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Abstract 1 

Growing evidence for moment-to-moment fluctuations in visual attention has led to questions 2 

about the impetus and time course of cognitive control. These questions are typically 3 

investigated with paradigms like the flanker task, which require participants to inhibit an 4 

automatic response before making a decision. Connectionist modeling work suggests that 5 

between-trial changes in attention result from fluctuations in conflict--as conflict occurs, 6 

attention needs to be upregulated in order to resolve it. Current sequential sampling models 7 

(SSMs) of within-trial effects, however, suggest that attention focuses on a goal-relevant target 8 

as a function of time. We propose that within-trial changes in cognitive control and attention are 9 

emergent properties of the dynamics of the decision itself. We tested our hypothesis by 10 

developing a set of SSMs, each making alternative assumptions about attention modulation and 11 

evidence accumulation mechanisms. Combining the SSM framework with likelihood-free 12 

Bayesian approximation methods allowed us to conduct quantified comparisons between subject-13 

level fits. Models included either time- or control-based attention mechanisms, and either 14 

strongly- (via feedforward inhibition) or weakly-correlated (via leak and lateral inhibition) 15 

evidence accumulation mechanisms. We fit all models to behavioral data collected in variants of 16 

the flanker task, one accompanied by EEG measures. Across three experiments, we found 17 

converging evidence that control-based attention processes in combination with evidence 18 

accumulation mechanisms governed by leak and lateral inhibition provided the best fits to 19 

behavioral data, and uniquely mapped onto observed decision-related signals in the brain.  20 

 Keywords: conflict, attention, inhibitory control, sequential sampling models, EEG  21 

 22 

 23 
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1 Introduction 24 

To achieve our goals and navigate a world that is teeming with distractions, humans rely on 25 

cognitive control to manipulate limited processing resources in a goal-directed manner. While it 26 

is known that cognitive control fluctuates as we complete the tasks of the day and upregulates 27 

attention as we encounter competing sources of information, the mechanisms and time courses of 28 

these processes remain a topic of active research. In addition to work showing post-feedback 29 

modulation of attention via cognitive control to improve future performance (Blais, Robidoux, 30 

Risko, & Besner, 2007; Botvinick, Cohen, & Carter, 2004; Verguts & Notebaert, 2008), there is 31 

growing evidence that cognitive control acts at faster time scales as well (Braver, 2012; Goschke 32 

& Dreisbach, 2008; Ridderinkhof, 2002; Scherbaum, Fischer, Dshemuchadse, & Goschke, 33 

2011). Several mechanisms have been proposed to underlie dynamic changes in attention and 34 

cognitive control, including competition between excitatory and inhibitory inputs (Frank, 2006; 35 

Scherbaum, Dshemuchadse, Ruge, & Goschke, 2012), asynchrony between processing areas in 36 

the brain (Verguts, 2017), and time itself (Hübner, Steinhauser, & Lehle, 2010; Ulrich, Schröter, 37 

Leuthold, & Birngruber, 2015; White, Ratcliff, & Starns, 2011). Given that all of these 38 

mechanisms within their respective computational frameworks can capture aspects of human 39 

behavior, substantial overlap in model predictions has made it difficult to draw any stable 40 

conclusions about how attentional processes are engaged. In the current study, we investigated 41 

the dynamic modulation of attention via cognitive control by developing, fitting, and comparing 42 

models representing competing hypotheses for how decisions are made under conditions of 43 

perceptual conflict. 44 

 45 

 46 
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1.1 Conflict and cognitive control 47 

As far back as Norman and Shallice (1986), cognitive control has been understood as a necessary 48 

set of functions in tasks involving planning, error detection, novelty, difficulty, and conflict--49 

situations where relying on habitual behaviors are insufficient for optimal performance. In the 50 

lab, questions about how and when cognitive control is mobilized are often investigated using 51 

speeded reaction time (RT) tasks that require inhibition of an automatic response. A well-studied 52 

example is the flanker task (Eriksen & Eriksen, 1974; Kopp, Rist, & Mattler, 1996), in which 53 

participants are asked to indicate the direction of a central arrow while ignoring distractors that 54 

may be incongruent (<<<><<<) or congruent (>>>>>>>) to the target. While congruent stimuli 55 

only contain evidence for the correct response, incongruent trials require participants to resolve 56 

conflict between the target and distractors before making a decision. As a result, participants are 57 

slower and less accurate at responding to incongruent trials compared to congruent (Gratton, 58 

