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Abstract
Although there have been major strides toward uncovering the neurobehavioral mechanisms involved in cognitive functions like
memory and decision making, methods for measuring behavior and accessing latent processes through computational means
remain limited. To this end, we have created SUPREME (Sensing to Understanding and Prediction Realized via an Experiment
and Modeling Ecosystem): a toolbox for comprehensive cognitive assessment, provided by a combination of construct-targeted
tasks and corresponding computational models. SUPREME includes four tasks, each developed symbiotically with amechanistic
model, which together provide quantified assessments of perception, cognitive control, declarative memory, reward valuation,
and frustrative nonreward. In this study, we provide validation analyses for each task using two sessions of data from a cohort of
cognitively normal participants (N = 65). Measures of test-retest reliability (r: 0.58–0.75), stability of individual differences (ρ:
0.56–0.70), and internal consistency (α: 0.80–0.86) support the validity of our tasks. After fitting the models to data from
individual subjects, we demonstrate eachmodel’s ability to capture observed patterns of behavioral results across task conditions.
Our computational approaches allow us to decompose behavior into cognitively interpretable subprocesses, which we can
compare both within and between participants. We discuss potential future applications of SUPREME, including clinical
assessments, longitudinal tracking of cognitive functions, and insight into compensatory mechanisms.
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Introduction

In many ways, the development of the research domain
criteria (RDoC; Insel et al., 2010) framework by the
National Institute of Mental Health has contributed to
a fundamental shift in how cognitive disorders are stud-
ied and understood. Instead of considering specific dis-
orders in isolation, RDoC is predicated on the idea that
cognitive behaviors should be studied at all levels of
processing, from neural circuits consisting of multiple
brain areas, down to individual neurons. By understand-
ing how patterns of neural activity or connectivity man-
ifest in different cognitive behaviors, the goal of RDoC

is to characterize illnesses and injuries in terms of their
mechanistic loci in addition to their behavioral symptom
profiles. To this end, several studies have used genera-
tive modeling techniques to mathematically define the
neural processes that underlie distinct patterns of task-
related behaviors (Frässle et al., 2018; Friston, Stephan,
Montague, & Dolan, 2014; Stephan & Mathys, 2014).
Although model-based approaches have been applied to
tracking dysfunctions relevant to particular patient
groups of interest (Cavanagh et al., 2011; Cockburn &
Holroyd, 2010; Frank, Santamaria, O’Reilly, & Willcutt,
2007; Mulder et al., 2010; Wiecki, Poland, & Frank,
2015), the field currently lacks a comprehensive suite
of tasks and associated generative models to measure a
full range of cognitive mechanisms both within and be-
tween participant groups.

Alongside task paradigms designed to target specific cog-
nitive functions, generative models have been used in cogni-
tive psychology for decades to explore and compare mecha-
nistic theories of how neural activity gives rise to behavior.
Broadly, generative models fit within a Bayesian framework
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consist of (1) a system of equations governing the biological
processes relevant to the task; (2) a set of free parameters,
whose values are responsible for producing different patterns
of data; (3) a likelihood function, representing the probability
of the data given a set of parameter values; and (4) a set of
prior distributions, which specifies the range of plausible
values for each parameter (Frässle et al., 2018; Friston et al.,
2014; Stephan & Mathys, 2014). The power of generative
modeling is that it allows us to mathematically articulate hy-
potheses about how different layers of processing function
and interact, and in turn, formally test said hypotheses by
fitting the models to data (Huys, Maia, & Frank, 2016).
Interpreting behavior in terms of latent processes opens a
world of possibilities for identifying the networks involved
in complex cognitive functions (Herz, Zavala, Bogacz, &
Brown, 2016; Nunez, Vandekerckhove, & Srinivasan,
2017). Several reviews have praised generative modeling as
a potentially transformative tool for psychiatry, but have also
noted the problem of balancing specificity (i.e. capturing rel-
evant deficits in individual patient groups) with generalizabil-
ity (i.e. being applicable in investigations of other patient
groups) when developing tasks and models (Adams, Huys,
& Roiser, 2016; Huys et al., 2016; Petzschner, Weber, Gard,
& Stephan, 2017).

Here, we present a toolbox of computerized tasks designed
to measure an array of cognitive functions, ranging from low-
level perceptual decisions to higher-level assessments of risk,
and from working memory to long-term associative memory.
Our goal was to develop a standard, comprehensive means of
assessing cognitive performance, and to provide access to
model-based analyses for researchers across areas of exper-
tise. Each task in our toolbox is accompanied by a theory-
based generative model designed to quantify the latent pro-
cesses underlying decisions at the level of each trial. We call
our toolbox SUPREME: Sensing to Understanding and
Prediction Realized via an Experiment and Modeling
Ecosystem. In this article, we aim to accomplish the follow-
ing. First, we will describe each of the tasks and relate them to
specific RDoC cognitive constructs. Second, we will provide
the details of our models and the theories about the underlying
neural mechanisms that each model represents. Third, we
will demonstrate the validity of our models for accurately
capturing behavior across a cohort of cognitively normal
participants. Finally, we suggest potential extensions of
our methods to clinical research in terms of tracking cog-
nitive behavior and mechanistic analogues alongside a
diverse array of symptom profiles. Although follow-up
work will need to investigate model reliability and appli-
cability to specific clinical diagnoses and other individual
difference applications, SUPREME represents a promis-
ing step toward a standard method of quantifying and
comparing latent cognitive processes both across partici-
pant groups and within individuals through time.

Task selection

We aimed to create an ecosystem for comprehensive cognitive
assessment, provided by a combination of RDoC construct-
targeted tasks and mechanistic computational models. In de-
veloping SUPREME, we took care to select tasks that (1) are
objective, quantifiable measures of the constructs of interest,
(2) can be administered multiple times to the same participants
with minimal response biases, (3) are simple enough for par-
ticipants across a wide range of ages and cognitive abilities to
complete, (4) are brief, such that each block takes less than 5
minutes to administer, (5) provide data that are amenable to
computational model development and fitting (via
constraining task conditions or continuous response time
(RT) measures), and (6) span multiple cognitive constructs
and different levels of processing complexity. We ultimately
selected four tasks that have been mainstays of the cognitive
assessment literature for decades, and have been validated by
behavioral, neuroimaging, and clinical data to capture group-
and condition-level variability in cognitive performance.

Constructs of interest were selected from RDoC, with a
primary focus on the cognitive systems domain. We selected
the random dot motion task (RDM) to measure the construct
of perception, which encompasses the computations involved
in translating sensory input into decision-guiding information.
In the task, participants must interpret sensory information in
the form of randomly moving dots and identify the direction
of most coherent motion (Anstis, 1970; Braddick, 1974). The
flanker task (Eriksen & Eriksen, 1974; Kopp, Rist, & Mattler,
1996) was included tomeasure attention and cognitive control
by requiring participants to make decisions while ignoring
task-irrelevant information. The task assesses attention by re-
quiring the purposeful focusing of limited visual processing
resources, and assesses cognitive control by requiring the sup-
pression of prepotent response modes.Declarative memory—
the encoding, storage, and retrieval of events—was measured
with the continuous associative binding task (CAB). The
CAB task requires participants to remember relation-
ships between paired items, tapping into associative as-
pects of declarative memory rather than item recognition
alone (Gallo, Sullivan, Daffner, Schacter, & Budson,
2004; Henke, Buck, Weber, & Wieser, 1997; Naveh-
Benjamin, 2000; Popov, Hristova, & Anders, 2017).
Finally, the balloon analogue risk task (BART; Lejuez
et al., 2002) was used to assess the positive and nega-
tive valence domains, via the constructs of reward
valuation and frustrative nonreward, respectively. In
the task, participants must balance the goal of increas-
ing reward with the risk of loss by interacting with a
virtual balloon. Each task was developed alongside a
corresponding computational model, which allowed us
to gain insight into the mechanistic underpinnings of
the cognitive constructs of interest.
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Model development

A review by Maia (2015) defined two broad types of model-
based analyses in computational psychiatry: (1) data-driven
approaches in which machine learning methods are used to
distinguish among known diagnostic categories of partici-
pants, and (2) theory-driven approaches, which specify math-
ematical relationships among variables that contribute to dif-
ferences in group-level and individual behaviors. Our
methods fall into the latter category, such that we developed
sets of algorithms to mathematically describe the processes
between stimulus onset and response1. Free parameters in
our models represent cognitively interpretable variables,
which, when fit to data, provide quantified measures of latent
mechanisms that we could not observe from behavior alone.
All of our models operate at the level of the individual trial,
making it possible to calculate parameter estimates indepen-
dently for each participant. Models for each task were devel-
oped from a combination of existing decision frameworks
(e.g. sequential sampling models) and mathematical articula-
tions of current cognitive theories (e.g. prospect theory).
Given that multiple theories exist for how the brain engages
certain cognitive processes, our model development proce-
dure was rooted in systematic implementation, fitting, and
comparison of contrasting model variants (Kirkpatrick,
Turner, & Sederberg, 2019; Weichart, Turner, & Sederberg,
2020). Experiments were designed and models were devel-
oped symbiotically in pursuit of the following goals: (1) per-
formance during experiments should involve the cognitive
constructs of interest, (2) models should instantiate the cogni-
tive constructs of interest, and (3) experimental conditions
should allow for sufficient model constraint, such that the
parameter estimates corresponding to the constructs of interest
are informative. Here, “informative” refers to parameter esti-
mates that are both accurate and precise, allowing us to mean-
ingfully differentiate whether a mechanism is a plausible com-
ponent of an individual’s decision-making process. The
models presented here provide neurally plausible accounts
for the processes underlying the decisions in each task, and
also provide the best fits to data compared to alternative ac-
counts as determined by Bayesian comparison analyses.

