
2020 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 63, NO. 8, APRIL 15, 2015

Binary Linear Classification and Feature Selection
via Generalized Approximate Message Passing

Justin Ziniel, Student Member, IEEE, Philip Schniter, Fellow, IEEE, and Per Sederberg

Abstract—For the problem of binary linear classification and
feature selection, we propose algorithmic approaches to classifier
design based on the generalized approximate message passing
(GAMP) algorithm, recently proposed in the context of com-
pressive sensing. We are particularly motivated by problems
where the number of features greatly exceeds the number of
training examples, but where only a few features suffice for
accurate classification. We show that sum-product GAMP can
be used to (approximately) minimize the classification error rate
and max-sum GAMP can be used to minimize a wide variety of
regularized loss functions. Furthermore, we describe an expec-
tation-maximization (EM)-based scheme to learn the associated
model parameters online, as an alternative to cross-validation,
and we show that GAMP’s state-evolution framework can be used
to accurately predict the misclassification rate. Finally, we present
a detailed numerical study to confirm the accuracy, speed, and
flexibility afforded by our GAMP-based approaches to binary
linear classification and feature selection.

Index Terms—Belief propagation, classification, feature selec-
tion, message passing, one-bit compressed sensing.

I. INTRODUCTION

I N this work we consider binary linear classification and fea-
ture selection [1]. The objective of binary linear classifica-

tion is to learn the weight vector that best predicts an
unknown binary class label associated with a given
vector of quantifiable features from the sign of a linear
“score” .1 The goal of linear feature selection is to
identify which subset of the weights in are necessary for
accurate prediction of the unknown class label , since in some

Manuscript received August 22, 2014; revised December 15, 2014; accepted
January 29, 2015. Date of publication February 26, 2015; date of current version
March 13, 2015. The associate editor coordinating the review of this manuscript
and approving it for publication was Dr. Fauzia Ahmad. This work was sup-
ported by NSF grant CCF-1218754, NSF grant CCF-1018368, DARPA/ONR
grant N66001-10-1-4090, and an allocation of computing time from the Ohio
Supercomputer Center.
Portions of this work were presented at the Workshop on Information Theory

and its Applications, San Diego, CA, USA, 2013 and the 2014 Conference on
Information Sciences and Systems, Princeton, NJ, USA, 2014. (Corresponding
Author: P. Schniter.)
J. Ziniel and P. Schniter are with the Department of Electrical and Computer

Engineering, The Ohio State University, Columbus, OH 43210, USA (e-mail:
schniter@ece.osu.edu).
P. Sederberg is with the Department of Psychology, The Ohio State Univer-

sity, Columbus, OH 43210 USA.
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TSP.2015.2407311

1We note that one could also compute the score from a fixed non-linear trans-
formation of the original feature via as in kernel-based
classification. Although the methods we describe here are directly compatible
with this approach, we write for simplicity.

applications (e.g., multi-voxel pattern analysis) this subset itself
is of primary concern.
In formulating this linear feature selection problem, we as-

sume that there exists a -sparseweight vector (i.e.,
) such that , where is the

signum function and is a random perturbation accounting
for model inaccuracies. For the purpose of learning , we as-
sume the availability of labeled training examples generated
independently according to this model:

(1)

with . It is common to express the relationship
between the label and the score in (1) via
the conditional pdf , known as the “activation
function,” which can be related to the perturbation pdf via

(2)

We are particularly interested in classification problems in
which the number of potentially discriminatory features dras-
tically exceeds the number of available training examples .
Such computationally challenging problems are of great interest
in a number of modern applications, including text classifica-
tion [2], multi-voxel pattern analysis (MVPA) [3]–[5], conjoint
analysis [6], and micro-array gene expression [7]. In MVPA,
for instance, neuro-scientists attempt to infer which regions in
the human brain are responsible for distinguishing between two
cognitive states by measuring neural activity via fMRI at

voxels. Due to the expensive and time-consuming nature of
working with human subjects, classifiers are routinely trained
using only training examples, and thus .
In the regime, the model of (1) coincides with

that of noisy one-bit compressed sensing (CS) [8], [9]. In that
setting, it is typical to write (1) in matrix-vector form using

, , ,
and element-wise , yielding

(3)

where embodies the signal-of-interest’s sparse representation,
is a concatenation of a linear measurement oper-

ator and a sparsifying signal dictionary , and is addi-
tive noise.2 Importantly, in the setting, [9] established
performance guarantees on the estimation of -sparse from

binary measurements of the form (3), under
i.i.d Gaussian and mild conditions on the perturbation
process , even when the entries within are correlated.

2For example, the common case of additive white Gaussian noise (AWGN)
corresponds to the “probit” activation function, i.e.,
, where is the standard-normal cdf.

1053-587X © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

ZINIEL et al.: BINARY LINEAR CLASSIFICATION AND FEATURE SELECTION VIA GAMP 2021

This result implies that, in large binary linear classification prob-
lems, accurate feature selection is indeed possible from
training examples, as long as the underlying weight vector
is sufficiently sparse. Not surprisingly, many techniques have

been proposed to find such weight vectors [10]–[17].
In addition to theoretical analyses, the CS literature also of-

fers a number of high-performance algorithms for the inference
of in (3), e.g., [8], [9], [18]–[21]. Thus, the question arises as
to whether these algorithms also show advantages in the domain
of binary linear classification and feature selection. In this paper,
we answer this question in the affirmative by focusing on the
generalized approximate message passing (GAMP) algorithm
[22], which extends the AMP algorithm [23], [24] from the case
of linear, AWGN-corrupted observations (i.e.,
for) to the case of generalized-linear observa-
tions, such as (3). AMP and GAMP are attractive for several rea-
sons: (i) For i.i.d sub-Gaussian in the large-system limit (i.e.,

with fixed ratio), they are rigorously char-
acterized by a state-evolution whose fixed points, when unique,
are optimal [25]; (ii) Their state-evolutions predict fast conver-
gence rates; (iii) They are very flexible with regard to data-mod-
eling assumptions (see, e.g., [26]); (iv) Their model parame-
ters can be learned online using an expectation-maximization
(EM) approach that has been shown to yield state-of-the-art
mean-squared reconstruction error in CS problems [27].
In this work, we develop a GAMP-based approach to bi-

nary linear classification and feature selection that makes the
following contributions: 1) in Section II, we show that GAMP
implements a particular approximation to the error-rate min-
imizing linear classifier under the assumed model (1); 2) in
Section III, we show that GAMP’s state evolution framework
can be used to characterize the misclassification rate in the
large-system limit; 3) in Section IV, we develop methods to
implement logistic, probit, and hinge-loss-based regression
using both max-sum and sum-product versions of GAMP, and
we further develop a method to make these classifiers robust in
the face of corrupted training labels; and 4) in Section V, we
present an EM-based scheme to learn the model parameters on-
line, as an alternative to cross-validation. The numerical study
presented in Section VI then confirms the efficacy, flexibility,
and speed afforded by our GAMP-based approaches to binary
classification and feature selection.
Notation: Random quantities are typeset in sans-serif (e.g.,
) while deterministic quantities are typeset in serif (e.g.,).
The pdf of random variable under deterministic parameters
is written as , where the subscript and parameteri-

zation are sometimes omitted for brevity. Column vectors are
typeset in boldface lower-case (e.g., or), matrices in bold-
face upper-case (e.g., or), and their transpose is denoted by

. For vector , refers to the subvector
. Finally, is the multivariate normal

distribution as a function of , with mean , and with covari-
ance matrix , while and denote the standard normal
pdf and cdf, respectively.

