).

In order to compare the performance of these three methods,
e investigated sensitivity of detection in amplitude, time, and

requency domains. In the amplitude domain, we determined
he smallest signal that can be detected by each method, i.e., the
etection threshold. In the time domain, we examined how detec-
ion of signal length and amplitude trade-off. Finally, an analysis
f frequency specificity determined how much frequency bleed-
ng occurs.

.2. Detection threshold

First, we examined how wavelets, multitapers, and Pepisode
ould detect signals as a function of their amplitude. Fig. 2 shows
ow the three analysis methods differ in terms of the minimum
mplitude (in units of the amplitude of the background signal
t that frequency) required to detect a signal (i.e., to find a sig-
ificant difference between background EEG and signal using
rank sum test). If the method is more sensitive, then the min-

mum amplitude required to detect a signal will be lower. The
ariability of the methods is determined by repeating the proce-
ure n = 200 times with different noise backgrounds.
We see that the detection threshold decreases with signal
ength, such that longer signals are easier to detect. This is to
e expected because detection is dependent on mean power
n a fixed time interval, and if the signal is longer, mean
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ig. 1. Basic characteristics of the three oscillatory detection methods. Spectro
ultitapers (middle) and Pepisode (right). In all cases, a signal from 200 to 800

f 5% of the background activity. These spectrograms/spectra show a mean ov
avelet (g), sample multitapers (h) and illustration of the Pepisode method (i).

ower increases. Also note that the detection thresholds increase
s a function of frequency (the slope of detection threshold
ersus frequency is significantly different from 0 for signals
onger than one cycle by linear regression (p < 0.0381)). Just
s the detection threshold decreases as a function of the sig-
al length, the detection threshold increases as a function of
requency because the duration of the signal is much shorter
t higher frequencies when the number of cycles is held con-
tant. Consequently, it is more difficult to detect signals at higher
requencies.

We also see that at low frequencies (e.g., 5 Hz), wavelets are
ble to detect smaller and shorter signals than Pepisode. This is

elated to the three-cycle duration threshold of Pepisode, which
revents very short quasi-periodic activity from being detected.
he reason that Pepisode still sometimes detects signals smaller

han three cycles is that high amplitudes can give rise to tempo-

m
s
n
d

(a–c) and spectra (d–f) of a 10 Hz signal of simulated data for wavelets (left),
as added to a noisy background, with a frequency of 10 Hz and an amplitude

0 trials. Technical details of each of the methods are shown in (g–i): a sample

al spreading of the signal when measured by wavelets, causing
hem to occasionally exceed the Pepisode duration threshold even
hen the signals themselves are below this duration threshold.

n general, multitapers fall between wavelets and Pepisode in their
ensitivity, or are comparable to wavelets. At higher frequencies,
owever, multitapers become less sensitive, whereas Pepisode in-
reases in sensitivity.

.3. Trade-off between time and amplitude

Increasing either the amplitude or duration of an oscillatory
ignal will make it more easily detectable via the wavelet and

ultitaper methods. In contrast, the Pepisode method is primarily

ensitive to signal length. Thus, when Pepisode is used in combi-
ation with either wavelets or multitapers, one can, in principle,
isambiguate the length and amplitude of signals.
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Although multitapers are not very sensitive to small-
amplitude signals, they were designed to have good frequency
specificity (due to their anti-leakage properties). This feature is
ig. 2. Detection thresholds. Detection threshold of a signal (minimum signal
as a length of 1/frequency seconds). The amplitude of the signal is expressed
tandard error of the mean).

We examined the responses of wavelets, multitapers and
episode to increases in the to-be-detected signal length, am-
litude, or their combination. We quantified the responses by
etermining the increase in measured oscillatory activity (either
ormalized power or Pepisode) due to an increase in signal ampli-
ude (all amplitudes used were supra-threshold for Pepisode) as a
unction of signal length in cycles. Each response measurement
as normalized by dividing it by the maximum response for that
ethod, thereby placing all three methods on the same scale.
his measure therefore shows what effect an increase in ampli-

ude has on the detection of the signal by each method. When
he index is near zero, it indicates that the detection method is
ot sensitive to amplitude, whereas large values indicate that the
ethod responds strongly to changes in the amplitude of the