Coles, & Donchin, 1992). This congruency effect is reduced when incongruent trials occur 59 

consecutively, and responses tend to be slower and more accurate following errors. Both results 60 

have been interpreted as evidence for modulation of cognitive control as a direct response to the 61 

presence of conflict (see Larson, Clayson, & Clawson, 2014 for review).  62 

 63 

Influential connectionist modeling work by Botvinick and colleagues (Botvinick, 2007; 64 

Botvinick, Braver, Barch, Carter, & Cohen, 2001; Botvinick et al., 2004; Botvinick, Nystrom, 65 

Fissell, Carter, & Cohen, 1999; Yeung, Botvinick, & Cohen, 2004) suggested that a specialized 66 

monitoring center in the brain outputs a measure of conflict at the end of each trial, and 67 

subsequently triggers adjustments in cognitive control. After a conflict trial, an increase in 68 

cognitive control boosts attentional processing of the goal-relevant target, which in turn 69 
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improves performance on the next trial. By analyzing flanker task simulation results, the authors 70 

found that the output of the conflict monitoring unit in their model resembled typical EEG 71 

effects, specifically, higher and more sustained peak voltage following errors compared to 72 

correct responses (Botvinick et al., 2001). The conflict monitoring hypothesis has garnered 73 

substantial support from neuroimaging work, localizing conflict detection functions to the 74 

anterior cingulate cortex (ACC) and identifying modulation of attentional control within the 75 

dorsolateral prefrontal cortex (Kerns et al., 2004; dlPFC; MacDonald, Cohen, Stenger, & Carter, 76 

2000; Ridderinkhof, Ullsperger, Crone, & Nieuwenhuis, 2004; van Veen & Carter, 2002).  77 

 78 

1.2 Within-trial mechanisms  79 

Other lines of work have questioned the timescale assumed by the conflict monitoring 80 

hypothesis. Evidence from behavioral and neurophysiological work has suggested that cognitive 81 

control is adjusted within-trial, in addition to after conflict occurs (Burle, Possamaï, Vidal, 82 

Bonnet, & Hasbroucq, 2002; Czernochowski, 2015; Nigbur, Schneider, Sommer, Dimigen, & 83 

Stürmer, 2015; Ridderinkhof, 2002). Scherbaum and colleagues (2011), for example, collected 84 

electroencephalography (EEG) data while participants completed a modified flanker task with 85 

separate visual frequency tags for targets and distractors. By dissociating the attentional 86 

processing signals for the different stimuli, the researchers were able to identify within-trial 87 

adjustments in cognitive control alongside the occurrence of conflict, in addition to carry-over 88 

cognitive control engagement from previous trials. Alternatives to the conflict monitoring 89 

hypothesis have therefore proposed that cognitive control operates on multiple timescales 90 

(Braver, Gray, & Burgess, 2008; J. Brown, Reynolds, & Braver, 2007; Davelaar, 2008). Braver’s 91 

dual mechanisms of control framework (Braver, 2012; DMC; Braver et al., 2008; De Pisapia & 92 
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Braver, 2006) suggests that cognitive control operates in two modes: a stable ‘proactive’ mode 93 

that biases attention systems to anticipate and prevent conflict, and a variable ‘reactive’ mode 94 

that dynamically detects and resolves conflict as it occurs. Simulations of a DMC connectionist 95 

model closely matched behavior and blood oxygenation level dependent (BOLD) imaging data 96 

in the ACC and dlPFC during a cognitive control task, and provided evidence of shifting reliance 97 

on proactive and reactive control modes between task conditions (De Pisapia & Braver, 2006). 98 

As noted by Jiang and colleagues (2014), however, there is still little empirical evidence that the 99 

ACC, which has repeatedly been shown to monitor conflict, contains multiple distinct 100 

monitoring units operating at different timescales within-trial.  101 

 102 

1.3 Models of cognitive control 103 

To further delve into within-trial mechanisms independent from carry-over effects from previous 104 

trials, theories about cognitive control have also been articulated within the sequential sampling 105 

class of models (SSMs). Connectionist models are particularly useful for capturing changes over 106 

the course of a task such as between-trial congruency effects, due to their complex, interactive 107 

architecture and ability to continuously update context (Ratcliff, Van Zandt, & McKoon, 1999). 108 