II. GAMP FOR CLASSIFICATION

In this section, we introduce generalized approximate mes-
sage passing (GAMP) from the perspective of binary linear clas-
sification. In particular, we show that the sum-product variant of

GAMP is a loopy belief propagation (LBP) approximation of
the classification-error-rate minimizing linear classifier and that
the max-sum variant of GAMP is a LBP implementation of the
standard regularized-loss-minimization approach to linear clas-
sifier design.

A. Sum-Product GAMP

Suppose that we are given labeled training examples
, and test feature vectors asso-

ciated with unknown test labels , all obeying the
noisy linear model (1) under some known error pdf , and thus
known . We then consider the problem of computing the
classification-error-rate minimizing hypotheses ,

(4)

with and . Note
that we treat the labels as random but the features

as deterministic parameters. The probabilities in (4)
can be computed via the marginalization

(5)

(6)

with scaling constant , label vector
, and constraint set

which fixes the th element of at the value and the first
elements of at the values of the corresponding training labels.
The joint pdf in (6) factors as

(7)

due to the model (1) and assuming a separable prior, i.e.,

(8)

Although the separability assumption can also be relaxed (see,
e.g., [26], [28]), we do not consider such extensions in this work.
The factorization (7) is illustrated using the factor graph in

Fig. 1(a), which connects the various random variables to the
pdf factors in which they appear. Although exact computation
of the marginal posterior test-label probabilities via (6) is com-
putationally intractable due to the high-dimensional summation
and integration, the factor graph in Fig. 1(a) suggests the use of
loopy belief propagation (LBP) [29], and in particular the sum-
product algorithm (SPA) [30], as a tractable way to approxi-
mate these marginal probabilities. Although the SPA guarantees
exact marginal posteriors only under non-loopy (i.e., tree-struc-
tured graphs), it has proven successful inmany applications with

2022 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 63, NO. 8, APRIL 15, 2015

Fig. 1. Factor graph representations of the integrand of (7), with white/grey cir-
cles denoting unobserved/observed random variables, and rectangles denoting
pdf “factors”. (a) Full. (b) Reduced.

loopy graphs, such as turbo decoding [31], computer vision [32],
and compressive sensing [22]–[24].
Because a direct application of the SPA to the factor graph in

Fig. 1(a) is itself computationally infeasible in the high-dimen-
sional case of interest, we turn to a recently developed approxi-
mation: the sum-product variant of GAMP [22], as specified in
Algorithm 1. The GAMP algorithm is specified in Algorithm
1 for a given instantiation of , , and . There, the
expectation and variance in lines 5–6 and 16–17 are taken el-
ement-wise w.r.t the GAMP-approximated marginal posterior
pdfs (with superscript denoting the iteration)

(9)

(10)

with appropriate normalizations and , and the vector-
vector multiplications and divisions in lines 3, 9, 11, 12, 14, 13,
20 are performed element-wise. Due to space limitations, we
refer the interested reader to [22] for an overview and deriva-
tion of GAMP, to [25] for rigorous analysis under large i.i.d
sub-Gaussian , and to [33], [34] for fixed-point and local-con-
vergence analysis under arbitrary .
Applying GAMP to the classification factor graph in Fig. 1(a)

and examining the resulting form of lines 5–6 in Algorithm
1, it becomes evident that the test-label nodes do
not affect the GAMP weight estimates and thus the
factor graph can effectively be simplified to the form shown
in Fig. 1(b), after which the (approximated) posterior test-label
pdfs are computed via

(11)

where and denote the element of the GAMP vectors
and , respectively, at the final iteration “ .”

B. Max-Sum GAMP

An alternate approach to linear classifier design is through the
minimization of a regularized loss function, e.g.,

(12)

Algorithm 1: Generalized Approximate Message Passing

Input: Matrix , priors , activation functions
, and mode

Initialize: ; ; ; ;

1: repeat
2:

3:

4: if then
5:

6:

7: else if then
8:

9:

10: end if
11:

12:

13:

14:

15: if then
16:

17:

18: else if then
19:

20:

21: end if
22:

23: until Terminated

where are -dependent convex loss functions (e.g., lo-
gistic, probit, or hinge based) and where are convex reg-
ularization terms (e.g., for regularization and

for regularization).
The solution to (12) can be recognized as the maximum a

posteriori (MAP) estimate of random vector given a separable
prior and likelihood corresponding to (1), i.e.,

(13)

when and
. Importantly, this statistical model is exactly

the one yielding the reduced factor graph in Fig. 1(b).
Similar to how sum-product LBP can be used to compute (ap-

proximate) marginal posteriors in loopy graphs, max-sum LBP
can be used to compute the MAP estimate [35]. Since max-sum
LBP is itself intractable for the high-dimensional problems of
interest, we turn to the max-sum variant of GAMP [22], which
is also specified in Algorithm 1. There, lines 8–9 are to be inter-
preted as

(14)

ZINIEL et al.: BINARY LINEAR CLASSIFICATION AND FEATURE SELECTION VIA GAMP 2023

(15)

with and denoting first and second derivatives and

(16)

(17)

and lines 19–20 are to be interpreted similarly. It is known [33]
that, for arbitrary , the fixed points of GAMP correspond to
the critical points of the optimization objective (12).

C. GAMP Summary

In summary, the sum-product and max-sum vari-
ants of the GAMP algorithm provide tractable methods
of approximating the posterior test-label probabilities

and finding the MAP weight
vector , respectively, under the

label-generation model (13) [equivalently, (1)] and the sepa-
rable weight-vector prior (8), assuming that the distributions

and are known and facilitate tractable scalar-non-
linear update steps 5–6, 8–9, 16–17, and 19–20. In Section IV,
we discuss the implementation of these update steps for several
popular activation functions, and in Section V, we discuss how
the parameters of and can be learned online.

III. MISCLASSIFICATION RATE VIA STATE EVOLUTION

As mentioned earlier, the behavior of GAMP in the large-
system limit (i.e., with fixed ratio) under
i.i.d sub-Gaussian is characterized by a scalar state evolution
[22], [25]. We now describe how this state evolution can be
used to characterize the test-error rate of the linear-classification
GAMP algorithms described in Section II.
The GAMP state evolution characterizes average GAMP per-

formance over an ensemble of (infinitely sized) problems, each
associated with one realization of the random triple

. Recall that, for a given problem realization ,
the GAMP iterations in Algorithm 1 yields the sequence of es-
timates of the true weight vector . Then, according
to the state evolution, and
the first two moments of the joint pdf can be computed
using [22, Algorithm 3].
Suppose that the above represent training examples as-

sociated with a true weight vector , and that represents
a test pair also associated with the same and with having
i.i.d elements distributed identically to those of (with, say,
variance). The true and iteration- -estimated test scores are
then and , respectively. The corresponding
test-error rate3 can be computed as fol-
lows. Letting denote an indicator function that assumes the
value 1 when its Boolean argument is true and the value 0 oth-
erwise, we have

(18)

(19)

3For simplicity we assume a decision rule of the form , al-
though other decision rules can be accommodated in our analysis.