ignal.
Fig. 3 shows how Pepisode is mostly sensitive to increases

n length of the signal, not its amplitude, whereas multita-
ers and wavelets are sensitive to both (i.e., the estimates of

ower they provide increase by a large amount when either
he amplitude or the length of the signal to be detected in-
reases). The data in Fig. 3 are for a signal at 40 Hz; results
t other frequencies are similar, except that lower frequencies

c
t
t
a

itude that can be detected) as a function of signal length in cycles (one cycle
tion of the amplitude of the background EEG at that frequency (error bars are

end to be contaminated more by duration threshold issues
f Pepisode.6

By comparing the results from Pepisode and the other methods,
e can disambiguate length and amplitude of signals because
hen only Pepisode detects a signal it is likely that the under-

ying oscillation has a fairly long duration, but does not have a
igh amplitude compared to the no-signal condition. Conversely,
episode will be less likely to detect signals that are very short in
umber of cycles (as shown in Fig. 2), even if the amplitude is
igh.

.4. Frequency specificity
6 For lower frequencies, we would need a very long (in time) signal for the
ycle range we study here, which does not fit in a 2-s interval. At higher ampli-
udes, power will bleed across time, and the detected signal may pass the duration
hreshold, thereby leading to an apparent increase of Pepisode as a function of
mplitude.
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alized response of the oscillation detection method divided by the increase
n amplitude. The signal is at 40 Hz and added at three different amplitudes.

hen this index is near zero, the detection method is not sensitive to amplitude,
hereas large values indicate a strong response to amplitude.

hown in Fig. 4 in which we examine how the different methods
espond to a signal at frequencies surrounding the frequency of
nterest. For frequencies ranging from 1 to 100 Hz we used a
ank sum test to assess the reliability of the difference between
amples of artificial EEG data with and without an embedded
scillatory signal. Fig. 4 illustrates the p-value resulting from
he rank sum test at each frequency and for each of the three
pectral analysis methods. When the p-value is higher than the
otted line (corresponding to p = 0.05), the signal is considered
o be detected. The spread around the signal frequency (width of
he peak) is an indication of frequency specificity. We added two
ypes of signals: a signal with a fixed duration of 500 ms (left
olumn of Fig. 4), and a signal with a duration of four cycles of
he oscillation (right column of Fig. 4). The signal amplitudes
ere 1 and 4%, respectively, of the background signal at each

requency of interest (we used different amplitudes in order to
o remain within the dynamic range of the different detection

ethods).
The height of the peaks shown in Fig. 4 determines how

ell the signals are detected. When comparing the peak heights
cross different repetitions of the simulation with a rank sum
est, almost all heights of the peaks are different between meth-
ds. The only case where this is not true is when comparing
ultitapers and wavelets at 5 Hz: p = 17 and p = 0.370 for
four-cycle and a 500-ms signal, respectively. The width of

he peak is a measure of the frequency specificity. We quan-
ify the width of the peak by comparing distributions of the
umber of points above the significance threshold, for every
epetition of the simulation. The widths are different between
he three spectral methods when using a rank sum test, with

he only exceptions being the comparison of multitapers and
avelets at 20 and 80 Hz for a 500-ms signal (p = 0.136 and
= 0.440); and between wavelets and Pepisode for a four-cycle

7 In this case, both wavelets and multitapers are always detected and reach the
aximum possible detection statistic, and hence the two vectors are identical.
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nd a 500-ms signal at 80 Hz (p = 0.070 and p = 0.42, respec-
ively).

Another interesting feature of Fig. 4 is the comparison of ab-
olute length versus time in cycles across frequencies. For lower
requencies, the frequency specificity of the different methods
s virtually identical for both the fixed and variable-length cases.
owever, as the frequency of the to-be-detected signal increases

o 40 Hz and higher, Pepisode and wavelets show more frequency
leeding for the fixed-length signal (Pepisode to a lesser extent),
hereas multitapers remain compact. Also note the general fall-
ff in significance levels (i.e., the height of the peaks) as fre-
uencies increase, especially for the signal with a fixed number
f cycles (right column of Fig. 4). These differences in mea-
urements between the three oscillatory methods demonstrate
he effect of considering a signal in terms of a fixed cycle length
ersus a fixed duration in seconds, where Pepisode has an advan-
age for when cycle length is kept constant and multitapers have
n advantage when signal duration is kept constant.