The flanker SSMs, in contrast, were developed to explain within-trial mechanisms underlying 109 

robust conditional accuracy effects: faster errors than correct responses in the incongruent 110 

condition (Gratton, Coles, Sirevaag, Eriksen, & Donchin, 1988). In general, it is assumed that 111 

attention is influenced by distractor items at the beginning of a trial, but focuses on the target as 112 

cognitive control is engaged (De Jong, Liang, & Lauber, 1994; Desimone & Duncan, 1995; 113 

Mesulam, 1990). The flanker SSMs offer a range of accounts for how this process unfolds, 114 

drawing inspiration from the literature on attention (Hübner et al., 2010; White et al., 2011) and 115 
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automaticity (Ulrich et al., 2015). Notably, all three of the existing flanker SSMs describe 116 

decision and attentional processes that are calculated as a function of time. As such, these models 117 

assume cognitive control processes engage based only on the stimulus at hand and the amount of 118 

time spent on a trial. This contrasts with the connectionist models, which assume cognitive 119 

control is based on layered inputs from continuously-interacting populations of neurons. 120 

 121 

In the current article, we introduce an SSM of the flanker task in which cognitive control and 122 

attention are emergent properties of the dynamics of the decision itself. Three core concepts from 123 

decades of research on cognitive control are foundational to this work: 1) conflict arises from the 124 

mutual activation of multiple choice options, 2) cognitive control is deployed as a direct response 125 

to the presence of conflict, and 3) cognitive control biases visual attention toward goal-relevant 126 

information. We begin with a standard two-accumulator SSM framework, in which noisy 127 

evidence for each possible response accumulates through time until a decision boundary is 128 

reached. In our model, a measure of cognitive control is continuously calculated within-trial 129 

based on the total amount of evidence across responses. The area of the visually attended region 130 

is in turn calculated from the cognitive control output, narrowing onto the target as cognitive 131 

control increases or widening as the need for control relaxes away. As in the shrinking spotlight 132 

(SSP) model introduced by White, Ratcliff, and Starns (2011), the evidence for each response is 133 

calculated from the amount of attention allocated to target and distractors, respectively. The 134 

proposed model is a closed-loop system, in which cognitive functions are a passive byproduct of 135 

interacting processes within the broader decision and action. This framework presents a 136 

parsimonious alternative to modularized conflict monitoring and cognitive control in the 137 
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connectionist models, and also serves as a biologically plausible alternative to the strictly time-138 

based processes in the SSMs.  139 

 140 

The idea of cognitive control as an emergent property of activation dynamics has been suggested 141 

previously (Mayr & Awh, 2009; e.g. Ward & Ward, 2006) and has been implemented in a 142 

connectionist model of the flanker task (Scherbaum et al., 2012). The current work stands apart, 143 

however, in a number of ways. First, our novel implementation of dynamic processing in an 144 

SSM framework allows us to focus on within- rather than between-trial mechanisms. Second, the 145 

SSM framework in combination with Bayesian-inspired analysis techniques gives us the power 146 

to go beyond generating data that only matches summary statistics, and to fit our model to full 147 

distributions choice-RT data at the individual-subject level. This allows us to assess our model’s 148 

ability to capture the nuanced differences in performance from subject to subject. Third, we fit 149 

multiple model variants representing alternative mechanistic hypotheses to the same sets of 150 

observed data, and provide a quantified comparison of goodness-of-fit statistics. Given that 151 

nearly all published models are able to match observed data in some capacity, the ability to 152 

directly compare fit quality based on full distributions of data is critical for model falsifiability. 153 

We did not simply want to determine if a within-trial mechanism for cognitive control could 154 

generally capture the data, but rather wanted to identify which specific patterns of subject-level 155 

data were better fit by our model compared to a time-based alternative.  156 

 157 

1.4 Evidence accumulation processes 158 

We developed models with an attentional system driven by cognitive control as previously 159 

described, and compared them to models with an attentional system driven by time as in the SSP 160 
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developed by White and colleagues (2011). Given that our mechanism of interest critically 161 

depends on the evidence for two-choice alternatives, defining the nature of competition between 162 

accumulators was a matter of importance. There is considerable discrepancy on this point when 163 

comparing the relevant connectionist models to the flanker SSMs. In connectionist models, units 164 

representing separate groups of neurons are organized into layers, which in turn correspond to 165 

different elements of a trial such as perception, attention, and decision. Units connect to one 166 

another in a weighted fashion, passing excitatory or inhibitory inputs from layer to layer. Though 167 

units critically affect each other, they typically maintain some level of independence due to 168 

random noise, nonlinear activation functions, probabilistic firing, and passive decay of activity 169 