(20)

Furthermore, from the definitions of and the bivariate
central limit theorem, we have that

(21)

where indicates convergence in distribution. In [36], it is
shown that the above matrix components are

(22)

(23)

(24)

for label-to-feature ratio . As described earlier, the above mo-
ments can be computed using [22, Algorithm 3]. The integral
in (20) can then be computed (numerically if needed) for a
given activation function , yielding an estimate of GAMP’s
test-error rate at the iteration.
To validate the accuracy of the above asymptotic analysis,

we conducted aMonte-Carlo experiment with data synthetically
generated in accordance with the assumed model. In particular,
for each of 1000 problem realizations, a true weight vector

was drawn i.i.d zero-mean Bernoulli-Gaussian and a feature
matrix was drawn i.i.d Gaussian, yielding true scores

, from which the true labels were randomly drawn using a
probit activation function . A GAMPweight-vector estimate

was then computed using the training data ,
from which the test-label estimates with

were computed and compared to the true test-la-
bels in order to calculate the test-error rate for that realization.
Fig. 2(a) plots the Monte-Carlo averaged empirical test-error
rates (dashed) and state-evolution predicted rates (solid) as level
curves over different combinations of training ratio and dis-
criminative-feature ratio , where and .
Similarly, Fig. 2(b) plots average empirical mean-squared error
(MSE) versus state-evolution predicted MSE, where

.
In both Fig. 2(a) and (b), the training-to-feature ratio in-

creases from left to right, and the discriminative-feature ratio
increases from bottom to top. The region to the upper-left of

the dash-dotted black line contains ill-posed problems (where
the number of discriminative features exceeds the number
of training samples) for which data was not collected. The
remainders of Fig. 2(a) and (b) show very close agreement be-
tween empirical averages and state-evolution predictions.

IV. GAMP NONLINEAR STEPS

Section II gave a high-level description of how the GAMP
iterations in Algorithm 1 can be applied to binary linear classi-
fication and feature selection. In this section, we detail the non-
linear steps used to compute and in lines 5–6,
8–9, 16–17, and 19–20 of Algorithm 1. For sum-product GAMP,
we recall that the mean and variance computations in lines 5–6

2024 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 63, NO. 8, APRIL 15, 2015

Fig. 2. Test-error rate (a) and weight-vector MSE (b), versus training-to-feature ratio and discriminative-feature ratio , calculated using empirical
averaging (dashed) and state-evolution prediction (solid), assuming i.i.d Bernoulli-Gaussian weight vectors and a probit activation function. (a) Test-Error Rate.
(b) Weight-Vector MSE (dB).

and 16–17 are computed based on the pdfs in (9) and (10), re-
spectively, and for max-sum GAMP the steps in 8–9 are
computed using (14)-(15) and those in 19–20 are computed sim-
ilarly.

A. Logistic Activation Function

Arguably the most popular activation function for binary
linear classification is the logistic sigmoid [1, §4.3.2],[37]:

(25)

where controls the steepness of the transition.
For logistic sum-product GAMP, we propose to compute the

mean and variance of the marginal posterior approxima-
tion (9) using the variational approach in Algorithm 2, whose
derivation is relegated to [36] for reasons of space. We note that
Algorithm 2 is reminiscent of the one presented in [1, §10.6],
but is more general in that it handles .
For logistic max-sum GAMP, from (14) solves the scalar

minimization problem (16) with
from (25), which is convex. To find this , we use bisection
search to locate the root of . The
max-sum from (15) can then be computed in closed form
using and via (17). Note that, unlike the classical
ML-based approach to logistic regression (e.g., [1, §4.3.3]),
GAMP performs only scalar minimizations and thus does not
need to construct or invert a Hessian matrix.

B. Probit Activation Function

Another popular activation function is the probit [1, §4.3.5]:

(26)

where and where
controls the steepness of the sigmoid.

Unlike the logistic case, the probit case leads to closed-form
sum-product GAMP computations. In particular, the density (9)

TABLE I
SUM-PRODUCT GAMP COMPUTATIONS FOR PROBIT

ACTIVATION FUNCTION

Algorithm 2: A Variational Approach to Logistic Activation
Functions for Sum-Product GAMP

Input: Class label , logistic scale , and
GAMP-computed parameters and (see (9))

Initialize:
1: repeat

2:

3:

4:

5:

6:

7: until Terminated
8: return ,

corresponds to the posterior pdf of a random variable with
prior from an observation measured under the
likelihood model (26). A derivation in [38, §3.9] provides the
necessary expressions for these moments when , and a
similar exercise tackles the case. For completeness, the
sum-product computations are summarized in Table I. Max-sum
GAMP computation of can be performed using a bisec-
tion search akin to that described in Section IV-A.

ZINIEL et al.: BINARY LINEAR CLASSIFICATION AND FEATURE SELECTION VIA GAMP 2025

TABLE II
SUM-PRODUCT GAMP COMPUTATIONS FOR THE HINGE-LOSS ACTIVATION
FUNCTION. SEE APPENDIX A FOR DEFINITIONS OF , , , ,

TABLE III
SUM-PRODUCT GAMP COMPUTATIONS FOR A ROBUSTIFIED ACTIVATION

FUNCTION. SEE TEXT FOR DEFINITIONS OF , , AND

C. Hinge-Loss Activation Function

The hinge loss is commonly used
in the support vector machine (SVM) approach to maximum-
margin classification [1, §7.1], i.e.,

(27)

or variations where is replaced with a sparsity-inducing
alternative like [39]. Recalling Section II-B, this loss leads
to the activation function

(28)

For hinge-loss sum-product GAMP, the mean and variance
of (9) can be computed in closed form using the pro-

cedure described in Appendix A, and summarized in Table II.
Meanwhile, for max-sum GAMP, the proximal steps (14)-(15)
can be efficiently computed using bisection search, as in the lo-
gistic and probit cases.

D. A Method to Robustify Activation Functions

In some applications, a fraction of the training
labels are known4 to be corrupted, or at least highly atypical
under a given activation model . As a robust alternative
to , Opper and Winther [40] proposed to use

(29)

(30)

We now describe how theGAMPnonlinear steps for an arbitrary
can be used to compute the GAMP nonlinear steps for a

robust of the form in (30).
In the sum-product case, knowledge of the non-robust quan-

tities ,

, and
is sufficient for computing the robust sum-product quantities

, as summarized in Table III. (See [36] for details.)
In the max-sum case, computing in (14) involves

solving the scalar minimization problem in (16) with
.

4A method to learn an unknown will be proposed in Section V.

TABLE IV
SUM-PRODUCT GAMP (SPG) AND MAX-SUM GAMP (MSG) COMPUTATIONS

FOR THE ELASTIC-NET REGULARIZER ,
WHICH INCLUDES OR LAPLACIAN-PRIOR (VIA) AND OR

GAUSSIAN-PRIOR (VIA) AS SPECIAL CASES. SEE
TABLE V FOR DEFINITIONS OF , , , , ETC

As before, we use a bisection search to find and then we use
to compute via (17).

E. Weight Vector Priors

We now discuss the nonlinear steps used to compute ,
i.e., lines 16–17 and 19–20 of Algorithm 1. These steps are,
in fact, identical to those used to compute except that
the prior is used in place of the activation function

. For linear classification and feature selection in
the regime, it is customary to choose a prior
that leads to sparse (or approximately sparse) weight vectors
, as discussed below.
For sum-product GAMP, this can be accomplished by

choosing a Bernoulli- prior, i.e.,

(31)

where is the Dirac delta function, is the prior5

probability that , and is the pdf of a non-zero .
While Bernoulli-Gaussian [28] and Bernoulli-Gaussian-mix-
ture [27] are common choices, Section VI suggests that
Bernoulli-Laplacian also performs well.
In the max-sum case, the GAMP nonlinear outputs

are computed via

(32)

(33)

for a suitably chosen regularizer . Common examples
include for regularization [23],

for regularization [22], and
for the “elastic net” [41]. As described in Section II-B, any regu-
larizer can be interpreted as a (possibly improper) prior pdf

. Thus, regularization corresponds
to a Laplacian prior, to a Gaussian prior, and the elastic net
to a product of Laplacian and Gaussian pdfs.
In Table VII, we give the sum-product and max-sum com-

putations for the prior corresponding to the elastic net, which
includes both Laplacian (i.e.,) and Gaussian (i.e.,) as
special cases; a full derivation can be found in [36]. For the
Bernoulli-Laplacian case, these results can be combined with
the Bernoulli- extension in Table VII.