.5. Signals near-threshold

Our previous analyses showed how Pepisode is not very sen-
itive to signals below its duration threshold of three cycles,
hereas wavelets are, especially at low frequencies. At higher

requencies however, Pepisode tended to become more sensitive
han wavelets for short but supra-threshold signals. These re-
ults are valid when a signal is compared to a noise background.
owever, from its construction, Pepisode is especially sensitive to
ifferences between conditions that are right around its ampli-
ude and duration thresholds. In order to test this, we generated
opulations of signals of different amplitudes and lengths, and
ompared them to each other, to find the smallest distance be-
ween populations that still allowed them to be distinguished.

In Fig. 5, we show how detection decreases when the sig-
als in the two comparison conditions become more similar in
mplitude (left column) or length (right column). In each of
hese simulations, a sample with the maximum amplitude/length
s compared to a sequence of samples with smaller ampli-
udes/lengths. As expected, the significance decreases for higher
mplitudes/lengths because the difference between the two pop-
lations decreases (note the logarithmic scale for the p-values,
hich shows smaller p-values as higher data points on the or-
inate). The error bars (standard error of the mean) are created
y repeating the simulation 100 times with a 1% variation in
mplitude (when the length is the predictor variable) or length
when the amplitude is the predictor variable), in order to mimic
ifferences between trials within a certain condition (as in actual
xperiments).

For all frequencies larger than 5 Hz, we see the predicted re-
ult of a regime where Pepisode detects a difference between very
imilar conditions (in terms of amplitude or duration of the sig-
al) better than multitapers or wavelets. At 5 Hz, Pepisode does
ot have an advantage in the amplitude regime, likely due to

eiling effects. The conditions shown in this figure are likely to
ppear in empirical EEG data, where two conditions are likely to
iffer in gradation between two signals than in the total presence
r absence of a signal (as we explored in the previous simula-
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ig. 4. Frequency specificity. Comparison of frequency specificity for the three
or the comparison between signal and no-signal (the dash–dotted line indicates
r four cycles (right column) and amplitudes of 1 and 4% of the background a
he analysis. Insets show a close-up for the frequencies 0–10 Hz.
ions). Also note that Pepisode’s advantage is bigger for length
ariations (right column) than for amplitude variations (left col-
mn), which is in agreement with Fig. 3, reaffirming that Pepisode
s more sensitive to differences in signal length than amplitude.

3

d

l detection methods at four different frequencies. Each panel shows the p-value
0.05) as a function of frequency. Signals with a length of 500 ms (left column)
de, respectively, were added. Each point is the average p-value for 50 runs of
.6. Differences in detection of very short, half-cycle signals

The detection-threshold analysis showed that Pepisode rarely
etects very short signals (with fewer cycles than its duration
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Fig. 5. The effect of near-threshold populations. To investigate near-threshold signal detection in the three methods, a population of signals with the highest amplitude
(left column) and length (right column), respectively, is compared to populations with varying lengths and amplitudes. Lower p-values indicate better detection.
Pepisode shows a regime with better detection than the other two methods when the populations get closer to one another (i.e., the graphed amplitude/length comes
closer to the maximum amplitude/length). Error bars are standard error of the mean.
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ig. 6. The effect of amplitude on the detection of a very short signal. A signal
etection is measured as the p-value of the rank sum test comparing population

hreshold). We decided to demonstrate this feature empirically,
s shown in Fig. 6. When we added an oscillatory signal
asting only half a cycle to the background EEG data, both
avelets and multitapers detected these oscillatory signals,
hereas the Pepisode method did not. This is because Pepisode

equires oscillatory power to exceed an amplitude threshold
or a minimum of three cycles in order to be considered an
scillatory episode. Thus, Pepisode will be restricted to sustained
scillatory phenomena.