General methods

Here, we describe procedures for administering our cognitive
task battery to a cohort of cognitively healthy participants.
Participants completed each task multiple times within a

session. Details and illustrations of each task and model are
provided in the section entitled SUPREME cognitive tasks and
computational models.

Participants

Eighty-five participants with a mean age of 20 years (range:
18–43) were recruited from the University of Virginia and the
surrounding community via poster advertisement. One to two
weeks after completing the first session, a subset of 65 partic-
ipants returned to the lab and completed a second session.
Participants provided written informed consent in accordance
with the requirements of the Institutional Review Board at the
university. Participants were compensated with $10/hour after
each session.

Apparatus

Custom programs using the State Machine Interface Library
for Experiments (SMILE; https://github.com/compmem/
smile) presented stimuli, tracked timing, and logged
responses in all four tasks. Stimuli were presented on a
desktop computer equipped with Windows OS connected to
a 24-inch, 1920 x 1080-pixel LED display with a refresh rate
of 120 Hz. Participants made responses using the outer two
keys of a four-key Black Box ToolKit response pad.

Procedure

After providing consent, participants were seated in individu-
al, sound-attenuated rooms and were asked to turn off all
electronic devices. An experimenter informed participants that
they would be completing four unrelated tasks throughout the
experiment, and that they would complete each task multiple
times. The experimenter remained in the testing room
throughout each session to monitor participants’ engagement.
Four blocks each of the RDM, flanker, and CAB tasks and
two blocks of BARTwere presented semi-randomly, such that
two blocks of a single task never occurred consecutively. Each
block began with instructions and example stimuli to orient
participants to the upcoming task while also providing an
opportunity to take short breaks as needed. Although tasks
differed from one another in objective, all four tasks shared
a common two-alternative decision structure. At the end of
each block, participants received feedback in the form of a
numerical score that was calculated as described in
Validation analyses: Performance metrics. Across all tasks
and blocks, it took participants an average of 40.00 minutes
to complete a session (SD = 3.84). Prior to analysis, responses
were removed from the RDM and flanker tasks if they oc-
curred faster than 150 ms or slower than 2000 ms post-stim-
ulus onset. Responses were removed from the CAB task if
they were faster than 350 ms, but no upper RT criterion was

1 The model fitting and parameter estimation procedures presented here also
provide the opportunity for combining data- and theory-driven approaches,
whereby machine learning methods are applied to model parameter estimates
rather than summary statistics for subject-level categorization (Huys et al.,
2016).
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imposed. No RT-based outlier exclusion criteria were applied
to data from the BART. While fewer than 1% of trials were
excluded from our healthy-subject dataset using these criteria,
the SUPREME user is encouraged to carefully consider the
outlier specifications that will be appropriate for their partici-
pant group of interest.

Model-fitting procedures

As mentioned previously, the overarching goal of our model-
based approach was to quantify the latent mechanisms under-
lying each participant’s behavior. Building upon existing
models relevant to each task, we mathematically defined the
hypothesized neural processes that occur between stimulus
onset and response. Models were fit to data from each subject
independently using custom programs implemented in
RunDEMC (http://github.com/compmem/RunDEMC).
While the details of each model are described in the section
to follow, a general set of model-fitting procedures
are provided here. We first specified the system of equations
relevant to each model. Starting parameter values were
randomly drawn from a set of prior distributions, which
were determined through a series of pilot investigations.
Next, the relevant likelihood functions were calculated. For
the CAB task, the likelihood function could be calculated
directly using analytical solutions described by Navarro and
Fuss (2009). For the BART, the probability of generating each
choice was determined via a softmax decision rule. Because
the sequential dependencies from the presence of leak and
lateral inhibition in the models of the flanker and RDM tasks
precluded our ability to determine likelihood functions
analytically, we instead estimated them by means of
simulation and probability density approximation (PDA;
Turner & Sederberg, 2014). For all models, the posterior
density of the sampled parameter set was calculated as a
combination of the likelihood function and the relevant set
of prior distributions. New parameter sets were proposed via
differential evolution and were updated using Markov chain
Monte Carlo (DE-MCMC; Ter Braak, 2006; Turner,
Sederberg, Brown, & Steyvers, 2013; Turner & Sederberg,
2012). Depending on the model, this procedure was
implemented for 1200–2200 iterations within 50–80 chains
in order to calculate full posterior distributions for each
model and parameter. MCMC specifications for the number
of chains, burn-in iterations, and sampling iterations were
selected through a series of preliminary investigations and
model comparison studies to provide suitable convergence

bR < 1:2
� �

and good mixing as determined by visual

inspection. Model fitting details are provided as part of our
publicly available SUPREME codebase (http://github.com/
compmem/SUPREME), but users are advised that the
provided specifications were only tested on young,

cognitively healthy subjects. Because cognitively impaired
participants will potentially produce slower, noisier, or
otherwise atypical patterns of behavior compared to healthy
subjects, users are encouraged to adjust the MCMC
specifications as needed to obtain consistent convergence
prior to interpreting parameter estimates.

SUPREME cognitive tasks and computational
models

In each subsection to follow, we begin by providing back-
ground information, details of stimuli, and procedures
pertaining to each of our tasks. Because the tasks are based
on existing, widely used paradigms, we describe how we de-
veloped our specific implementations to be suitably amenable
to model-fitting and robustness across sessions. We then de-
scribe each of the models that were built to accompany the
tasks. Task performance will be reported in terms of custom
scoring metrics that will be described in detail in Validation
analyses: Performance metrics.

Task 1: Random dot motion

The RDM task is a test of motion detection that has been
widely implemented in investigations of perceptual decision-
making mechanisms (Bogacz, Brown, Moehlis, Holmes, &
Cohen, 2006; Ratcliff & Starns, 2013; Shadlen & Newsome,
1996; Tsetsos, Gao, McClelland, & Usher, 2012). In the task,
participants are asked to indicate the direction of coherent
motion amid a cloud of dots that are mostly moving in random
directions. Standard behavioral effects are faster, more accu-
rate responses for stimuli with higher proportions of coherent-
ly moving dots in one direction relative to the others. In sem-
inal work by Shadlen and Newsome (1996, 2001), the RDM
task was used to elucidate the neuron-level representations of
motion perception. In particular, the authors found that re-
sponse accuracy and the firing rates of neurons in the lateral
intraparietal (LIP) area both vary as a direct function of dot
coherence. The time course of neuronal firing relative to the
response has been widely interpreted as evidence of accumu-
lation-to-bound mechanisms in the brain, much like mecha-
nisms described within sequential sampling models (SSMs;
see Forstmann, Ratcliff, & Wagenmakers, 2016 for review).
Broadly, SSMs describe decision-making as the noisy accu-
mulation of evidence for a choice option until a predetermined
decision boundary is reached. Several models exist within the
SSM framework, each representing subtly different hypothe-
ses about the mechanisms underlying perceptual choice
(Brown & Heathcote, 2008; Ratcliff, 1978; Shadlen &
Newsome, 2001; Usher & McClelland, 2001). In creating a
variant of the RDM task, our goal was to include task condi-
tions that would challenge the assumptions of the various
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SSMs and ultimately arrive at a way of calculating
constrained, accurate representations of subject-level decision
mechanisms. Our variant of the task therefore features bi-di-
rectional coherence manipulations, including several condi-
tions of equal coherence in both the left and right directions.
In a model-comparison study consisting of six SSMs that had
all been successfully fit to RDMdata in the past, we found that
only one model could capture all the features of behavior
across equal coherence conditions in our task variant
(Kirkpatrick et al., 2019). The outcome of this work was that
we identified the model that effectively maps onto latent
mechanisms while also designing a highly constraining task.