F. The GAMPmatlab Software Suite

The GAMP iterations from Algorithm 1, including the non-
linear steps discussed in this section, have been implemented

5In Section V we describe how a common can be learned.

2026 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 63, NO. 8, APRIL 15, 2015

TABLE V
DEFINITIONS OF ELASTIC-NET QUANTITIES USED IN TABLE IV

TABLE VI
ACTIVITY-FUNCTIONS AND THEIR GAMPMATLAB SUM-PRODUCT
AND MAX-SUM IMPLEMENTATION METHOD: ,

,

TABLE VII
WEIGHT-COEFFICIENT PRIORS AND THEIR GAMPMATLAB SUM-PRODUCT

AND MAX-SUM IMPLEMENTATION METHOD: ,
,

in the open-source “GAMPmatlab” software suite.6 For con-
venience, the existing activation-function implementations are
summarized in Table VI and relevant weight-prior implementa-
tions appear in Table VII.

V. ONLINE PARAMETER TUNING

The activation functions and weight-vector priors described
in Section IV depend on modeling parameters that, in practice,
must be tuned. For example, the logistic sigmoid (25) depends
on ; the probit depends on ; regularization depends on
; and the Bernoulli-Gaussian-mixture prior depends on
and , where parameterizes the weight,
the mean, and the variance of the th mixture component.
Although cross-validation (CV) is the customary approach
to tuning parameters such as these, it suffers from two major
drawbacks: First, it can be very computationally costly, since
each parameter must be tested over a grid of hypothesized
values and over multiple data folds. For example, -fold
cross-validation tuning of parameters using hypothesized
values of each requires the training and evaluation of
classifiers. Second, leaving out a portion of the training data for
CV can degrade classification performance, especially in the
example-starved regime where (see, e.g., [42]).
As an alternative to CV, we consider online learning of the

unknown model parameters using the methodology from [27],

6The latest source code can be obtained through the GAMPmatlab Source-
Forge Subversion repository at http://sourceforge.net/projects/gampmatlab/.

[43]. Here, the goal is to compute the maximum-likelihood es-
timate , where our data model implies

a likelihood function of the form

(34)

Because it is computationally infeasible to evaluate and/or
maximize (34) directly, we apply the expectation-maximization
(EM) algorithm [44]. For EM, we treat as the “hidden” data,
giving the iteration- EM update

(35)

(36)

Furthermore, to evaluate the conditional expectations in (36),
GAMP’s posterior approximations from (9)-(10) are used. It
was shown in [45] that, in the large-system limit, the estimates
generated by this procedure are asymptotically consistent (as

and under certain identifiability conditions). More-
over, it was shown in [27], [43] that, for various priors and like-
lihoods of interest in compressive sensing (e.g., AWGN like-
lihood, Bernoulli-Gaussian-Mixture priors, regularization),
the quantities needed from the expectation in (36) are implicitly
computed by GAMP, making this approach computationally at-
tractive. However, because this EM procedure runs GAMP sev-
eral times, once for each EM iteration (although not necessarily
to convergence), the total runtime may be increased relative to
that of GAMP without EM.
In this work, we propose EM-based learning of the activa-

tion-function parameters, i.e., in the logistic model (25), in
the probit model (26), and in the robust model (30). Starting
with , we find that a closed-form expression for the value max-
imizing (36) remains out of reach, due to the form of the logistic
model (25). So, we apply the same variational lower bound
used for Algorithm 2, and find that the lower-bound maximizing
value of obeys (see [36])

(37)

where is the variational parameter being used to optimize the
lower-bound and is output by Algorithm
2. We then solve for using Newton’s method.
To tune the probit parameter, , we zero the derivative of (36)

w.r.t to obtain

(38)

(39)

where . We then numerically evaluate the
expectation and apply an iterative root-finding procedure to find
the EM update that solves (39).

ZINIEL et al.: BINARY LINEAR CLASSIFICATION AND FEATURE SELECTION VIA GAMP 2027

Fig. 3. Test error rate and estimated sparsity for cross-validation-tuned
OneBitCS, and for EM-tuned sum-product GAMP classifiers based on the
Bernoulli-Gaussian (BG) prior and the hinge (), probit (), and logistic ()
activation functions, as a function of the true sparsity . Here, ,

, and Bayes error rate was .

To learn , we include the corruption indicators
in the EM-algorithm’s hidden data (i.e., indicates
that was corrupt and that it was not), where an
i.i.d assumption on the corruption mechanism implies the prior

. In this case, it can be
shown [36] that the update of the parameter reduces to

(40)

(41)

where (41) leveraged .
Moreover, is easily computed using quanti-
ties returned by sum-product GAMP.

VI. NUMERICAL STUDY

In this section we describe several synthetic and real-world
classification problems to which GAMP was applied. Experi-
ments were conducted on a workstation running Red Hat Enter-
prise Linux (r2.4), with an Intel Core i7–2600 CPU (3.4 GHz, 8
MB cache) and 8 GB DDR3 RAM.

A. Synthetic Classification in the Regime

We first examine a synthetic problem where the number of
features, , greatly exceeds the number of training examples,
. As discussed in the Introduction, it is possible to perform ac-

curate classification when if the number of discrimina-
tory features is sufficiently small. In this experiment, we con-
sider , , and , where the
range on is chosen based on the following information-theo-
retic argument: training labels bring bits of informa-
tion, whereas at least bits of infor-
mation are needed to determine the -length -sparse Bayes
weight vector, assuming that we have no prior knowledge of its

support, which takes on possibilities. With
and , it turns out that is the largest value of

such that .
Our experiment was of a Monte-Carlo form. In each trial, we

constructed a random -sparse Bayes weight vector with
a support drawn uniformly at random and with non-zero-co-
efficient amplitudes drawn uniformly in . We used
amplitudes to eliminate the potential ambiguity about whether
a given non-zero coefficient was effectively non-zero, since,
e.g., Gaussian-distributed amplitudes can be arbitrarily close
to zero. We then constructed a balanced set of training labels

(i.e., exactly labels were positive) and we
drew i.i.d random feature vectors from the class-condi-
tional generative distribution .
Fig. 3 shows both the average test error rate and the average

estimated sparsity for cross-validation tuned “OneBitCS”
from [9],7 and for EM-tuned sum-product GAMP classifiers
based on the Bernoulli-Gaussian (BG) prior and activation
functions including hinge loss (HL), probit (PR), and logistic
(LR). The average was computed over 1000 Monte-Carlo
trials, where in each trial the expected error probability of
the designed classifier was computed in closed form as

. The figure shows all algorithms under
test performing relatively close to the Bayes error rate, and for
small it shows BG-LR and BG-PR GAMP performing ex-
tremely close to the Bayes error rate. Comparing the classifiers,
we see that GAMP’s BG-LR performs the best, which is not
surprising since the logistic activation function is statistically
matched to data model in this experiment [37]. Meanwhile,
GAMP’s BG-PR classifier performed the second best, and the
two remaining classifiers (GAMP’s BG-HL and OneBitCS)
performed only slightly worse.
Fig. 3 also shows the sparsities estimated by cross-validation

in the case of OneBitCS and by the EM-tuning in the case of
GAMP. Since the weights returned by sum-product BG-GAMP
are non-zero with probability one, the estimated sparsity is de-
fined as the number of coefficients with posterior support prob-
ability exceeding 1/2. The figure shows that all al-
gorithms under test returned accurate estimates of the true spar-
sity . For small values of , the estimates returned by BG-LR
and BG-PR GAMP were extremely accurate while those for
OneBitCS and BG-HL GAMP slightly overestimated the spar-
sity. Meanwhile, for large values of , all algorithms underes-
timated the sparsity by about 15%.