Further, this analysis also shows that for higher amplitudes,
ultitapers exhibit a more significant difference between the sig-

al and no-signal populations than for lower amplitudes (they
ave the most significant p-values, and the difference in p-values
s largest at the higher amplitudes). This demonstrates an advan-
age for the detection of high-amplitude signals by multitapers.

.7. Application to intracranial EEG data

Whereas the previous analyses were limited to simulated
EG data, we also applied our spectral analysis methods to hu-

an intracranial EEG data. For this purpose, we selected the

arge dataset reported by Sederberg et al. (in press). In that study,
ubjects studied lists of common words for a subsequent re-
all task. Using wavelet analysis methods, Sederberg et al. (in

i

b
c

lf a cycle is added to the background EEG with varying amplitudes (abscissa).
amples with and without signals.

ress) found that specific patterns of oscillatory power during
he period when a word was being studied predicted the word’s
ubsequent recall.

In order to examine how the three methods discussed here
gree in this dataset, we first computed the correlation between
ean power or Pepisode for each 2-s word presentation event for

ach electrode. Fig. 7, which contains histograms of these corre-
ations (where each data point is the correlation at one electrode),
ives us some insights in the similarity of the signals detected
y these methods.

Wavelets and multitapers correlate more highly with one
nother than with Pepisode (F = 4506 (p � 10−8), two-way
NOVA), as we would expect based on, in particular, Fig. 3.
his correlation decreases on average for higher frequencies
F = 1844 (p � 10−8), two-way ANOVA), mostly because at
igher frequencies multitapers will not detect signals of only a
ew cycles at higher frequencies, whereas Pepisode still can if the
umber of cycles is above the duration threshold. Therefore, the
hree methods detect slightly different populations of signals,
hich will differ along one or more of the dimensions analyzed
n the previous sections.
To illustrate more precisely the similarities and differences

etween the three methods in an analysis of empirical data, we
alculated the significance spectra for two sample electrodes
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Fig. 7. Correlations across 2-s trials (for different electrodes) betwe

ublished in Fig. 1 of Sederberg et al. (in press). Fig. 8 shows
he significance of the difference between the power during re-
alled and not-recalled words for the same two electrodes us-
ng wavelets, multitapers and Pepisode, respectively. In the top
lectrode (located in the hippocampus), Pepisode shows a peak
t 32 Hz that the other methods do not show, and, conversely,
avelets and multitapers detect a negative peak at 6–12 Hz and
positive peak at 64 Hz that Pepisode does not. In the second

lectrode (located in the left inferior pre-frontal cortex (LIPC)),
episode shows a low-frequency peak that wavelets and multi-

apers do not show. The significance spectra for wavelets and
ultitapers are quite similar. As discussed earlier, the peaks

niquely detected by Pepisode are likely due to a relatively sus-
ained signal that is not high-amplitude. The peaks that Pepisode
oes not detect, but wavelets and multitapers do, are likely due
o short, high-amplitude signals. Also note that for the second
lectrode, multitapers distinguish two peaks at 32 and 60 Hz,

hereas those are blurred into a single peak by wavelets. Pepisode

hows a hint of the separation of the two peaks. These results
re to be expected based on our frequency specificity analyses
Fig. 4).

t
a
a
t

ean wavelet/multitaper power and Pepisode at different frequencies.

. Discussion

We reported analyses of three spectral methods: wavelets,
ultitapers, and Pepisode. Wavelets perform a frequency decom-

osition by convolving the data with a localized sinusoid that
cales with frequency. Multitapers are based on a windowed
ourier transform, where the windows are shaped to minimize
ower leakage. Instead of measuring oscillatory power, as the
ther two methods do, Pepisode measures the length of time dur-
ng which an oscillation is present. It has amplitude and duration
hresholds that allow for comparisons across frequencies.