Stimuli

In each trial, participants were asked to identify the direction
of most coherent motion in a dynamic dot stimulus bound by a
circular presentation window with a 200-pixel radius. Stimuli
were composed of 100 white dots presented on a gray back-
ground, where each dot was three square pixels in size and
traveled at a velocity of 200 pixels per second. A random dot
pattern with continuous motion was used, but predetermined
proportions of dots moved coherently in two target directions.
Specifically, we manipulated the proportion of dots moving
coherently in both the left (180°) and right (0°) directions
within the same stimulus. Left and right coherence each took
on one of six proportion values: 0.00, 0.06, 0.12, 0.18, 0.24, or
0.30. The remaining dots moved at the same velocity as the
coherent dots, but in a randomly selected direction. All dots
spawned at random locations within the presentation window,
and remained on the screen for a life span between 250 and
1250 ms. Dots that reached the end of their life span or the
limits of the presentation window were removed and automat-
ically replaced so that there was a constant number of dots on
the screen at any given time. Including every pairwise combi-
nation of coherence proportions for the left and right direc-
tions, there were 36 unique stimuli presented in the task. Most
stimuli were presented twice per block. Stimuli in which the
difference between left and right coherence was nearly imper-
ceptible (difference = 0.06; 10/36 unique stimuli), however,
were presented once per block. We made this decision in an
effort to reduce the number of difficult trials from the perspec-
tive of the participants. In total, each block contained a total of
62 trials presented in a random order. Task conditions are
illustrated in Fig. 1.

Procedure

Each RDM block was preceded by a screen with two example
stimuli and instructions to select the direction of most coherent
dot motion. The instructions remained on the screen until the
participant pressed any key on the response pad to proceed.
During each trial, a fixation cross appeared on the screen for a

jittered duration between 250 and 750 ms. The trial stimulus
was then presented and remained on the screen until a re-
sponse was made. Participants responded by pressing the left-
most key on the response pad to indicate that the dots were
moving most coherently to the left, or the rightmost key to
indicate that the dots were moving most coherently to the
right. Feedback was presented for 500 ms immediately after
each response. A green check mark or a red “X” indicated
correct and incorrect responses, respectively. The message
“Too Fast!” appeared in white text if the participant made a
response faster than 100 ms from stimulus onset. Among the

Fig. 1 (a) Illustration of conditions in the RDM task. Colors are used to
highlight the contrasting directionalities of the dots, but the actual task
stimuli used white dots presented against a dark gray background. (b)
Frequencies of each possible combination of left and right coherence
conditions within each block
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36 unique stimuli in the task, six contained equal proportions
of coherent motion in the left and right directions. Because
there was technically no correct answer on these trials, re-
sponse keys were coded randomly such that the “left” re-
sponse was correct on one half of equal-evidence trials and
the “right” response was correct on the other half. Participants
were not informed that some trials contained equal coherence
in both directions. Across four blocks each consisting of 62
trials, participants completed a total of 248 trials. Each block
took an average of 2.06 minutes to complete (SD = 0.32).

Model details

The model included in the current investigation was
selected after rigorous comparison of various generative
models using Bayesian analytical methods (Kirkpatrick
et al., 2019). As previously mentioned, all models in
our comparison study were built within the sequential
sampling model (SSM) framework. In the SSM frame-
work, individual decisions are conceptualized as the sto-
chastic accumulation of evidence through time until a
response threshold (α) is reached. This general process
has been notably supported by single-unit recordings,
which demonstrate accumulation-to-bound patterns of
neuronal firing (Churchland, Kiani, & Shadlen, 2008;
Shadlen & Newsome, 2001). Across SSMs, an RT is
equal to the duration of the decision process plus non-
decision time (τ), which comprises perceptual and motor
processes. We found that the most successful SSM for
fitting data in our RDM paradigm was a variant of the
leaky competing accumulator model (LCA; Usher &
McClelland, 2001, 2004), which features a separate ac-
cumulator for each possible choice (in this case, a “left”
or “right” response). In the LCA model, accumulators
mutually suppress one another via lateral inhibition (β),
and evidence passively decays through time (κ). These
mechanisms were implemented in the original LCA
model to reflect observed biological mechanisms in the
brain (Abbott, 1991; Amit, Brunel, & Tsodyks, 1994)
and proved necessary for capturing behavior using our
task paradigm, particularly in the equal-evidence condi-
tions (Kirkpatrick et al., 2019). When fitting models to
RDM data, rates of evidence accumulation (drift rates)
corresponding to each possible choice are directly relat-
ed to the coherence of motion in the stimulus. For stim-
uli with only one direction of coherent motion, high-
coherence stimuli are associated with higher drift rates,
reflecting a robust speed and accuracy advantage com-
pared to performance on low-coherence stimuli. To re-
flect the general, positive relationship between drift rate
and coherence without making any strong assumptions
about the functional form of the association, drift rates
were calculated based on their position along a

monotonically increasing sigmoidal function. The func-
tional form of the sigmoid was specified by three free
parameters, representing height (a), shift (b), and sharp-
ness (c). A list of free parameters and the mechanisms
they represent are provided in Table 1, and an illustra-
tion of the model is provided in Fig. 2.

Model fits

To illustrate themodel’s ability to capture observed patterns of
responses, Figs. 3, 4, and 5 show data produced by our par-
ticipants contrasted with data generated by our model using
each participant’s best-fitting parameters. To assess model
fits, we first calculated maximum a posteriori (MAP) esti-
mates for the parameters. We then input the best-fitting pa-
rameter values into the model, and generated 10,000 simulat-
ed trials in each task condition. Each simulated trial produced
a response (correct or incorrect) and an RT. As a complement
to quantitative model validation using Bayesian model com-
parison techniques in a previous investigation (Kirkpatrick et
al., 2019), we used qualitative analyses to verify our model’s
applicability to the current dataset. We first wanted to see if
the model was able to predict the observed pattern of slower,
less accurate responses for more similar levels of dot coher-
ence in the left and right directions. Figure 3 shows RT distri-
butions for correct and incorrect responses in each condition
of coherence difference, averaged across subjects. As expect-
ed, the model predicts a gradient from fast, relatively accurate
responses when there is a large difference between coherence
values, to slow, chance-level responses when there is no dif-
ference between coherence values. This pattern is reflected in
Fig. 4 as well, in which observed and model-generated per-
formance scores based on speed and accuracy were calculated
within each condition of coherence difference: scores system-
atically decrease as the differences between coherence values
decrease. Finally, Fig. 5 shows the correlation between ob-
served and model-generated scores across task conditions.
With a Pearson’s r correlation value of 0.97, we conclude that
our model provides excellent fits to data and is able to predict
the expected patterns of data within each condition.

Table 1 Summary of RDM model free parameters

Parameter Description

α Decision threshold

τ Nondecision time

β Lateral inhibition

κ Passive decay of evidence

a Height of drift rate function

b Shift of drift rate function

c Sharpness of drift rate function
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Task 2: Flanker

The flanker task is a common assessment of inhibitory con-
trol, or an individual’s ability to ignore goal-irrelevant infor-
mation and focus on a particular visual input. In the standard
paradigm, participants are asked to indicate the direction of a
central arrow while ignoring distractors that may be incongru-
ent (<<<><<<) or congruent (>>>>>>>) relative to the target
(Eriksen & Eriksen, 1974; Kopp, Rist, & Mattler, 1996). The
classic congruency effect is that participants are slower and
less accurate at responding to incongruent compared to

congruent trials, and the magnitude of the effect is often used
as a between-subjects index of inhibitory control. In develop-
ing our variant of the flanker task, our goal was to create
stimuli that were cognitively challenging enough to produce
differences in performance among cognitively normal partic-
ipants while still being simple enough for impaired partici-
pants to respond to as well. Our variant differs from the classic
paradigm in a number of ways. First, target arrows were pre-
sented in the center of a diamond-shaped array consisting of
12 distractor arrows, such that participants were required to
inhibit information in both the horizontal and vertical

Fig. 2 Illustration of the RDM model. (1) Evidence supporting the right
and left directions is continuously sampled from the RDM stimulus. (2)
The evidence supporting the left direction inhibits the evidence
supporting the right direction and vice versa while the evidence

supporting both options passively decays over time. The decision is made
when the evidence supporting one option is greater than the decision
threshold

Fig. 3 Observed and model-generated choice-RT distributions in each
condition of the RDM task. Observed RT distributions for correct
(light-colored histograms) and incorrect (dark-colored histograms) re-
sponses were averaged across participants. Models were simulated

10,000 times for each condition, using each participant’s best-fitting pa-
rameters. Black lines show average model-generated distributions across
participants. Facets indicate the absolute difference between left and right
coherence
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directions before responding to the target. Second, the config-
urations of distractor stimuli were based on research demon-
strating the zoom lens conceptualization of visual attention
(Brefczynski & DeYoe, 1999; Tootell et al., 1998). In this
framework, attentional resources are oriented around a central
point in a graded fashion. To achieve a gradient of difficulty
across task conditions, incongruent distractors could therefore
be positioned in either the inner or outer layer of the stimulus
array. Third, stimuli were presented on the screen at one of
eight possible spatial locations on each trial, rather than being
presented in the same location throughout the task.
Participants were therefore required to dynamically modulate

their attention on each trial rather than focusing on a single
spatial location throughout the entire task. Examples of stimuli
are shown in Fig. 6.