B. Text Classification and Adaptive Learning

We next consider a binary text classification problem based
on the Reuter’s Corpus Volume I (RCV1) dataset [46]. As in
[17], [47], newswire article topic codes CCAT and ECAT were
combined to form the positive class while GCAT and MCAT
were combined to form constitute the negative class.8 Although
the original dataset consisted of 20 242 balanced training ex-
amples of 47 236 features, with 677 399 examples re-
served for testing, we followed the approach in [17], [47] and
swapped training and testing sets in order to test computational
efficiency on a large training dataset (and thus).

7For cross-validation of OneBitCS, we used 2 folds and searched over all
sparsities in a radius of 10 from the true sparsity .
8Data was taken from http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/

binary.html.

2028 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 63, NO. 8, APRIL 15, 2015

TABLE VIII
A COMPARISON OF DIFFERENT CLASSIFIERS ON THE “SWAPPED” RCV1 BINARY
DATASET (WHERE), SHOWING THE TEST-SET CLASSIFICATION
ACCURACY, THE TOTAL AND POST-TUNING RUNTIMES, AND THE DENSITY
OF THE WEIGHT VECTOR. BELOW, ; ;

; ; ;
REGULARIZATION;

As in [17], we constructed feature vectors as cosine-normal-
ized logarithmic transformations of the TF-IDF (term frequency
– inverse document frequency) data vectors. We note that the
resulting features are very sparse; only 0.16% of the entries
in are non-zero. Finally, we trained linear classifiers (i.e.,
weight vectors) using four GAMP-based methods and four ex-
isting state-of-the-art methods: TFOCS [48] in L1-LR mode,
CDN [17], TRON [49], and OneBitCS [9]. In doing so, for EM
learning we used 5 EM iterations, and for cross-validation we
used 2 folds and a logarithmically spaced grid of size 10.9

Table VIII summarizes the performance achieved by the re-
sulting classifiers, including the test-set classification accuracy,
weight-vector density (i.e., the fraction of non-zero weights),
and two runtimes: the total runtime needed to train the classi-
fier, which includes EM- or cross-validation-based parameter
tuning, and the post-tuning runtime. Although it is customary
to report only the latter, we feel that the former better captures
the true computational cost of classifier design. We note that, in
the case of spGAMP, the total and post-tuning runtime are iden-
tical because EM tuning was performed once per GAMP itera-
tion. In contrast, for msGAMP, we ran many GAMP iterations
per EM iteration, and hence the total runtime (which avoids EM
iterations) is much longer.We also note that the post-tuning run-
time of OneBitCS is extremely fast because of a computational
trick that we learned via personal communication with an au-
thor, Yaniv Plan: Given signed labels and a spar-
sity estimate , the OneBitCS weight vector can be com-
puted from the training pair via ,
where is the mapping from that pre-
serves the input components with the largest magnitudes and
zeros the remainder.
Table VIII shows all 8 classifiers achieving nearly identical

test-set classification accuracy, with the exception of cross-val-
idated OneBitCS, which gives noticeably poorer accuracy. In-
terestingly, OneBitCS also gives by far the sparsest weight vec-
tors, apparently at the cost of test-error rate. A better tradeoff
between test accuracy and weight vector density is given by
the EM-tuned GAMP algorithms, which return weight vectors
that are about half as dense as those returned by CDN, TRON,
TFOCS, and cross-validated GAMP, but that sacrifice only a
fraction-of-a-percent in test accuracy.

9For OneBitCS, the cross-validation grid included sparsity rates between
0.1% and 15%.

TABLE IX
A COMPARISON OF DIFFERENT CLASSIFIERS ON THE “NON-SWAPPED” RCV1
BINARY DATASET (WITH), SHOWING THE TEST-SET CLASSIFICATION
ACCURACY, THE TOTAL AND POST-TUNING RUNTIMES, AND THE DENSITY
OF THE WEIGHT VECTOR. BELOW, ; ;

; ; ;
REGULARIZATION;

Table VIII also shows a wide range of runtimes. OneBitCS
gives by far the fastest post-tuning runtime, for the reasons de-
scribed earlier. Among the total runtimes, however, the two
fastest are EM-GAMP based, with the best (at 105 seconds)
beating the fastest high-accuracy non-GAMP algorithm (i.e.,
TFOCS at 1086 seconds) by more than a factor of 10. That said,
some caution must be used when comparing runtimes. For ex-
ample, while all algorithms were given a “stopping tolerance”
of , the algorithms apply this tolerance in different ways.
Also, CDN and TRON are implemented in C++, while GAMP
is implemented in object-oriented MATLAB (and therefore is
far from optimized).
To understand how performance is impacted in a data-starved

regime (i.e.,), we tested each algorithm on the same
RCV1 dataset, but without swapping the train/test datasets as
was done in [17], [47] and our Table VIII. The results are shown
in Table IX. Similar to our other RCV experiment, we see all
classifiers yielding very similar test error rates, with the excep-
tion of OneBitCS, which does significantly worse. Again, how-
ever, OneBitCS generates an extremely sparse weight vector
at the expense of test error rate, whereas some the EM-tuned
BG-HL and L1-LR GAMP algorithms offer (milder) density
reduction without a significant cost in test accuracy. Finally,
the two fastest total runtimes are earned by the spGAMP algo-
rithms, and the fastest (BG-PR at 4 seconds) is about 3 times as
quick as the fastest high-accuracy non-GAMP algorithm (i.e.,
CDN at 11 seconds).
Finally, we note that, although GAMP was derived under

the assumption that the elements of are realizations of a an
i.i.d sub-Gaussian distribution, it worked well even with the
of this experiment, which was far from i.i.d sub-Gaussian. We
attribute the robust performance of GAMP to the “damping”
mechanism included in the GAMPmatlab implementation,
which was first described in [50] and rigorously analyzed in
[34]. Essentially, damping slows down the updates with the
goal of preventing divergence.

C. Robust Classification

In Section IV-D, we proposed an approach by which GAMP
can be made robust to labels that are corrupted or otherwise
highly atypical under a given activation model . We now
evaluate the performance of this robustification method. To

ZINIEL et al.: BINARY LINEAR CLASSIFICATION AND FEATURE SELECTION VIA GAMP 2029

do so, we first generated examples10 with balanced
classes such that the Bayes-optimal classification boundary
is a hyper-plane with a desired Bayes error rate of . Then,
we flipped a fraction of the training labels (but not the test
labels), trained several different varieties of GAMP classifiers,
and measured their classification accuracy on the test data.
The first classifier we considered paired a genie-aided

“standard logistic” activation function, (25), with an i.i.d.
zero-mean, unit-variance Gaussian weight vector prior. Note
that under a class-conditional Gaussian generative distribution
with balanced classes, the corresponding activation function is
logistic with scale parameter [37]. Therefore, the
genie-aided logistic classifier was provided the true value of
, which was used to specify the logistic scale . The second
classifier we considered paired a genie-aided robust logistic
activation function, which possessed perfect knowledge of both
and the mislabeling probability , with the aforementioned

Gaussian weight vector prior. To understand how performance
is impacted by the parameter tuning scheme of Section V,
we also trained EM variants of the preceding classifiers. The
EM-enabled standard logistic classifier was provided a fixed
logistic scale of , and was allowed to tune the variance
of the weight vector prior. The EM-enabled robust logistic
classifier was similarly configured, and in addition was given
an initial mislabeling probability of , which was
updated according to (41).
In Fig. 4, we plot the test error rate for each of the four GAMP

classifiers as a function of the mislabeling probability . For
this experiment, was set so as to yield a Bayes error rate of

. training examples of training
features were generated independently, with the test set error
rate evaluated based on 1024 unseen (and uncorrupted) exam-
ples. Examining the figure, we can see that EM parameter tuning
is beneficial for both the standard and robust logistic classifiers,
although the benefit is more pronounced for the standard clas-
sifier. Remarkably, both the genie-aided and EM-tuned robust
logistic classifiers are able to cope with an extreme amount of
mislabeling while still achieving the Bayes error rate, thanks in
part to the abundance of training data.