To compare these three methods, we generated artificial EEG
ata that consisted of a 1/fα spectral background plus a to-be-
etected oscillatory signal. Varying the target signal’s properties
llowed us to compare each method’s ability to detect oscilla-
ions under different conditions. We compared the three methods
ccording to the minimum amplitude they were able to detect,

heir trade-off between time and amplitude in signal detection,
nd their frequency specificity. By performing many of these
nalyses in units of cycles of an oscillation as well as normal
ime, we were able to observe differences between the novel
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Fig. 8. Sample electrodes exhibiting oscillatory subsequent memory effects (first row: hippocampus; second row: LIPC (BA47)). Each panel shows the Z-transformed
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ignificance value of the difference in power between recalled and not-recalled w
he direction of the effect, and the gray area indicates the p > 0.05 significanc
l. (in press), Fig. 1(a and c); middle and right-hand columns show multitaper
ethods can detect different types of signal.

episode method and the more commonly used wavelets and mul-
itapers.

As expected, Pepisode did not detect very short signals in units
f oscillatory cycles (Fig. 2). Also, its detection capability was
uch less frequency dependent than either wavelets or multi-

apers (Fig. 4). We demonstrated how wavelets are, in general,
uite sensitive to low-amplitude signals (Fig. 2), whereas mul-
itapers can best detect low-frequency high-amplitude signals
Fig. 6) and have a high degree of frequency specificity (Fig. 4).
n addition, we showed how Pepisode is not sensitive to the am-
litude of the signal (once it exceeds the amplitude threshold),
hereas the other two methods are (Fig. 3). These effects were

urther demonstrated in empirical data from an intracranial EEG
tudy of human episodic memory (Figs. 7 and 8).

In contrast to wavelets and multitapers, Pepisode was
pecifically designed to detect oscillatory episodes. Numerous
heories propose that many of the processes that underlie cog-
ition and awareness are sub-served by oscillatory synchrony
etween brain areas, where, for example, oscillations have
o be sustained to carry information (see e.g., Engel et al.,
001; Varela et al., 2001; Tononi and Edelman, 1998). Because
episode subtracts background activity, it can be much more
ensitive than either wavelets or multitapers when conditions
iffer only slightly from one another, but have distributions

hat are near the duration or amplitude thresholds of Pepisode
cf. Fig. 5). We performed many of the analyses in this paper
n units of cycles of oscillations and fractions of background
ctivity, both to highlight these subtle detection capabilities

4

o

n the time bin 1000–2000 ms after word onset (rank sum test). The sign indicates
shold. The wavelet spectra in the left column are replications of Sederberg et
Pepisode spectra, respectively, for the same electrode. Notice how the different

f Pepisode in comparison to the other oscillation detection
ethods and to introduce this new way of thinking about

scillations.
Because Pepisode will only detect oscillations that exceed a du-

ation threshold in cycles, one could use Pepisode as a first-pass
lter to find real oscillations, and then use wavelets or multita-
ers to detect their amplitudes. In fact, using Pepisode in concert
ith multitapers and wavelets, one could disentangle length and

mplitude of the detected signal, as shown in Fig. 8. Another con-
equence of this approach is that oscillations of the same number
f cycles are detected roughly equally at different frequencies by
episode, whereas the ability of multitapers and wavelets to de-

ect signals with the same number of cycles decreases at higher
requencies because they are shorter in time (e.g., Fig. 2).

Nonetheless, a number of questions remain. How crucial are
he particular methods and analyses we used for obtaining these
esults? How could changing the parameters that these meth-
ds use affect the results? How do the assumptions about the
/fα background spectrum affect Pepisode? Can these results be
xtended to other types of analysis, for example instantaneous
easures of power as opposed to averaged power? Finally, how

ood are the simulation methods? These questions will be dis-
ussed in the next sections.
.1. Differences between methods due to parameters

It has been observed (Bruns, 2004) that differences between
scillation detection methods (in that case Hilbert transform,
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avelet transform and Fourier transform) could be largely elim-
nated when the equation parameters were adjusted. In this

anuscript, the parameters that have the greatest effect on sig-
al detection are the wavenumber for wavelets, window size
nd bandwidth for multitapers, and the amplitude and duration
hreshold for Pepisode.