Stimuli

Each stimulus consisted of 13 arrows that were arranged in a
diamond formation, and each arrow pointed in the left or right
direction. Arrows were 28×28 pixels in size with line widths
of two pixels, and each array occupied a 225×225 pixel-sized
box on the screen. Participants were instructed to indicate the
direction of the arrow in the center of the array while ignoring
all distractors. Distractor arrows took on one of three config-
urations: (1) In the easy condition, all 12 distractor arrows
pointed in the same direction as the target. (2) In themoderate
condition, the four inner arrows pointed in the same direction
as the target, while the eight outer arrows pointed in the op-
posite direction. (3) In the hard condition, the eight outer
arrows pointed in the same direction as the target, while the
four inner arrows pointed in the opposite direction. On each
trial, the stimulus was presented in one of eight locations
around the screen. Possible locations were equidistant from
the center of the screen in increments of 45 degrees. Task
condition (easy, moderate, hard), target direction (left or
right), and screen location (0, 45, 90, 135, 180, 225, 270, or
315 degrees) were counterbalanced and randomized within-
block, such that each block consisted of 48 unique, once-pre-
sented stimuli.

Procedure

Instructions for the task appeared on the screen, along with
examples of the stimuli. Participants completed a 2-minute
practice module prior to the first block. In both the practice
module and the main task, stimuli were presented in white text
on a gray background. Feedback was provided during the
practice module to encourage participants to complete the task
both quickly and accurately. A green checkmark or a red “X”
appeared following correct and incorrect responses respective-
ly, and the message “Too slow!” appeared in white text if
participants took longer than 3000 ms to respond. Feedback
was provided during practice only, not during the actual task.
Participants had the option of completing the practice again
before each block, or they were allowed to skip it after com-
pleting it once. Regardless, each block began with a summa-
rized instruction screen to orient participants to the upcoming
task. The instruction summary remained on the screen until
the participant pressed any key on the response pad to pro-
ceed. During each trial, a fixation cross appeared in the center
of the screen for a jittered duration of 750–1000 ms before
being removed. The trial stimulus then appeared on the screen
and remained until a response was made. Participants
responded by pressing the leftmost key on the response pad

Fig. 4 Observed and model-generated scores in each condition of the
RDM task. Models were simulated 10,000 times for each condition using
each participant’s best-fitting parameters. Scores were calculated based
on speed and accuracy (see Validation analyses: Performance
Metrics. Observed mean and 95% across-subject CIs of scores are shown
as colored bars. Mean and 95% across-subject CIs for model-generated
scores are shown as gray bars

Fig. 5 Correlation between observed and model-generated scores across
conditions of the RDM task. The model was simulated 10,000 times for
each condition using each participant’s best-fitting parameters. Scores
were calculated based on speed and accuracy (see Validation analyses:
Performance Metrics). The line of best fit is shown as a black dashed line
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if the arrow in the center of the array pointed left, and the
rightmost key if the center arrow pointed right. Only responses
made 150 ms after the stimulus appeared were recorded, and
the stimulus was removed from the screen immediately after
the participant made a valid response. Participants were given
an unlimited amount of time to respond, but were instructed to
respond as quickly and accurately as possible. Across four
blocks each consisting of 48 trials, participants completed a
total of 192 trials. Each block took 1.21 minutes on average to
complete (SD = 0.07).

Model details

Similarly to the model of the RDM task, our model of the flanker
task was developed within the LCAmodel framework. As such,
the model contains free parameters representing decision thresh-
old (α), nondecision time (τ), lateral inhibition (β), and passive
decay of evidence (κ). To calculate the drift rate for each choice,
we implemented a variation of time-dependent calculations orig-
inally described in the shrinking spotlight model (SSP; White,
Ratcliff, & Starns, 2011). The SSP draws upon research that
suggests that visual attention behaves as a zoom lens, such that
perceptual resources are allocated around a central target within a
finite area that can expand and contract as needed (Brefczynski&
DeYoe, 1999; Mesulam, 1990, 1999; Müller, Bartelt, Donner,
Villringer, &Brandt, 2003; Tootell et al., 1998). In the model, an
attentional spotlight takes the form of a density function for a
Gaussian distribution with standard deviation sd0 centered upon
the central target of the flanker task stimulus. Each arrow in the
stimulus array occupies one unit of space and has a perceptual
input strength of p. Although our task paradigm features
distractor items in both the horizontal and vertical directions,
we fit our model based only on the arrows along the horizontal
midline of the stimuli for the purposes of our current investiga-
tion. We made this decision in the interest of reducing computa-
tional load after verifying that the one-dimensional spotlight

yielded qualitatively similar results to a two-dimensional spot-
light as part of a previous investigation that used the same stimuli
(Weichart & Sederberg, 2020). In our current variant of the mod-
el, the standard deviation of the spotlight shrinks as a function of
an endogenous calculation of cognitive control, modified by rate
of focus (rd). Our calculation of cognitive control was based on
theoretical descriptions of reactive control (Braver, 2012; Braver,
Gray, & Burgess, 2008; De Pisapia & Braver, 2006), which
suggest that attention is modulated within-trial according to an
online calculation of control resources relative to the perceptual
conflict within the stimulus. As incongruent stimuli contain evi-
dence for both possible choice options, a greater involvement of
attentional mechanisms is required to make a response compared
to the case of congruent stimuli. We operationalized the concept
of reactive control as a cumulative distance between total evi-
dence and a conflict threshold (δ). Despite neural and behavioral
evidence of attention- and cognitive control-mediated changes in
the decision process within trials (Czernochowski, 2015; Nigbur,
Schneider, Sommer, Dimigen, & Stürmer, 2015; Scherbaum,
Fischer, Dshemuchadse, & Goschke, 2011), SSMs typically cal-
culate evidence as a direct function of time. In a recent model
comparison study, we showed that our control-based spotlight

Fig. 6 Illustration of stimuli in each condition of the flanker task (i.e.
easy, moderate, and hard). (a) Possible stimulus configurations. Colors
were used to highlight the contrasting orientations of the arrows, but
stimuli in the actual task were presented in white font against a dark

gray background. (b) Possible stimulus locations. Black asterisks show
the eight locations in which a stimulus could have appeared on each trial.
The black asterisks and circle are shown here for clarity but were not
shown during the task

Table 2 Summary of flanker model free parameters

Parameter Description

α Decision threshold

t0 Nondecision time

β Lateral inhibition

κ Passive decay of evidence

sd0 Initial spotlight width

p Perceptual input strength

rd Rate of focus

δ Conflict threshold
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implementation within the LCA framework provided better fits
to data compared to time-based alternatives, and uniquely
mapped onto decision-related signals measured by electroen-
cephalography (EEG; Weichart et al., 2020). A list of free pa-
rameters and the mechanisms they represent are provided in
Table 2, and Fig. 7 provides a graphical representation of the
model’s mechanisms.

Model fits

Given that the model was quantitatively validated with
Bayesian model comparison techniques in a previous investi-
gation (Weichart et al., 2020), qualitative analyses were ap-
plied here to verify that the model was appropriate for the
current sample of participants as well. As in the analyses for
the RDM task presented previously, we identified a set of
MAP parameter estimates. We generated 10,000 trials within
each task condition by inputting each set of best-fitting param-
eters back into the model. Figure 8 shows RT distributions for
correct and incorrect responses in each condition, averaged
across subjects. The model-generated data reflects the

observed pattern of increased proportions of errors and slower
responses as wemove from the easy to the hard task condition.
This pattern of data is shown in Fig. 9 as well, which shows
the mean and 95% across-subject confidence intervals of per-
formance scores calculated within-condition. Model perfor-
mance scores were calculated by generating data within each
condition, and applying the same scoring metric that is de-
scribed in Validation analyses: Performance metrics to the
simulated choices and RTs. For Fig. 10, we calculated the
Pearson’s r correlation between each participant’s observed
score across conditions and the model-predicted scores gener-
ated from each participant’s best-fitting parameters (r = 0.82).
Together, these results confirm that our model is providing
good fits to data and is able to accurately predict the expected
condition-level differences in performance produced by our
participants.