D. Multi-Voxel Pattern Analysis

Multi-voxel pattern analysis (MVPA) has become an impor-
tant tool for analyzing functionalMRI (fMRI) data [3]–[5]. Cog-
nitive neuro-scientists, who study how the human brain func-
tions at a physical level, employ MVPA not only to infer a sub-
ject’s cognitive state but to gather information about how the
brain itself distinguishes between cognitive states. In particular,
by identifying which brain regions are most important in dis-
criminating between cognitive states, they hope to learn the un-
derlying processes by which the brain operates. In this sense,
the goal of MVPA is often feature selection, not classification.
To investigate the performance of GAMP forMVPA, we con-

ducted an experiment using the well-known Haxby dataset [3].
The Haxby dataset consists of fMRI data collected from 6 sub-
jects with 12 “runs” per subject. In each run, the subject pas-

10Data was generated according to a class-conditional Gaussian distribution
with discriminatory features. Specifically, given the label
a feature vector was generated as follows: entries of were drawn i.i.d

for some . Under this model, with balanced classes, the
Bayes error rate can be shown to be . The parameter
can then be chosen to achieve a desired .

Fig. 4. Test error rate of genie-aided (solid curves) and EM-tuned (dashed
curves) instances of standard logistic () and robust logistic () classifiers, as
a function of mislabeling probability , with , , and Bayes
error rate .

sively viewed blocks of 9 greyscale images from each of 8 ob-
ject categories (i.e., faces, houses, cats, bottles, scissors, shoes,
chairs, and nonsense patterns), during which full-brain fMRI
data was recorded over voxels.
In our experiment, we designed classifiers that predict

binary object category (e.g., cat vs. scissors) from exam-
ples of -voxel fMRI data collected from a single subject.
For comparison, we tried four algorithms: i) -penalized
logistic regression (L1-LR) as implemented using cross-val-
idation-tuned TFOCS [48], ii) L1-LR as implemented using
EM-tuned max-sum GAMP, iii) sum-product GAMP under
a Bernoulli-Laplace prior and logistic activation function
(BL-LR), and iv) a cross-validation-tuned OneBitCS [9] clas-
sifier.
Algorithm performance (i.e., error-rate, sparsity, and consis-

tency) was assessed using 12-fold leave-one-out cross-valida-
tion. In other words, for each algorithm, 12 separate classi-
fiers were trained, each for a different combination of 1 testing
fold (used to evaluate error-rate) and 11 training folds. The re-
ported performance then represents an average over the 12 clas-
sifiers. Each fold comprised one of the runs described above,
and thus contained 18 examples (i.e., 9 images from each of
the 2 object categories constituting the pair), yielding a total of

training examples. Since , the
underlying problem is firmly in the regime.
To tune each TFOCS classifier (i.e., select its regulariza-

tion weight), we used a second level of leave-one-out cross-
validation. For this, we first chose a fixed -element grid
of logarithmically spaced hypotheses. Then, for each hypoth-
esis, we designed 11 TFOCS classifiers, each of which used 10
of the 11 available folds for training and the remaining fold for
error-rate evaluation. Finally, we chose the hypothesis that
minimized the error-rate averaged over these 11 TFOCS classi-
fiers. A similar two-level cross-validation strategy was applied
for selection of the sparsity rate in OneBitCS, using a logarith-
mically spaced 50-point grid over sparsity rates between 0.1%

2030 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 63, NO. 8, APRIL 15, 2015

TABLE X
PERFORMANCE OF CROSS-VALIDATION TUNED L1-LR TFOCS (“TFOCS”), EM-TUNED L1-LR MAX-SUM GAMP (“L1-LR”), EM-TUNED BG-LR SUM-PRODUCT

GAMP (“BG-LR”), AND CROSS-VALIDATION TUNED ONE BITCS (“1-BIT”) CLASSIFIERS ON VARIOUS HAXBY PAIRWISE COMPARISONS

and 15%. For EM-tuned GAMP, there was no need to perform
the second level of cross-validation: we simply applied the EM
tuning strategy described in Section V to the 11-fold training
data.
Table X reports the results of the above-described experiment

for six pairwise comparisons. For all but BG-LR GAMP, spar-
sity refers to the average percentage of non-zero elements in the
learned weight vectors. But, since BG-LR GAMP’s weights are
non-zero with probability one, we instead define BG-LR’s spar-
sity as the number of weights with posterior probability

, as we did with the other sum-product-GAMP clas-
sifiers in earlier experiments. Consistency refers to the average
Jaccard index between weight-vector supports, i.e.,

(42)

where denotes the support of the weight vector learned when
holding out the fold. Runtime refers to the total time used to
complete the 12-fold cross-validation procedure.
Ideally, we would like an algorithm that quickly computes

weight vectors with low estimated error rate, high consistency,
and relatively low density. It should be emphasized that mini-
mizing estimated error rate alone is not of sole importance, es-
pecially for this dataset, where the total number of samples is so
few that the error rate estimates are understood to be very noisy.
Moreover, since the goal of MVPA is to identify which voxels
of the brain are most important in discriminating between cog-
nitive states, consistency among folds is very important.
Unfortunately, Table X reveals no clear winner among the

algorithms under test. Starting with the estimated error rates,
all four algorithms yielded similar comparison-averaged rates,
spanning the range from 10.1% (for TFOCS) to 11.4% (for
BG-LR GAMP). Interestingly, the algorithm ranking under
the consistency metric was exactly the opposite of that for
the error-rate metric: BG-LR GAMP yielded the highest
consistency (of 62%) and TFOCS the lowest consistency (of
37%). In terms of sparsity, BG-LR GAMP appears to be the
winner, but perhaps a direct comparison to the other algorithms
should be avoided due to the differences in the definition of
sparsity. For runtime, however, the clear winner is EM-tuned
BG-LR GAMP, which runs an order-of-magnitude faster than
cross-validated OneBitCS and nearly two orders-of-magnitude
faster than cross-validated TFOCS.
A direct comparison between cross-validated TFOCS and

EM-tuned L1-LR GAMP is illuminating, since these two
algorithms share the L1-LR objective and thus differ mainly

in tuning strategy.11 For this Haxby data, Table X shows that
L1-LR GAMP’s classifiers are uniformly more sparse (and
nearly twice as sparse on average) as those generated by
TFOCS, while suffering only a small degradation in error-rate.
Meanwhile, L1-LR GAMP’s classifiers are uniformly more
consistent, and its runtimes are about 9 faster on average.