(e.g. Liu, Holmes, & Cohen, 2008; McClelland & Cleeremans, 2009). As such, activation of both 170 

“left” and “right” decision units in a flanker task may occur simultaneously. The existing flanker 171 

SSMs, however, consider evidence for the two responses to be perfectly anticorrelated, and only 172 

evidence for the “left” or the “right” can be above zero at any given time. To compare these 173 

assumptions, the models in our investigation included evidence accumulation mechanisms that 174 

were either strongly-correlated as in the original flanker SSMs, or were weakly-correlated and 175 

governed by leak and lateral inhibition mechanisms to approximate elements of the connectionist 176 

framework. Specifically, model variants incorporated calculations from two well-studied SSMs: 177 

the feedforward inhibition (FFI) model (Shadlen & Newsome, 2001) and the leaky-competing 178 

accumulator (LCA) model (Usher & McClelland, 2001, 2004).  179 

 180 

1.5 Summary and outline 181 

In our main comparison, each model contains a combination of mechanisms from two different 182 

categories: drive to attentional processes (time-based vs. control-based attentional processing), 183 
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and competition between accumulators (strongly- vs. weakly- correlated). These alternative 184 

mechanisms are illustrated as a flowchart in Figure 1. As in the SSP, visual attention is 185 

conceptualized as a target-centered density function for a Gaussian distribution. The standard 186 

deviation of the attentional spotlight changes throughout a trial, either as a function of time itself 187 

or an internal calculation of cognitive control. Drift rates for the two accumulators in the decision 188 

process are determined by the area under the attentional spotlight allocated to the target and 189 

flankers, respectively. Evidence for each response is calculated within either the FFI or the LCA 190 

framework, such that the accumulators are strongly- or weakly- correlated with one another as 191 

they stochastically race toward a decision boundary. In the control-based models, cognitive 192 

control is represented as the cumulative distance between the total evidence and a threshold, . 193 

Because the conflict models were designed as a closed-loop system, this measure of cognitive 194 

control feeds back into the calculation of the attentional spotlight standard deviation at the next 195 

moment in time. 196 

 197 

 198 

 199 

 200 

 201 

 202 

 203 

 204 

 205 

 206 
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Figure 1: Flowchart of alternative model mechanisms. Each of the four models in our main investigation contained 207 

a different combination of mechanisms for attentional focus (time-based vs. cognitive control-based, Panel 1) and 208 

evidence accumulation (strongly-correlated vs. weakly correlated, Panel 4). Across all models, an attentional 209 

spotlight represented as a density function for a Gaussian distribution (Panel 2) shrinks throughout a trial. Drift rates 210 

are calculated from the area under the spotlight allocated to the target and flankers (Panel 3). Evidence is calculated 211 

within either an FFI or LCA framework (Panel 4). For control-based models, cognitive control as calculated as the 212 
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cumulative distance between total evidence and a threshold (Panel 5). This measure is in turn used to calculate the 213 

standard deviation of the attentional spotlight in the control-based models, whereas the spotlight shrinks at a 214 

constant rate in the time-based models. 215 

 216 

We fit all models to data collected in three experiments. Experiment 1 was a standard flanker 217 

task with arrow stimuli, in which participants indicated whether a central target was pointing 218 

‘left’ or ‘right’. We were interested in observing how models with dynamic mechanisms for 219 

cognitive control would compare to those with time-based mechanisms in the standard paradigm, 220 

given that the time-based flanker SSMs have been shown to capture general congruency and 221 

conditional accuracy effects in the past (White et al., 2011). In Experiment 2, which was 222 

designed and administered by Servant and colleagues (2014), participants were asked to indicate 223 

whether a target circle was red or blue while ignoring congruent (same-color) or incongruent 224 