Task 3: Continuous associative binding

The CAB task was designed to measure episodic memory,
which is memory for experiences and the contexts in which

Fig. 7 Illustration of the flanker model. (1) Attention, represented as the
density function for a Gaussian distribution, is distributed among the
arrow stimuli. (2) The area under the attentional spotlight is used to
calculate drift rates at each timestep in the leaky competing accumulator

(LCA) model. (3) The need for cognitive control is calculated from the
distance between the total evidence in the system and a conflict threshold.
(4) The attentional spotlight shrinks through time and focuses on the
target at a rate governed by cognitive control

Fig. 8 Observed and model-generated choice-RT distributions in each
condition of the flanker task. Observed RT distributions for correct
(light-colored histograms) and incorrect (dark-colored histograms) re-
sponses were averaged across participants. Models were simulated

10,000 times for each condition, using each participant’s best-fitting pa-
rameters. Black lines show average model-generated distributions across
participants
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they occurred (Dickerson & Eichenbaum, 2010; Tulving,
1983; Tulving & Thomson, 1973). Traditional memory tasks,
particularly those used in clinical assessments, involve sepa-
rate phases for study and testwith a delay in between (NIHCB
toolbox: Bauer & Zelazo, 2013; Mindstreams: Dwolatzky,
2011; MMSE: Folstein, Folstein, & McHugh, 1975;
CAMDEX: Roth et al., 1986). CAB, however, is a variant
of a continuous recognition task that combines the study and
test phases into a single stream of repeating items. For each
item in a continuous recognition paradigm, participants re-
spond “old” if they have seen the item before, or “new” if they
have not. We selected this format in favor of a traditional
study-test paradigm because young children and adults in

cognitive decline, due to age or diseases such as mild cogni-
tive impairment (MCI) or Alzheimer’s disease (AD), struggle
to switch between task phases with different instructions
(Gupta, Kar, & Srinivasan, 2009; Hutchison, Balota, &
Ducheck, 2010). Our version of the task aims to test
associative memory in particular, which is the ability to learn
relationships between pairs of unrelated items (Anderson &
Bower, 1974). Due to its reliance on the hippocampus
(Mayes, Montaldi, & Migo, 2007), associative memory ex-
hibits robust age-related changes in childhood (Darby &
Sloutsky, 2015a) and older adulthood (Castel & Craik,
2003), as well as due to MCI and AD (Greene, Baddeley, &
Hodges, 1996).

Stimuli

Stimuli were drawn from a database of 2500 full-color images
of categorically distinct objects on a white background
(Brady, Konkle, Alvarez, & Oliva, 2008). After excluding
images that contained people, weapons, or words, a pool of
1995 images remained. A random sample of 96 items was
drawn without replacement for each block within a session,
and items could not appear in multiple blocks nor in multiple
sessions. On each trial, two objects were presented side by
side along the horizontal midline of a gray screen. Pairs could
be repeated within the block, and participants were instructed
to indicate whether they had seen each pair before (“old”) or
not (“new”). Each item appeared on four trials: in an intact
pair presented three times (which we refer to as intact 1, intact
2, and intact 3 presentations), and in a recombined pair made
up of items from different, previously presented intact pairs.
Participants were asked to respond “new” to a pair composed
of new items, or to a new pairing of recombined (albeit famil-
iar) items; they were asked to respond “old” only when the
same pair was repeated exactly. We expected the order of
intact 1, intact 2, intact 3, and recombined pairings to affect
memory strength, such that a pair presented three times before
its component itemswere recombinedwould bemore strongly
remembered than a pair presented only once before being
recombined. Prior work has demonstrated that manipulations
consistent with this idea have proven a rich source of individ-
ual differences between young adults, healthy older adults,
and older adults with AD (Gallo et al., 2004; Light,
Patterson, Chung, & Healy, 2004), such that younger and
more healthy individuals are better able to correctly reject
recombined pairs as “new” when the original pairings have
been repeated more often. We therefore manipulated whether
the intact pairings were presented once, twice, or three times
before recombining the items, in the weak, medium, and
strong conditions, respectively. We expected that young
adults would most easily reject recombined pairs in the strong
condition. We also expected intact pairs that were presented
following recombined pairs to be remembered less well than

Fig. 9 Observed and model-generated scores in each condition of the
flanker task. Models were simulated 10,000 times for each condition
using each participant’s best-fitting parameters. Scores were calculated
based on speed and accuracy as described in Section 4.1. Observed mean
and 95% across-subject CIs of scores are shown as colored bars. Mean
and 95% across-subject CIs for model-generated scores are shown as gray
bars

Fig. 10 Correlation between observed andmodel-generated scores across
conditions of the flanker task. The model was simulated 10,000 times for
each condition using each participant’s best-fitting parameters. Scores
were calculated based on speed and accuracy as described in
Section 4.1. The line of best fit is shown as a black dashed line
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pairs that had not been recombined, due to retroactive inter-
ference, which occurs when memory for previously learned
information is impaired as a result of new learning (Darby &
Sloutsky, 2015b). Each condition of memory strength (weak,
medium, and strong) and pair type (intact 1, intact 2, intact 3,
and recombined) was represented four times within-block,
such that each block contained a total of 48 trials. Trials were
pseudo-randomized within the confines of the task conditions,
and lag (i.e. number of trials) between presentations of each
pair was unconstrained. Types of stimuli are illustrated in Fig.
11. Note that although we expect the strength conditions to
provide a rich source of individual differences, because our
participant sample was limited to young and healthy adults,
we collapsed performance across these conditions to simplify
our analyses for the current work.

Procedure

Each block was preceded by a 2-minute practice module, in
which participants were instructed to respond “new” to new
pairs of items, and “old” to pairs they had seen before.
Particular emphasis was placed on instructions to respond to
the pair of items at hand, because individual items could re-
appear in novel pairings. Items that appeared in the practice
module did not appear in the main task. Participants had the
option of completing the practice again before each block, or
they were allowed to skip it after completing it once. Key
mappings were counterbalanced between participants, such
that participants with odd subject ID numbers responded with
the leftmost key of the response pad to indicate “old” and the
rightmost key to indicate “new,” while participants with even
subject ID numbers responded with the opposite mapping. On
each trial, a fixation cross appeared on the screen for a jittered
duration of 500–1000 ms. A pair of images appeared, and
remained for a fixed duration of 2500 ms. When a response
was made, a black rectangle appeared behind the presented
objects to provide visual feedback to the participant that their

response had been registered. The rectangle remained visible
until 2500 ms had elapsed since stimulus onset. Across four
blocks each consisting of 48 trials, participants completed a
total of 192 trials. Each block took 2.54 minutes on average to
complete (SD = 0.02).

Model details

Themodel of the CAB task is a variant of the temporal context
model of episodic memory (TCM; Howard, Shankar, Aue, &
Criss, 2015; Howard & Kahana, 2002), in which memory is
conceptualized as a recency-weighted representation of past
experience. In the case of a task in which participants are
asked to remember a stream of images, for example, the rele-
vant context for a target item consists of the items that were
presented near to the target in time. Memory retrieval involves
“jumping back in time” by reinstating contexts bound to pre-
viously presented items. In our variant of TCM, a family of
decay rates was used to reconstruct past events as described in
the timing from inverse Laplace transform model (TILT;
Shankar & Howard, 2012). The resulting model-generated
representation for a given stream of items has a high resolution
for what (and when) items occurred in the recent past, and a
low resolution for more distant items. The processes described
by the TILT model have been supported by single unit “time
cell” recordings in the rat hippocampal region (Howard et al.,
2014) and the lateral prefrontal cortex of macaque monkeys
performing a memory task (Tiganj, Cromer, Roy, Miller, &
Howard, 2018). Broadly, our model captures participant re-
sponses by estimating the memory strength for each pair of
items presented in the task. There are three sources of strength
in the model: (1) familiarity of each item within the current
context, (2) the overlap between the two items’ retrieved con-
texts, and (3) the mismatch between the two items’ retrieved
contexts. Familiarity and contextual overlap contribute mem-
ory strength in favor of an “old” response, whereas contextual
mismatch contributes memory strength in favor of a “new”

Fig. 11 Illustration of stimuli in the CAB task
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response. Familiarity is calculated by scanning the temporal
context through the past and integrating over all activations
that match each object in the target pair (scaled by λ).
Estimations of target-relevant activations become less accu-
rate as a function of distance into the past, and noise is drawn
from a distribution governed by σ. Contextual overlap and
mismatch involve reinstating the previous contexts associated
with each item in the target pair, and performing vector calcu-
lations to determine the extent to which the contexts do and do
not match. Once memory strength is assessed via a combina-
tion of familiarity, contextual overlap, and contextual mis-
match, the association between the target pair and the current
context is updated. The updating process depends on the pre-
diction error associated with observing the target pair within
the current context, scaled by a learning rate (α). The context
itself is then updated to include the target pair, in consideration
of a surprisal signal (modulated by ω) and contextual drift
(scaled by δ). Finally, a decision is made by passing the total
memory strength of the target pair to aWiener first passage of
time model (Stone, 1960), a type of SSM. This decision model
features a single noisy accumulator and two opposing bound-
aries representing each possible choice. Here, the boundary
corresponding to a “new” response was set at 0, and the
boundary corresponding to an “old” response was represented
by a. The starting point (w) could be biased toward either
response, or could be situated exactly between the two bound-
aries. The drift rate was calculated as the difference between
the memory strength of the target pair and the strength of the
“new” response (ν). The RT was the sum of the decision
process and the nondecision time comprised of perceptual
and motor processes (t0). A list of free parameters and the
mechanisms they represent are provided in Table 3, and Fig.
12 provides an illustration of the model’s mechanisms.