VII. CONCLUSION

In this work, we presented the first comprehensive study of
the generalized approximate message passing (GAMP) algo-
rithm [22] in the context of linear binary classification and fea-
ture selection. We established that a number of popular dis-
criminative models, including logistic and probit regression, as
well as support vector machines (via hinge loss), can be im-
plemented in an efficient manner using the GAMP algorithmic
framework, and that GAMP’s state evolution formalism can be
used in certain instances to predict the misclassification rate
of these models. In addition, we demonstrated that a number
of sparsity-promoting weight vector priors can be paired with
these activation functions to encourage feature selection. Im-
portantly, GAMP’s message passing framework enables us to
learn the hyper-parameters that govern our probabilistic models
adaptively from the data using expectation-maximization (EM),
a trait which can be advantageous in terms of runtime. The flexi-
bility imparted by the GAMP framework allowed us to consider
several modifications to the basic discriminative models, such
as robust classification, which can be effectively implemented
using existing non-robust modules.
In a numerical study, we confirmed the efficacy of our ap-

proach on both synthetic and real-world classification problems.
For example, we found that the proposed EM parameter tuning
can be both computationally efficient and accurate in the ap-
plications of text classification and multi-voxel pattern anal-
ysis. We also observed on synthetic data that GAMP can attain
nearly optimal error rates in the regime when is
sufficiently large and the number of discriminatory features,
is sufficiently small. Furthermore, we observed that the robust
classification extension can substantially outperform a non-ro-
bust counterpart.

APPENDIX
SUM-PRODUCT GAMP HINGE-LOSS COMPUTATIONS

In this appendix, we describe the steps needed to compute
the sum-product GAMP nonlinear steps for the hinge-loss acti-

11It is known that, if max-sumGAMP converges, then it converges to a critical
point of the optimization objective [33], which in the (convex) L1-LR case is
unique.

ZINIEL et al.: BINARY LINEAR CLASSIFICATION AND FEATURE SELECTION VIA GAMP 2031

vation function, (28). For convenience, we define the associated
un-normalized likelihood function

(43)

Note from (9) that the sum-product can be interpreted as
the posterior mean and variance of a random variable, , with
prior and likelihood proportional to .
To compute the statistics and
, we first write the posterior pdf as

(44)

where is an appropriate normalization constant. Defining

(45)

(46)

(47)

it can be shown [36] that

(48)

(49)

The posterior mean for is therefore given by

(50)

(51)

(52)

where each integral in (52) represents the first moment of a trun-
cated normal random variable. Similar expressions can be de-
rived for . Then, defining the quantities

(53)

(54)

(55)

it can be shown [51] that, for ,

(56)

To compute , it suffices to derive an ex-
pression for . Following the same line of reasoning
that produced (52), we find

(57)

where each integral in (57) is the second moment of a truncated
normal random variable. A similar expression can be derived
for . Defining

(58)

(59)

it can be shown [51] that

(60)
allowing us to compute .

REFERENCES

[1] C. M. Bishop, Pattern Recognition and Machine Learning. New
York, NY, USA: Springer-Verlag, 2006.

[2] G. Forman, “An extensive empirical study of feature selection metrics
for text classification,” J. Mach. Learn. Res., vol. 3, pp. 1289–1305,
2003.

[3] J. V. Haxby, M. I. Gobbini, M. L. Furey, A. Ishai, J. L. Schouten, and
P. Pietrini, “Distributed and overlapping representations of faces and
objects in ventral temporal cortex,” Sci., vol. 293, pp. 2425–2430, Sep.
2001.

[4] K. A. Norman, S. M. Polyn, G. J. Detre, and J. V. Haxby, “Beyond
mind-reading: Multi-voxel pattern analysis of fMRI data,” Trends
Cognit. Sci., vol. 10, pp. 424–430, Sep. 2006.

[5] F. Pereira, T. Mitchell, andM. Botvinick, “Machine learning classifiers
and fMRI: A tutorial overview,” NeuroImage, vol. 45, pp. S199–S209,
Mar. 2009.

[6] A. Gustafsson, A. Hermann, and F. Huber, Conjoint Measurement:
Methods and Applications. Berlin, Germany: Springer-Verlag, 2007.

[7] E. P. Xing, M. I. Jordan, and R. M. Karp, “Feature selection for high-
dimensional genomic microarray data,” in Proc. Int. Workshop Mach.
Learn., 2001, pp. 601–608.

[8] P. T. Boufounos and R. G. Baraniuk, “1-bit compressive sensing,” pre-
sented at the Conf. Inf. Sci. Sys., Princeton, NJ, USA, Mar. 2008.

[9] Y. Plan and R. Vershynin, “Robust 1-bit compressed sensing and sparse
logistic regression: A convex programming approach,” IEEE Trans.
Inf. Theory, vol. 59, no. 1, pp. 482–494, 2013.

[10] D. Koller andM. Sahami, L. Saitta, Ed., “Toward optimal feature selec-
tion,” in Proc. 13th Int. Conf. Mach. Learn. (ICML), Bari, Italy, 1996,
pp. 284–292.

[11] R. Kohavi and G. John, “Wrapper for feature subset selection,” Artif.
Intell., vol. 97, pp. 273–324, 1997.

[12] M. E. Tipping, “Sparse Bayesian learning and the relevance vector ma-
chine,” J. Mach. Learn. Res., vol. 1, pp. 211–244, 2001.

[13] M. Figueiredo, “Adaptive sparseness using Jeffreys’ prior,” in Proc.
14th Conf. Adv. Neural Inf. Process. Syst., Cambridge, MA, USA,
2001, pp. 697–704.

[14] M. Figueiredo, “Adaptive sparseness for supervised learning,”
IEEE Trans. Pattern Anal. Mach. Intell. (PAMI), vol. 25, no. 9, pp.
1150–1159, 2003.

[15] A. Kabán, “On Bayesian classification with Laplace priors,” Pattern
Recognit. Lett., vol. 28, no. 10, pp. 1271–1282, 2007.

[16] H. Chen, P. Tino, and X. Yao, “Probabilistic classification vector ma-
chines,” IEEE Trans. Neural Net., vol. 20, no. 6, pp. 901–914, 2009.

[17] G.-X. Yuan, K.-W. Chang, C.-J. Hsieh, and C.-J. Lin, “A comparison
of optimization methods and software for large-scale L1-regularized
linear classification,” J. Mach. Learn. Res., vol. 11, pp. 3183–3234,
2010.

[18] A. Gupta, R. Nowak, and B. Recht, “Sample complexity for 1-bit com-
pressed sensing and sparse classification,” presented at the Int. Symp.
Inf. Theory (ISIT), Austin, TX, 2010.

[19] J. N. Laska, Z. Wen, W. Yin, and R. G. Baraniuk, “Trust, but verify:
Fast and accurate signal recovery from 1-bit compressive measure-
ments,” IEEE Trans. Signal Process., vol. 59, no. 11, pp. 5289–5301,
2011.

[20] U. S. Kamilov, A. Bourquard, A. Amini, and M. Unser, “One-bit mea-
surements with adaptive thresholds,” IEEE Signal Process. Lett., vol.
19, pp. 607–610, 2012.

2032 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 63, NO. 8, APRIL 15, 2015

[21] U. S. Kamilov, V. K. Goyal, and S. Rangan, “Message-passing
de-quantization with applications to compressed sensing,” IEEE
Trans. Signal Process., vol. 60, pp. 6270–6281, Dec. 2012.

[22] S. Rangan, “Generalized approximate message passing for estimation
with random linear mixing,” in Proc. IEEE Int. Symp. Inf. Theory, St.
Petersburg, Russia, Aug. 2011, pp. 2168–2172.