(different-color) distractor circles. Importantly, targets varied in color saturation across six 225 

different conditions while the color saturation of the flankers was held constant. Here, the models 226 

with strongly-correlated accumulation mechanisms would predict equal and opposite evidence 227 

for the ‘red’ and ‘blue’ responses across saturation conditions. Models with weakly-correlated 228 

accumulation mechanisms governed by leak and lateral inhibition, however, would predict 229 

variations in evidence for each response that correspond to the perceptual strength of the relevant 230 

stimulus. In Experiment 3, EEG data were collected as participants completed a standard flanker 231 

task. With its high temporal resolution, EEG methods provided insight into the decision process 232 

during a standard flanker task that we could not get from behavior alone. Using latent input joint 233 

modeling analyses (Mack, Preston, & Love, 2013; Palestro, Sederberg, Osth, Van Zandt, & 234 

Turner, 2018; Turner, Forstmann, Love, Palmeri, & Van Maanen, 2017), we determined the 235 

correlation between each model’s calculations of attentional drive and observed neural activity at 236 
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the level of each individual trial. Across these three experiments, we found converging evidence 237 

that control-based attention processes in combination with evidence accumulation mechanisms 238 

governed by leak and lateral inhibition provided the best fits to behavioral data and uniquely 239 

mapped onto observed decision-related signals in the brain. 240 

 241 

Our goal was to investigate the possibility of cognitive control as an emergent property of 242 

decision dynamics, within a framework that was amenable to data-fitting and quantifiable 243 

comparisons. Starting with an existing SSM that was designed to capture the behavioral effects 244 

of perceptual conflict, we developed, fit, and compared new model variants that represent 245 

competing hypotheses on the nature of within-trial decision processes. We were specifically 246 

interested in exploring two attributes of the decision-making process: competition between 247 

accumulators, and the driving force underlying attention. Through model comparison and model-248 

based EEG analyses, we investigated how competition between choice alternatives dynamically 249 

affects decision processes that manifest in the brain. We have organized the current article as 250 

follows. First, we will provide an overview of the existing SSMs of behavior under conditions of 251 

perceptual conflict. Second, we will discuss the details of the models we developed to investigate 252 

the within-trial dynamics of the decision process in the flanker task, and the theoretical 253 

predictions of each. Third, we present the methods and results of the three experiments that 254 

served as a testbed for our model investigation, as well as the details of our model-fitting 255 

procedures. Lastly, we provide an interpretation of our results and a discussion of our findings.  256 

 257 

 258 

 259 
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2 Model development 260 

Two existing SSMs of the flanker task were central to our investigation: the shrinking spotlight 261 

model of White and colleagues (2011) and the dual-stage, two-process model of Hübner and 262 

colleagues (2010). Given our specific interest in within-trial mechanisms of attention, we 263 

selected these models due to their intended fidelity to findings from the attention literature. Both 264 

models were designed as variants of the diffusion decision model (DDM), in which a single 265 

accumulator accrues evidence through time toward one of two response boundaries (Laming, 266 

1968; Ratcliff, 1978). The single-accumulator structure is meant to represent the difference in 267 

firing between populations of neurons tuned to each choice (P. Smith & Ratcliff, 2004). While 268 

the standard DDM assumes evidence accumulation proceeds at a constant drift rate through time, 269 

the SSP and DSTP include alternate implementations of a time-varying drift rate in order to 270 

capture conditional accuracy effects in the flanker task.  271 

 272 

The SSP follows the zoom lens metaphor of attention, in which attention is represented by a 273 

gradient of strength about a central focal point that can expand and contract alongside the area of 274 

the visual field. Retinotopic mapping studies in fMRI have provided evidence that visual 275 

attention is indeed oriented around a central fixation point in a graded fashion (Brefczynski & 276 

DeYoe, 1999; Tootell et al., 1998) and that attention-related neural activity negatively scales 277 

with the size of the attended region in a zoom lens-like manner (N. Müller, Bartelt, Donner, 278 

Villringer, & Brandt, 2003). This work contributed to the idea that attentional resources are 279 

finite, and that top-down selective processing is necessary for preferentially allocating attention 280 

to behaviorally-relevant stimuli and events (Mesulam, 1990, 1999). In the SSP, the spotlight 281 

concept is implemented as a density function for a Gaussian distribution that is centered on the 282 
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target, and each item (e.g. arrow) in the stimulus occupies one unit of perceptual space. The 283 

standard deviation of the spotlight shrinks as a function of time, and drift rate is calculated at 284 

each time step based on the area under the curve allocated to each item. Though attempts to fit 285 

the SSP to data from tasks other than the flanker task have yielded mixed results (Servant et al., 286 