Model fits

Figure 13 illustrates that the model of the CAB task predicts a
pattern of performance across conditions that matches the ob-
served behavior of our participants. For these qualitative

analyses, we first identified a set of MAP parameter estimates
for each participant. We then used each set of best-fitting
parameters to generate 10,000 trials in each task condition,
and used the performance metric described inValidation anal-
yses: Performance metrics to calculate observed and model-
predicted performance for each participant and condition.
Performance was highest in the “intact 1” condition, which
consisted of pairs of previously unseen items. This was con-
sidered to be the easiest condition, because participants only
had to observe that the pair was “new” without engaging as-
sociative memory processes. “Recombined” pairs elicited the
worst performance, because each item in the recombined pair
had been previously presented within a different pair. Because
each item in the pair would have been familiar to the partici-
pants, the model predicts a higher likelihood of responding
“old” compared to the “intact 1” condition, even though the
pairing itself is new. The model and the participants generated
higher performance scores in the “intact 3” condition com-
pared to the “intact 2” condition. This is to be expected, given
that “intact 3” pairs were previously presented twice and were
therefore more familiar to participants than “intact 2” pairs,
which were previously presented only once. Figure 14 shows
the observed and model-predicted CAB scores for all partici-
pants, collapsing across conditions. With a Pearson’s r value
of 0.93, we have evidence that the model of the CAB task
provides excellent fits to data.

Task 4: Balloon analogue risk

The BART is a test of loss aversion in risky decision-making
that was originally developed by Lejuez et al. (2002). On each
trial of the task, participants can either collect a small reward,
or gamble by inflating a balloon in the hopes of receiving a
larger reward in the future. A decision to “pump” the balloon
increases the probability that the balloon will explode,
resulting in the end of the trial with no reward. An extensive
literature has shown that risk-taking behavior on the BART is
significantly related to self-reports of risk behaviors (Hopko et
al., 2006; Lejuez et al., 2003, 2007) and behavioral correlates
of psychopathy (Hunt, Hopko, Bare, Lejuez, & Robinson,
2005). In developing our variant of the task, we implemented
subtle changes in an effort to accurately assess loss aversion in
a shorter amount of time than in the original paradigm.
Changes included more stringent limitations on balloon ex-
plosion points, time-varying reward loss to encourage faster
responses, and fewer trials (18, compared to 90 in the original
paradigm). Through rigorous testing and assessment, our final
task provides stable within-subject assessments of risk-taking
behavior (as determined by Cronbach’s α; see Validation
analyses) and provides data that suitably constrain posterior
parameter estimates of individual-level cognitive mechanisms
within our model.

Table 3 Summary of CAB model free parameters

Parameter Description

λ Scales familiarity strength

σ Scales context noise

α Item-context learning rate

ω Scales context item input

δ Scales context drift

a Decision threshold

w Decision bias

ν Strength for "new" decision

t0 Nondecision time
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Stimuli

A simulated image of a balloon connected to a square pump
was displayed alongside a rectangle labeled “BANK,” as il-
lustrated in Fig. 15. A numerical value in USD was presented

within each item in the display (balloon, pump, and bank).
The value in the bank represented long-term, permanent earn-
ings over the course of the block (starting value: $1). The
value in the balloon represented a short-term, temporary re-
serve (starting value: $0). The value in the pump represented
the amount that could be added to the temporary reserve,
depending on the participant’s decision on the current trial

Fig. 12 Illustration of the CABmodel. 1) Each object pair is evaluated in
terms of familiarity strength, based on activation within the current state
of context. 2) Previous states of context associated with each item are
reinstated and comparedt. 3) Memory strengths are combined to calculate

the drift rate in a Wiener-first passage of time decision model. 4) Each
item in the presented pair is bound to the current state of context. 5)
Context is updated with the presented pair

Fig. 13 Observed and model-generated scores in each condition of the
CAB task. Models were simulated 10,000 times for each condition using
each participant’s best-fitting parameters. Scores were calculated based
on speed and accuracy (see Validation analyses: Performance metrics).
Observed mean and 95% across-subject CIs of scores are shown as col-
ored bars. Mean and 95% across-subject CIs for model-generated scores
are shown as gray bars

Fig. 14 Correlation between observed andmodel-generated scores across
conditions of the CAB task. The model was simulated 10,000 times for
each condition using each participant’s best-fitting parameters. Scores
were calculated based on speed and accuracy (see Validation analyses:
Performance metrics). The line of best fit is shown as a black dashed line
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(starting value: $0.05–0.25). On each trial, participants decid-
ed whether to “pump” the balloon or to “collect” the earnings
in the temporary reserve.When a “pump” response was made,
the balloon inflated incrementally, the current pump value was
added to the temporary reserve, and a new randomly selected
value between $0.05 and 0.25 appeared in the pump. If a
balloon exceeded its predetermined explosion point, however,
a “pop!” graphic appeared on the screen for 500 ms, the bal-
loon image was removed, and the value in the temporary
reserve was lost. Alternatively, a “collect” response trans-
ferred the temporary reserve value to the permanent reserve
in the bank. In this case, the balloon image moved over top of
the bank, the bank value was updated, and the balloon image
was then removed. There were three types of balloons, each
corresponding to a specific range of explosion points: (1) 1–8
pumps, (2) 8–16 pumps, and (3) 1–16 pumps. The explosion
point of each balloon was drawn from a uniform distribution
with limits corresponding to the relevant type, and balloons in
each type were denoted by a common, randomly selected
color within-block. Participants were informed during the in-
structions that balloon types (specified by color) varied in
“quality,” but they were not told which colors mapped onto
higher or lower quality (i.e. explosion point range). Each
block contained six balloons per type, totaling 18 balloons
presented in random order.

Procedure

The first block began with a series of instruction screens with
still-frame illustrations of the task. The instruction module
was self-paced, and participants could proceed to the next
screen by pressing any key on the response pad. Subsequent
blocks did not contain an instruction module, only a message
indicating that the “balloon task”was about to begin. After the
instructions, participants completed a 2-minute practice mod-
ule that was identical to the main task. Practice balloons were
gray in color, and had an explosion point range from 1–8
pumps. Participants had the option of completing the practice

again before each block, or they were allowed to skip it after
completing it once. Key mappings were counterbalanced be-
tween participants, such that participants with odd subject ID
numbers responded with the leftmost key of the response pad
to indicate “pump” and the rightmost key to indicate “collect,”
while participants with even subject ID numbers responded
with the opposite mapping. The appropriate mapping was
displayed on the screen throughout the task. Prior to each
decision window, a white fixation cross appeared in the center
of the pump for a jittered duration of 500–800 ms. The deci-
sion window began 100 ms after the fixation cross was re-
placed with a pump value. Although participants were given
an unlimited amount of time to respond, $0.01 was deducted
from the bank per 450 ms of the decision period to encourage
faster responses. A relevant action sequence began immedi-
ately after a response was made. Following a “pop” or “col-
lect” action sequence, a new balloon was attached to the pump
after 750 ms with a temporary reserve value of $0. Across two
blocks each consisting of 18 trials (balloons), participants
completed a total of 36 trials. Each block took 4.05 minutes
to complete (SD = 0.90).

Model 4: Balloon analogue risk task

We used the model of the BART originally described by
Wallsten, Pleskac, and Lejuez (2005) to capture participant-
level sequences of “pump” and “collect” decisions on each
trial, incorporating slight modifications to accommodate the
features of our task paradigm. The model makes predictions
about each decision by considering the number of times the
current balloon has already been pumped, as well as previous
experience with other balloons of the same type within the
task (estimated explosion points: n1,8, n1,16, n8,16).
Mechanisms in the model are rooted in prospect theory
(Kahneman & Tversky, 1979; Tversky & Kahneman, 2000),
in which the values ascribed to gains and losses are deter-
mined by dissociable, subjective weighting functions (with
shapes governed by γ+ and γ− for gains and losses, respective-
ly) oriented around a single reference point. This theoretical
framework has been supported by a wide array of human
neuroimaging, lesion, and neurophysiology work illustrating
the neural bases of dichotomous gain and loss functions, and
findings that value functions for losses tend to be steeper than
those of gains (Schonberg, Fox, & Poldrack, 2011; Trepel,
Fox, & Poldrack, 2005). To make a decision whether to
“pump” or “collect,” the model first calculates the expected
value of a “pump” decision based on potential gains and the
aversion-weighted potential loss (θ). The probability of a
“pump” decision is calculated from the expected value and
random variability (β), such that more positive expected
values correspond to higher probabilities of “pump” deci-
sions, and more negative expected values correspond to
higher probabilities of “collect” decisions. Once a decision is

Fig. 15 Illustration of item configurations in the BART
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made and an outcome is observed, the estimated explosion
point of the relevant balloon type is updated as a function of
a learning rate (α). A list of free parameters and the mecha-
nisms they represent provided in Table 4, and Fig. 16 shows
an illustration of the model.