The frequency specificity for wavelets could potentially be
mproved by using longer wavelets (which then decreases tem-
oral resolution). For example, at higher frequencies (80 Hz), an
ncrease to a wavenumber of 8 will narrow the signal detection
eak to about 2/3 that of a wavenumber of 5, but at 5 Hz, there
s a much smaller effect (∼ 9/10). Given that Pepisode is based
n the wavelet measure, its frequency specificity will follow
hat of wavelets, but will always be slightly more narrow (see
ig. 4). Conversely, increasing the bandwidth and/or decreasing

he window size would not only decrease the frequency speci-
city of multitapers (or increase their leakage across frequencies
Bronez, 1992)), but also decrease their variance. Increasing the
andwidth from 1 to 5 will widen the peak (see Fig. 4) by roughly
factor 5 at 80 Hz, but only a factor 2 at 5 Hz. Increasing the
indow size from 0.1 to 0.5 will narrow the frequency speci-
city peak by a factor of 3 at both 5 Hz and 80 Hz. Furthermore,

ncreasing the bandwidth and decreasing the window length will
lso slightly decrease the amplitude sensitivity, especially in the
eta–gamma band (20–80 Hz), with roughly a factor 0.9. In con-
lusion, wavelets and multitapers can be made to behave more
imilarly when adjusting their parameters. Pepisode however, be-
ause it measures a proportion of time as opposed to oscillatory
ower, will always behave distinctly.

For both wavelets and multitapers, changing their basis func-
ion will also affect both amplitude and frequency sensitivity,
ut those effects are harder to predict. The crucial difference be-
ween wavelets and multitapers, however, is that in wavelets the
ignal is convolved with the basis function, whereas for multita-
ers the signal is windowed with the basis function and then sub-
ected to a FFT procedure. The multitaper parameters in the cur-
ent simulations were set such that the multitaper spectrograms
ooked visually like those of the wavelets. A crucial difference
owever is that for wavelets, the temporal and frequency speci-
city scales with frequency, whereas for multitapers it does not.
ne interesting approach, developed by Lilly and Park (1995),

s to merge the characteristics of wavelets and multitapers into
multiwavelet. 8 In a multiple wavelet analysis the functions
ith which the signal is convolved are Slepian-like (i.e., similar

o the DPSS functions used in multitaper spectral analysis, which
educe frequency leakage compared to ordinary wavelets) and
cale with frequency. Multiple orthogonal Slepian-like functions

re then averaged (note that in contrast to wavelets, the Slepian-
ike functions are not scaled versions of one another, even though
hey are self-similar). This multiwavelet approach has yielded
etter time and frequency resolution than multitapers, especially
or events with high variability (Zanandrea et al., 2004).

8 Note that the term ‘multiwavelet’ is used for two different methods. The
ethod discussed here deals with wavelets that have the form of Slepian-like

unctions (Lilly and Park, 1995); another meaning of the term refers to wavelet
ases in multiple dimensions (Goodman and Lee, 1993).
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Finally, by decreasing the duration threshold, Pepisode will
ct more like wavelets (Caplan et al., 2001). Note that Pepisode
ill still be qualitatively different because it measures time in

n oscillatory episode as opposed to the oscillatory power of
hat episode. In addition, Pepisode can be made more frequency-
ensitive at higher frequencies by using multitapers as power
stimates, at the cost of being unable to detect very small signals.

.2. Assumptions concerning the background spectrum for
episode

One concern is whether Pepisode depends on the assumption
f a 1/fα shape of the power spectrum. In real data, the spectrum
ay often have “bumps” at particular frequencies, such as theta,

r may diverge from 1/fα at low or high frequencies due to
igh- or low-pass filtering. We have repeated some of our analy-
es (e.g., frequency specificity) with spectra that were not linear
n log–log space, and found that the qualitative results did not
hange very much (for frequency specificity we still found the
est specificity for multitapers when the signals were relatively
arge amplitude and for Pepisode when the signals were relatively
hort). Appropriate fits, even for non-linear spectra, can be fur-
her ensured by using a robust fit algorithm as opposed to a
east-squares fit, which is less affected by outliers. Other alter-
atives would be fitting a non-linear function to the background,
r fitting only the part of the frequency spectrum that is linear
nd removing the other frequencies from consideration. In order
o determine the correct fit, it is important to visually inspect the
ts to the background spectrum for the dataset of interest before

nterpreting Pepisode results.
Also, it should be mentioned that, in principle, any fit to the

ackground spectrum could be used, depending on the research
uestion one is interested in. For example, when one is inter-
sted in how many oscillations in the delta range are present in
ne sleep stage compared to another, one would fit the peaked
pectrum in the first sleep stage and use that as the background
istribution for the other. It is important to keep in mind that
he resulting data can only be interpreted with reference to the
aseline one uses.