2014; Ulrich et al., 2015), the model is still able to capture a wide range of behaviors across task 287 

conditions (White et al., 2011) and includes recoverable parameters governing the time-varying 288 

drift rate (White, Servant, & Logan, 2018).  289 

 290 

The DSTP, in contrast, builds off of the dual-process hypothesis, which proposes that two 291 

processing routes take effect when a stimulus appears: a direct, automatic route dominated by the 292 

perceptual qualities of the stimuli, and a slower, effortfully-controlled route that depends on the 293 

goal at hand (De Jong et al., 1994; Kornblum, Hasbroucq, & Osman, 1990). As illustrated by 294 

Figure 2, the DSTP specifies two discrete stages of visual processing: 1) an early stage for 295 

identifying simple stimulus features and perceptual filtering, and 2) a late stage dedicated to 296 

processing the target. The early stage is divided into two racing diffusion processes: a stimulus 297 

selection phase and a response selection phase. Boundaries in each phase represent target and 298 

flanker stimuli, respectively. If the response selection phase terminates first, a response 299 

corresponding to the crossed boundary is made immediately, based only on the perceptual 300 

features of the stimulus. If the stimulus selection phase terminates first, the model transitions into 301 

the late, target-processing stage (stage 2). In Stage 2, the drift rate of the response selection phase 302 

shifts to reflect the outcome of the stimulus selection phase. The starting value of Stage 2 equals 303 

the value of the response selection process at the time that the stimulus selection process crossed 304 

a boundary. The direction of the drift rate in Stage 2 reflects the choice outcome of the stimulus 305 
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selection phase. While this model can capture behavioral data patterns on a flanker task under 306 

various conditions and has gained support from electromyography data (Servant, White, 307 

Montagnini, & Burle, 2015), a recent parameter recovery study indicated that the drift rate 308 

parameters could not be reliably recovered from simulated data (White et al., 2018).  309 

 310 

 311 

 312 

 313 

 314 

 315 

 316 

 317 

 318 

 319 

 320 

 321 
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 322 

 323 

Figure 2: Diagram of the dual-stage two-phase (DSTP) model. In Stage 1 (left panel), the stimulus selection and 324 

response selection phases are represented by racing diffusion processes. If the response selection phase finishes first, 325 

a response is made based only on the dominant perceptual features in the stimulus array. If the stimulus selection 326 

phase finishes first, no response is made, and either the target or the flankers are selected for controlled attentional 327 

processing. In Stage 2 (right panel), the response selection phase drift rate changes to reflect the outcome of the 328 

stimulus selection phase.  329 

 330 

We selected the SSP as the basis of our model investigation, systematically modifying the 331 

original model to incorporate an attentional spotlight driven by cognitive control as well as 332 

strongly- and weakly-correlated evidence accumulation mechanisms. The continuous, single-333 

process format of the SSP was amenable to these modifications, whereas the multi-step 334 

architecture of the DSTP imposes constraints on when perceptual conflict can occur during a 335 

decision. Within our comparison of model mechanisms, our goal was to test the theory that 336 
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cognitive control and related modulation of attention are emergent properties of the dynamics of 337 

the decision process. Our hypothesis, as implemented in the SSP framework, assumes that these 338 

dynamic processes interact and update continuously throughout a trial. While the cognitive 339 

control processes in the DSTP are generally time-based because the stimulus selection phase is a 340 

diffusion process with a constant drift rate, one could argue that attention in the DSTP depends 341 

on decision dynamics in addition to time alone. Specifically, the switch-point in the Stage 2 342 

response selection drift rate is determined by the outcome of Stage 1 processes, rather than 343 

occurring at a predetermined time point. We therefore fit the DSTP to the behavioral data across 344 

our three experiments in addition to our SSP variants as a point of comparison, given that the 345 

DSTP offers an alternative account of the decision-based attention processes of interest. 346 