Model fits

Because the model of the BART accounts for sequential re-
sponse dependencies within and between trials (balloons),

qualitative fits are illustrated for individual subjects in Figs.
17 and 18 instead of collapsing across participants as in our
analyses of the other tasks. Figures 17 and 18 show data and
model predictions using best-fitting parameters from a highly
risk-averse participant (participant s076b session 1 score: 59)
and a modestly risk-averse participant (participant s001b ses-
sion 1 score: 7), respectively. After MAP parameter estimates
for each participant were calculated, sequential “pump” and
“collect” responses were simulated for each balloon in the
order that was observed by the participant. Figures 17 and
18 show distributions of model-predicted stopping points on
each balloon, overlaid with the relevant participant’s observed
behavior. For both subjects illustrated, the model appears to
capture both the overall level of exploratory behavior (partic-
ipant s076b tended to “collect” earlier than the participant
s001b) and the variability in stopping behavior (participant
s076b was very consistent in stopping behavior across trials,
whereas participant s001b showed more variability). To dem-
onstrate model fits across participants, Fig. 19 shows the cor-
relation between observed and model-predicted BART scores
using each participant’s best-fitting parameters. Consistent
with our analyses of the other tasks, model-predicted scores
were calculated using the performance metric described in

Table 4 Summary of BART model free parameters

Parameter Description

n1,8 Estimated explosion point (1–8)

n1,16 Estimated explosion point (1–16)

n8,16 Estimated explosion point (8–16)

γ+ Shape of reward curve

γ− Shape of loss curve

θ Loss aversion

β Decision variability

α Learning rate

Fig. 16 Illustration of the BART model. (1) The Decision Maker (DM)
evaluates the value of pumping [the product of the presented reward and
the likelihood of the balloon not popping plus future possible rewards]
and compares it to the value of the balloon popping [the product of the
total value of the balloon and the likelihood of the balloon popping] at
each decision point. (2) The DM’s loss aversion directly scales the

perceived value of the balloon, such that greater loss aversion increases
the perceived value of the balloon’s total. (3) If the value of pumping is
greater than the value of a potential loss, the DM should pump. If the
inverse is true, the DM should collect the balloon. (4) If the balloon pops,
a new balloon begins
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Validation analyses: Performance metrics, and were based on
the average stopping point across 10,000 simulations of each
balloon. With a Pearson’s r value of 0.84 between observed
and model-predicted scores, we have evidence that the model
of the BART provides good fits to data.

Validation analyses

Scoring metrics were developed for each task to assess per-
formance. Validation analyses were applied to each partici-
pant’s session-level task scores to determine test-retest reli-
ability, stability of individual differences, internal consistency,
and construct validity. Before analyzing data, however, bino-
mial tests were applied to assess each participant’s engage-
ment with the tasks. In the RDM, flanker, and CAB tasks,
the null hypothesis was that participants achieved chance-lev-
el accuracy (50% correct) or less in the easiest task condition.
The rule for the BART was slightly different, as there was not
necessarily a “correct” answer on any given trial. The null
hypothesis was that the participant made “collect” responses
at least 50% of the time. Across tasks, failure to reject the null

hypothesis indicated lack of engagement, and those partici-
pants were excluded from further analyses. Participants who
did not complete all blocks of a given task were excluded as
well. Data from 75 participants in RDM, 84 in flanker, 83 in
CAB, and 84 in BART remained from session 1 (out of 85
participants). Data from 62 participants in RDM, 64 in flanker,
65 in CAB, and 64 in BART remained from session 2 (out of
65 participants).

Performance metrics

For each task, we developed a customized metric to calculate
participant scores relative to what was considered “optimal”
performance.Means and standard deviations of task scores are
given in Table 5 to provide a sense of the range of abilities
within our cognitively normal, adult sample. For RDM, flank-
er, and CAB, optimal performance was defined as perfect
accuracy across all conditions while maintaining a high re-
sponse speed. We first calculated an accuracy score by nor-
malizing observed percent correct relative to chance (50%),
such that chance accuracy resulted in a score of 0.0 and perfect
accuracy resulted in a score of 1.0.We then calculated a speed

Fig. 17 Observed and model-predicted behavior of a highly risk-averse
participant on the BART. Observed behavior of participant s076b in
block 2 of session 1 is shown as a black line. Black points indicate the
number of “pump” decisions prior to a “collect” response on each bal-
loon. Sequential “pump” and “collect” responses were simulated 1000

times on each balloon using the participant’s best-fitting parameters.
Boxen plots show the distributions of the model’s predicted stopping
point on each balloon. Colors indicate the possible explosion range for
the balloon at hand

Fig. 18 Observed and model-predicted behavior of a modestly risk-
averse participant on the BART. Observed behavior of participant
s001b in block 2 of session 1 is shown as a black line. Black points
indicate the number of “pump” decisions prior to a “collect” response
on each balloon. Sequential “pump” and “collect” responses were

simulated 1000 times on each balloon using the participant’s best-fitting
parameters. Boxen plots show the distributions of the model’s predicted
stopping point on each balloon. Colors indicate the possible explosion
range for the balloon at hand
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score by normalizing log RTs within an expected range spe-
cific to each task (provided in Table 5), and averaging across
trials. An observed average RT equal to the minimum expect-
ed RT resulted in a score of 1.0, and an average RT equal to
the maximum expected RT resulted in a score of 0.0. The final
metric score was calculated by multiplying the accuracy and
speed scores together, and converting to a 0 to 100 scale. To
earn a high score, participants therefore had to consistently
perform quickly and accurately across conditions.

The scoring metric for the BART was necessarily
different from that of the other tasks in order to mea-
sure both risk-averse and risk-seeking behaviors on a
continuous scale. Scores were calculated on a by-bal-
loon basis, then averaged together to produce a final
score that could be between −100 and 100. These
values represent a distance from “optimal” performance,
where negative scores indicate risk-seeking tendencies
and positive scores indicate risk-averse tendencies. To
calculate a balloon-level score, we first calculated the
expected value of a “pump” decision at each possible
choice point as the difference between the expected gain

if the balloon survives to the next choice point and the
expected loss if the balloon pops. Expected gains were
based on the probability of the balloon surviving and
the amount of money to be added to the temporary
store. In contrast, expected losses were based on the
probability of the balloon popping given that it had
not popped already, and the amount of money in the
temporary store that would disappear if the balloon
were to pop at the current decision point. Expected
future value was taken into consideration at each deci-
sion point as well. As such, a “pump” decision at the
first choice point would be maximally advantageous
compared to the other choice points because it accounts
for the most future opportunities to increase the reward.
Expected values remained positive until the decision
point was equal to the median of the current balloon’s
range of possible explosion points, then became increas-
ingly negative as the potential loss surpassed the poten-
tial gain for continuing to make “pump” decisions.
Optimal behavior, then, was to “pump” while the ex-
pected value was positive, and “collect” when the ex-
pected value was near to zero in order to maximize
reward. A participant’s score on a balloon was equal
to the expected value of the participant’s final “pump”
decision prior to the termination of the trial (i.e. the
balloon popped or the participant collected the reward).
Values were converted to a scale of −100 to 100 based
on the minimum and maximum expected values of the
balloon at hand. For the current dataset, all BART
scores were above 0, meaning all of our subjects were
risk-averse.

Test-retest reliability

Test-retest reliability was assessed with Pearson correlation
coefficients between task metric scores in sessions 1 and 2.
Test-retest reliability was considered “strong” if r was greater
than or equal to 0.80, “moderate” if r was between 0.50 and
0.79, and “weak” if rwas less than or equal to 0.50 (Devore &
Peck, 1993). All four tasks fell into the “moderate” range
(RDM: r = 0.63; flanker: r = 0.73, CAB: r = 0.75, BART: r

Fig. 19 Correlation between observed andmodel-generated scores across
conditions of the BART. The model was simulated 10,000 times for each
observed balloon using each participant’s best-fitting parameters. Scores
were calculated based on speed and accuracy (see Validation analyses:
Performance metrics). All scores were greater than zero, indicating that
all subjects were risk-averse. The line of best fit is shown as a black
dashed line

Table 5 Scoring metric information and mean performance for each task

Expected RT range (s) Task scores: session 1 Task scores: session 2

Min. Max. Mean SD Mean SD

RDM 0.40 2.00 33.91 11.78 39.91 11.35

Flanker 0.35 1.35 58.05 6.39 60.42 6.62

CAB 0.50 2.50 52.38 11.36 57.78 11.09

BART – – 32.39 13.41 31.34 14.22
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= 0.58). This is the result we would expect, as our tasks and
score metrics were designed to be sensitive to minor fluctua-
tions in cognitive abilities.