[23] D. L. Donoho, A. Maleki, and A. Montanari, “Message passing algo-
rithms for compressed sensing,” in Proc. Nat. Acad. Sci., Nov. 2009,
vol. 106, pp. 18914–18919.

[24] D. L. Donoho, A. Maleki, and A. Montanari, “Message passing al-
gorithms for compressed sensing: I. Motivation and construction,” in
Proc. Inf. Theory Workshop, Jan. 2010, pp. 1–5.

[25] A. Javanmard and A. Montanari, “State evolution for general approx-
imate message passing algorithms, with applications to spatial cou-
pling,” Inf. Inference, vol. 2, no. 2, pp. 115–144, 2013.

[26] J. Ziniel, S. Rangan, and P. Schniter, “A generalized framework for
learning and recovery of structured sparse signals,” presented at the
IEEE Statist. Signal Process. Workshop, Ann Arbor, MI, USA, Aug.
2012.

[27] J. P. Vila and P. Schniter, “Expectation-Maximization Gaussian-mix-
ture approximate message passing,” IEEE Trans. Signal Process., vol.
61, pp. 4658–4672, Oct. 2013.

[28] P. Schniter, “Turbo reconstruction of structured sparse signals,” in
Proc. Conf. Inf. Sci. Syst. (CISS), Princeton, NJ, USA, Mar. 2010, pp.
1–6.

[29] B. J. Frey and D. J. C. MacKay, “A revolution: Belief propagation in
graphs with cycles,”Adv. Neural Inf. Process. Syst., pp. 479–485, 1998.

[30] F. R. Kschischang, B. J. Frey, and H. A. Loeliger, “Factor graphs
and the sum-product algorithm,” IEEE Trans. Inf. Theory, vol. 47, pp.
498–519, Feb. 2001.

[31] R. J. McEliece, D. J. C. MacKay, and J. Cheng, “Turbo decoding as an
instance of Pearl’s belief propagation algorithm,” IEEE J. Sel. Areas
Commun., vol. 16, pp. 140–152, Feb. 1998.

[32] W. T. Freeman, E. C. Pasztor, and O. T. Carmichael, “Learning low-
level vision,” Int. . J. Comput. Vis., vol. 40, pp. 25–47, Oct. 2000.

[33] S. Rangan, P. Schniter, E. Riegler, A. K. Fletcher, and V. Cevher,
“Fixed points of generalized approximate message passing with ar-
bitrary matrices,” in Proc. IEEE Int. Symp. Inf. Theory, Istanbul, Jul.
2013, pp. 664–668.

[34] S. Rangan, P. Schniter, and A. Fletcher, “On the convergence of
generalized approximate message passing with arbitrary matrices,” in
Proc. IEEE Int. Symp. Inf. Theory, Honolulu, HI, USA, Jul. 2014, pp.
236–240.

[35] H.-A. Loeliger, “An introduction to factor graphs,” IEEE Signal
Process. Mag., vol. 21, pp. 28–41, Jan. 2004.

[36] J. Ziniel, “Message passing approaches to compressive inference
under structured signal priors,” Ph.D. dissertation, The Ohio State
Univ., Columbus, OH, USA, 2014.

[37] M. I. Jordan, “Why the logistic function? A tutorial discussion on
probabilities and neural networks,” MIT Comput. Congnit. Sci.,
Cambridge, MA, USA, Tech. Rep. 9503, Aug. 13, 1995.

[38] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Ma-
chine Learning. Cambridge, MA, ISA: MIT Press, 2006.

[39] J. Bi, K. Bennett, M. Embrechts, C. Breneman, and M. Song, “Di-
mensionality reduction via sparse support vector machines,” J. Mach.
Learn. Res., vol. 3, pp. 1229–1243, 2003.

[40] M. Opper and O. Winther, Gaussian Processes and SVM: Mean Field
Results and Leave-One-Out Estimator. Cambridge, MA, USA: MIT
Press, 2000, ch. 17, pp. 311–326.

[41] H. Zou and T. Hastie, “Regularization and variable selection via the
elastic net,” J. Roy. Statist. Soc., B, vol. 67, no. 2, pp. 301–320, 2005.

[42] A. K. Nigam, K.McCallum, S. Thrun, and T.Mitchell, “Text classifica-
tion from labeled and unlabeled documents using EM,”Mach. Learn.,
vol. 39, pp. 103–134, 2000.

[43] J. P. Vila and P. Schniter, “An empirical-Bayes approach to recovering
linearly constrained non-negative sparse signals,” IEEE Trans. Signal
Process., vol. 62, pp. 4689–4703, Sep. 2014.

[44] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the EM algorithm,” J. Roy. Statist. Soc., B,
vol. 39, pp. 1–38, 1977.

[45] U. S. Kamilov, S. Rangan, A. K. Fletcher, and M. Unser, “Approxi-
mate message passing with consistent parameter estimation and appli-
cations to sparse learning,” in Proc. Neural Inf. Process. Syst. Conf.,
Lake Tahoe, NV, USA, Dec. 2012, pp. 2447–2455.

[46] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li, “RCV1: A new benchmark
collection for text categorization research,” J. Mach. Learn. Res., vol.
5, pp. 361–397, 2004.

[47] C. Lin, R. C. Weng, and S. S. Keerthi, “Trust region Newton methods
for large-scale logistic regression,” in Proc. 24th Int. Conf. Mach.
Learn., Corvallis, OR, USA, 2007, pp. 561–568.

[48] S. R. Becker, E. J. Candès, and M. C. Grant, “Templates for convex
cone problems with applications to sparse signal recovery,” Math.
Prog. Comput., vol. 3, no. 3, pp. 165–218, 2011.

[49] C. J. Lin and J. J. Moré, “Newton’s method for large-scale bound con-
strained problems,” SIAM J. Optim., vol. 9, pp. 1100–1127, 1999.

[50] P. Schniter and S. Rangan, “Compressive phase retrieval via general-
ized approximate message passing,” presented at the Allerton Conf.
Commun., Control, Comput., Monticello, IL, USA, Oct. 2012.

[51] D. R. Barr and E. T. Sherrill, “Mean and variance of truncated normal
distributions,” Amer. Statist., vol. 53, Nov. 1999.

Justin Ziniel (S’11) received the B.S., M.S.,
and Ph.D. degrees in Electrical and Computer
Engineering from The Ohio State University in
Columbus, OH, in 2007, 2012, and 2014, respec-
tively.
His research interests include statistical signal pro-

cessing, machine learning, and interdisciplinary “big
data” inference problems.

Philip Schniter (F’14) received the B.S. and M.S.
degrees in Electrical Engineering from the University
of Illinois at Urbana-Champaign in 1992 and 1993,
respectively, and the Ph.D. degree in Electrical En-
gineering from Cornell University in Ithaca, NY, in
2000.
From 1993 to 1996 he was employed by Tektronix

Inc. in Beaverton, OR as a systems engineer. After
receiving the Ph.D. degree, he joined the Department
of Electrical and Computer Engineering at The Ohio
State University, Columbus, where he is currently a

Professor and a member of the Information Processing Systems (IPS) Lab. In
2008–2009 he was a visiting professor at Eurecom, Sophia Antipolis, France,
and Supélec, Gif-sur-Yvette, France.
In 2003, Dr. Schniter received the National Science Foundation CAREER

Award. His areas of interest currently include statistical signal processing, wire-
less communications and networks, and machine learning.

Per Sederberg, photograph and biography not available at the time of publica-
tion.