Equations and details of our implementation of the DSTP can be found in the supplementary 347 

materials. In the following sections, we provide the details of mechanisms we implemented 348 

within the SSP framework as part of our main investigation. 349 

 350 

2.1 Competition between accumulators 351 

While the original SSP was implemented within a diffusion model framework, we adapted the 352 

shrinking spotlight mechanism within a single-boundary, dual-accumulator framework. These 353 

two classes of models make subtly different assumptions about which neural processes are 354 

represented by evidence accumulation. In the diffusion models, evidence represents the 355 

cumulative difference in firing across populations of neurons corresponding to each of two 356 

choice options. A response is made when this difference is sufficiently large, and a boundary 357 

representing one of the two choices is crossed. In contrast, evidence in the accumulator models 358 

reflects direct competition between the two most active populations of neurons during a decision. 359 
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Here, a response is made when one population of neurons reaches a predetermined firing rate 360 

threshold. Models from these two classes have been fit to data and compared extensively over 361 

the past several years, with the general consensus being that different classes of models are 362 

appropriate for different kinds of decisions (P. Smith & Ratcliff, 2004). In our project, we were 363 

interested in testing which set of assumptions is appropriate for decisions involving perceptual 364 

conflict: are decisions in the flanker task based on the difference in neural representations of 365 

targets and distractors, or the active competition between them? 366 

 367 

Evidence accumulation in our models was mathematically defined using either LCA or FFI 368 

mechanisms. LCA is a well-known example of the accumulator class of models, and was 369 

designed to reflect observed biological mechanisms in the brain (Abbot, 1991; Amit, Brunel, & 370 

Tsodyks, 1994). Each accumulator in the LCA model passively leaks evidence through time, and 371 

is inhibited based on the strength of the other accumulators. The FFI model, in contrast, features 372 

two accumulators with crossed inputs and no leak. As in Turner et al. (2016), we constrained the 373 

FFI model so that evidence accumulation for each choice was anticorrelated with that of the 374 

other. This implementation was meant to mimic the single-accumulator diffusion model 375 

framework, in which a movement toward one decision boundary necessitated a movement away 376 

from the other. Similarly for the constrained FFI model, one accumulator moving toward the 377 

decision boundary requires the other to move toward zero. Figure 3 provides illustrations of how 378 

evidence accumulation for two choice options occurs in the FFI and LCA models. Because 379 

evidence in the constrained FFI model is anticorrelated, the path of the decision process diffuses 380 

along a single plane and the total evidence can only increase if one accumulator reaches zero, as 381 
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shown in Figure 3, Panel C. Figure 3, Panel F shows that the decision path in the LCA model is 382 

not isolated to a diagonal plane due to the independence of the accumulators. 383 

 384 

Figure 3. Comparison of FFI and LCA mechanisms. Left column: Graphical models of FFI (A) and LCA (D) 385 

processes from stimulus input to response, where dashed lines represent loss of evidence, open circles represent 386 

inhibition. Middle column: Simulated paths of evidence accumulation in FFI (B) and LCA (E) for two options in a 387 

single trial of a two-alternative choice task. Right column: Phase plane plots of the same decision illustrated in 388 

panels B and E for the constrained FFI (C) and the LCA model (F). Black lines show the path of the decision 389 

process in a single trial by plotting evidence for each option against one another where 1.0 on each axis represents 390 

the decision threshold. 391 

 392 

2.1.1 Constrained FFI model 393 

Evidence for each accumulator  is denoted . is As described in Turner, Sederberg, & 394 

McClelland (2016),  and activation  are represented by 395 
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 396 

 397 

  398 

where   and  denote the drift rates for accumulator  and the alternative respectively. To 399 

approximate the continuous differential equation for , we used the Euler method to 400 

discretize time, selecting a step size of dt=0.01 modified by a time constant of  (S. 401 

Brown, Ratcliff, & Smith, 2006). The degree of noise in the accumulation process is represented 402 

by , a driftless Wiener process distributed as . In line with the conventions of 403 

accumulator models, evidence  for each accumulator c was bound at zero so that neither 404 

accumulator could ever be negative. Evidence for each alternative accumulates through time 405 

until decision threshold  is reached, and a response is selected in favor of the winning 406 

accumulator. Response time, then, is equal to the sum of the time taken for one of the 407 

accumulators to reach  and non-decision time , which comprises early visual processing and 408 

motor preparation. Although different approaches could have been taken, accumulator starting 409 

points were set in relation to the decision threshold  such that  for {1,2}. This choice 410 

of starting point has been selected in previous modeling work (Ditterich, 2010; van Ravenzwaaij, 411 

van der Maas, & Wagenmakers, 2012) to align with findings from single unit recordings 412 