Stability of individual differences

Spearman rank order correlations were calculated between
task metric scores in sessions 1 and 2 to assess the stability
of each participant’s scores relative to the rest of the sample.
These calculations provide information on the extent to which
novelty (session 1) or learning (session 2) may have affected
performance (White, Lejuez, & deWit, 2008). Spearman rank
order correlations were moderate across all four tasks (RDM:
ρ = 0.68, p < 0.001; flanker: ρ = 0.70, p < 0.001; CAB: ρ =
0.70, p < 0.001; BART: ρ = 0.56, p < 0.001).

Internal consistency

Cronbach’s α provided a measure of internal consistency
across all blocks within each session. This measure is partic-
ularly important for our purposes, as our task battery was
designed for repeated within-session assessments. Values
were considered “very high” if greater than or equal to 0.90,
“high” if between 0.80 and 0.89, “adequate” if between 0.70
and 0.79, “marginal” if between 0.60 and 0.69, and “low” if
less than or equal to 0.59 (Strauss, Sherman, & Spreen, 2006).
Internal consistency values were high across all four tasks
(RDM: α = 0.86; flanker: α = 0.84; CAB: α = 0.80; BART:
α = 0.84).

Construct validity

The intercorrelations between task scores are provided in
Table 6, and correlations with p values lower than 0.05 are
displayed in bold text. For this analysis, we calculated abso-
lute values of BART scores and converted them to a 0 to 100
scale where 100 represented optimal performance and 0 rep-
resented maximally risk-seeking or risk-averse behavior. We
would expect to observe higher intercorrelations among tasks
that were designed to measure a common RDoC domain. Our
results show that the tasks relating to the cognitive systems
domain are significantly intercorrelated (RDM, flanker, and

CAB). Intercorrelations involving BART, which represents
the positive and negative valence systems domains, are close
to zero. These intercorrelations therefore support the construct
validity of our task battery.

Discussion

The overarching goal of our model-based approach is to quan-
tify the latent mechanisms underlying participant-level behav-
ior. Building upon existing models relevant to each task, we
mathematically defined the hypothesized neural processes that
occur in between stimulus onset and response. The approach
presented here therefore allows for more nuanced analyses of
the heterogeneity across participants than is possible with
standard behavioral performance metrics alone. This is illus-
trated in Fig. 20, in which the cognitively normal young adult
participants were sorted according to their average overall
performance on our battery of cognitive tasks from low to
high scores (panel A). Some heterogeneity between partici-
pants may be found by breaking overall performance into
task-level scores, in that some participants who did badly
overall, for example, performed relatively well on one or
two individual tasks (panel B). By decomposing task perfor-
mance into cognitive processes (as estimated bymodel param-
eter values, panel C), however, we find a wealth of heteroge-
neity, in which many individuals who performed similarly on
the task have very different profiles of parameter values,
which are represented in the figure as colors ranging from
red (indicating low values) to blue (indicating high values).

The relationship between brain and behavior is complex.
Similar processing modes may lead to different patterns of
behavior depending on which brain structures are involved,
and the recruitment of different networks could result in nearly
identical behavior (Sarter, Berntson, & Cacioppo, 1996).
Compensatory mechanisms are a potent example, whereby
the brain upregulates alternative processing routes to maintain
cognitive performance despite injury, neuropathology, or oth-
erwise limited resources. At one extreme, several studies of
traumatic brain injury patients note cognitive reorganization
during rehabilitation, such that entire neural architectures re-
orient to decrease reliance on dysfunctional connections dur-
ing cognitive operations (see Galetto & Sacco, 2017 for re-
view). Among healthy adults, task-related compensatory in-
creases in anterior neural activity have been noted alongside
sensory decline resulting from acute cognitive fatigue
(Samuel, Wang, Burke, Kluger, & Ding, 2019) and as a func-
tion of age (Cabeza et al., 2004; Madden et al., 2009). Simple
individual differences in processing speed at various levels of
neural architecture affect how participants solve a task as well,
which may or may not result in differences in overt behavioral
pe r f o rmance (Schube r t , Nunez , Hagemann , &
Vandekerckhove, 2019). Analytical methods that are

Table 6 Intercorrelations among score metrics for tasks included in the
cognitive battery. Significant values are presented in bold text

RDM Flanker CAB

RDM - - -

Flanker 0.25 - -

CAB 0.32 0.34 -

BART 0.08 0.02 0.11
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Fig. 20 Visualizing latent heterogeneity in cognitive processes with
model parameters. Panel (a) presents the overall performance metric
score of each participant averaged across tasks, sorted from worst (left)
to best (right). Panel (b) splits overall performance of the same partici-
pants into metric scores for each task, and panel (c) presents standardized

parameter values for each task in the same group of participants. In all
panels, deeper hues of red represent lower values, and deeper hues of blue
represent higher values. Each column represents a participant, and each
row represents a task (b) or a parameter (c)

Fig. 21 Four example participants’ CAB metric values, posterior
predictive distributions (PPDs), and posterior distributions for each
model parameter. Two of these participants were low performers, and
two were high performers. The top left (boxed) panel shows the observed

metric scores as dots for each of these participants. PPDs for these scores
are shown as violin plots. The remaining panels show posterior parameter
distributions for each of the four participants
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considerate of mechanistic heterogeneity across subjects are
therefore important for identifying differences in individually-
utilized processing routes and for gaining insight into cogni-
tive states. As a proof of concept, studies have shown that
machine learning algorithms trained on best-fitting model pa-
rameters rather than data-derived summary statistics are more
accurate predictors of young versus old age group member-
ship (Wiecki et al., 2015), as well as diagnostic group classi-
fication (Petzschner et al., 2017; Weigard, Sathian, &
Hampstead, 2020; Wiecki et al., 2016).

Model-based analysis example

One particular strength of our approach is the use of Bayesian
analytical procedures, which allow us to identify full distribu-
tions of parameter values (the joint posterior distribution) that
could have generated the observed data with some degree of
likelihood. As such, we are uniquely positioned to determine
both the particular set of values that can optimally recreate a
participant’s data, as well as a means of quantifying the un-
certainty in our measurements of each cognitive construct of
interest. Because our models are also generative models,
meaning they can produce simulated choices and RTs given
a set of parameters, we can calculate posterior predictive
distributions (PPDs) of task scores. PPDs represent the possi-
ble ways a participant could have performed, given our mod-
el-based assessment of their cognitive state at the time of the
test. Despite a participant only completing the task set once
and producing a single score, PPDs serve as a model-based
confidence interval. With the power to quantify the uncertain-
ty in our measurements via the joint posterior distribution and
PPDs, we are able to identify meaningful differences in cog-
nitive acuity at the level of task scores as well as the latent
constructs that produced them. This is illustrated in Fig. 21,
which presents performance on the CAB task and posterior
parameter distributions for four example participants, whom
we refer to as participants 1–4, going from left to right. The
metric scores for the two low-performing participants were
virtually identical, as they were for the two high-performing
participants, whereas the scores were quite different between
low and high performers. Despite nearly identical perfor-
mance scores, our model-based analysis detects clear differ-
ences in parameter posteriors between the individuals within
both the low-performing and high-performing pairs. For ex-
ample, participant 2 had generally higher values of the α and δ
parameters than participant 1, suggesting stronger item-con-
text binding accompanied by faster overall contextual drift.
These results demonstrate the explanatory power of our mod-
el-based approach, and this type of analysis may be used to
glean useful insights into cognitive processes both within in-
dividuals across time and between individuals, perhaps with
different diagnoses in a case study.

Conclusions

We have developed a battery of cognitive tasks that are sim-
ple, objective, quick to administer, and importantly, provide
data that are amenable to model development and fitting.Most
existing cognitive batteries, which are designed to provide
individual metrics that summarize performance, do not pro-
vide sufficiently rich data for fitting computational models. In
contrast, we developed our tasks and computational models in
tandem, defining task conditions that constrain parameter es-
timates, while capturing fine-grained, individual variation in
cognitive abilities. Our tasks, in combination with our set of
models, provide a means for quickly and objectively evaluat-
ing cognitive mechanisms, beyond what we can learn from
behavior alone. Here, we have provided validation analyses
and model fits for a cohort of cognitively normal participants.
In future work, we will extensively investigate how
SUPREME can help answer targeted questions, such as how
specific parameters relate to variability in neural signals mea-
sured by EEG and fMRI, which parameters are affected by
various neuropathologies, and further, how the parameters
fluctuate through time according to symptom severity.
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