.3. Interval power versus instantaneous power

In the simulations described above, we have presented the re-
ults for mean power over a certain interval in time. An alterna-
ive analysis would be of instantaneous power at a particular mo-

ent in time. In fact, in order to detect instantaneous power and
hase information, better methods than those discussed here are
vailable, such as the Hilbert transform (used by e.g., Freeman
nd Rogers, 2002) and its cousin, empirical mode decomposition
Huang et al., 1998). Pepisode, however, is by definition applied
o intervals, not isolated time points. Nevertheless, it would be
ossible develop a form of Pepisode that could be used in the in-
tantaneous power case, but with a different meaning: one would

ount the fraction of trials containing an oscillation that exceeds
he duration and amplitude thresholds for every event-related
oint in time. Thus, this analysis would quantify the probability
hat the system is in an oscillatory episode at any given point in
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ime across events. The properties of this proposed analysis are,
owever, beyond the scope of this paper.

.4. Validity of simulation methods

The simulations in this paper were performed with back-
round EEG created from a sum of sinusoids, similar to Yeung et
l. (2004) and Zhan et al. (2006). Then, the to-be-detected signal,
s a pure sinusoid, was added into the background. One may rea-
onably question the biological validity of this approach, since
eal EEG is likely to be created from a more stochastic process.
n alternative approach would be to simulate the EEG from ei-

her an Ornstein-Uhlenbeck process (Steyn-Ross et al., 1999) or
n autoregressive process (Kaipio and Karjalainen, 1997), and
hen add a signal from an additional stochastic process. How-
ver, this reduces our control over the exact amplitude, length,
nd frequency content of the signal. This could be remedied
y filtering the signal to have 1/fα characteristics. We decided
o use the Yeung et al. method because (a) it had already been
sed for EEG simulations before and (b) it made the signal (a
inusoid of known frequency, length and amplitude) quite con-
ruent with the background activity (i.e., a collection of other
inusoids).

. Conclusions

Based on the results presented here, we propose a few guide-
ines for the use of these oscillation detection methods.

1) Using both Pepisode and either multitapers or wavelets gives
more information about the underlying signal than any
method alone (Fig. 3). Pepisode will be more sensitive to
differences in length (see also Fig. 5), whereas the other
two methods will confound length and amplitude of the sig-
nal. Among these two, wavelets will provide more sensitive
detection (i.e., detecting lower amplitude signals), whereas
multitapers will give better frequency specificity.

2) If one is interested in detecting oscillations that exceed cer-
tain number of cycles, then Pepisode is the method of choice.
This method makes it harder to detect oscillations at lower
frequencies. Short-duration, low-frequency oscillations are
very difficult to distinguish from evoked activity of a non-
oscillatory nature, and therefore Pepisode will exclude those
signals.

3) The method of choice depends on the frequency one is in-
terested in. For higher frequencies, Pepisode is the more sen-
sitive choice for shorter signals, whereas longer signals will
be better detected by multitapers (Fig. 4). Also, multitapers
offer better frequency localization than the other methods,
provided the signal is strong enough.

4) As with many data analysis problems, it is often useful to
apply more than one technique to one’s data. Our analy-
ses suggest that when multiple oscillation detection meth-

ods are used in concert one can distinguish different types
of oscillatory signals. For example, if oscillations are de-
tected by wavelets, but not multitapers, at low frequencies,
this would suggest that short-lived high-amplitude oscilla-

G
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ience Methods  162 (2007) 49–63

tions are present in the time series. Multitapers will show
less diffuse peaks in the power spectrum than wavelets be-
cause of less frequency bleeding. Finally, Pepisode can detect
more subtle differences between two conditions, especially
when these differences occur in the time domain. In addition,
Pepisode is more sensitive to short-duration high-frequency
signals than are wavelets and multitapers, so long as the
oscillatory signals exceed the duration threshold.
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