(Churchland, Kiani, & Shadlen, 2008).  413 

 414 

2.1.2 LCA model 415 

While evidence in the constrained FFI model is strongly correlated, LCA accumulators are 416 

weakly correlated, linked only by lateral inhibition processes that repel the accumulators away 417 
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from one another via parameter . Evidence for each choice passively decays throughout the 418 

accumulation process at a rate equal to leak parameter . Activation  at is given by  419 

 420 

           421 

Again, we used the Euler method to discretize time, selecting a step size of dt=0.01 modified by 422 

a time constant of . Evidence accumulates through time until the decision threshold  is 423 

reached, and a response is made after non-decision time . Evidence  was bound at 0 and 424 

starting points were set to a proportion of threshold  such that  for {1,2}.  425 

 426 

2.2 Drive to attention mechanisms 427 

Our core mechanistic hypothesis is that attention is directly modulated within-trial as an 428 

emergent property of decision-making dynamics. This hypothesis is based on evidence of within-429 

trial changes in attention and cognitive control from neuroimaging (Czernochowski, 2015; 430 

Nigbur et al., 2015; Scherbaum et al., 2011) and connectionist models in which cognitive control 431 

is dynamically mobilized in response to the mutual activation of multiple response nodes (De 432 

Pisapia & Braver, 2006; Frank, 2006; Scherbaum et al., 2012; Verguts, 2017). Our proposed 433 

control-driven attention mechanism stands in contrast to existing SSMs of decision processes 434 

during the flanker task, in which attention is directly dependent upon time itself. To test our 435 

hypothesis against the assumption of time-dependent attention processes, we developed variants 436 

of the SSP with either time-based or control-based attentional spotlights. The time-based models 437 

mirror the original SSP so that attention, implemented as a density function for a Gaussian 438 

distribution centered on the target of a flanker array, gradually shrinks throughout a trial as a 439 
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linear function of time. In the control-based models, cognitive control is calculated as the 440 

cumulative distance between total evidence and a threshold. The standard deviation of the 441 

attentional spotlight is in turn calculated as a function of cognitive control. These mechanisms 442 

are illustrated in Figure 1.  443 

 444 

Our selection of the cognitive control function was based on three factors. 1) Cognitive control is 445 

recruited in response to the presence of conflict (Botvinick et al., 2004; Larson et al., 2014; 446 

Miller & Cohen, 2001), which is defined as the mutual activation of multiple choice options 447 

(Botvinick et al., 2001, 1999). Our implementation of the SSP within a dual-accumulator model 448 

framework allows us to track evidence for both response options throughout a trial, and we opted 449 

to base our calculation of cognitive control on the total amount of evidence in the system. 2) 450 

Braver’s dual mechanisms of control framework (2012) suggests that when conflict exceeds the 451 

available resource of cognitive control, cognitive control is upregulated within-trial until conflict 452 

can be successfully resolved. When conflict is resolved, cognitive control is allowed to decrease. 453 

The active level of cognitive control, then, is continuously compared to a required level of 454 

control, and is updated accordingly throughout a trial. We implemented this idea into our models 455 

by calculating cognitive control as an evidence-based signal relative to a threshold, where the 456 

threshold represents a predetermined level for optimal conflict resolution. 3) Given that more 457 

conflict occurs on incongruent compared to congruent trials (Botvinick et al., 1999; Gratton et 458 

al., 1992), cognitive control should reach a higher peak on incongruent compared to congruent 459 

trials. Combining all of these factors, we developed a measure of cognitive control that is based 460 

on the dynamics of the evidence accumulation process, generally builds through time, is able to 461 

relax toward the end of a trial as conflict is resolved, and naturally demonstrates differences 462 
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between task conditions. Average simulations of within-trial cognitive control signals for each 463 

task condition are shown in Figure 4, alongside time signals for contrast.  464 

Figure 4: Control- and time-based signals to attention. Across models in our comparison, attentional spotlights 465 

shrink as a function of control (Left panel) or time (Right panel). Mean simulations of control and time signals are 466 

shown for a single trial in the congruent and incongruent conditions.  467 

 468 

Because our calculation of cognitive control is based on the sum of evidence at each time step, 469 

the mode of evidence accumulation (FFI vs. LCA) has notable effects on the moment-to-moment 470 

changes in cognitive control, and subsequently, the behavior of the spotlight. The accumulators 471 

in the FFI model are strongly correlated and trade off as shown by the phase plane plots in 472 

Figure 3, and total evidence only changes if one accumulator is forced to zero while the other 473 

continues to increase. Otherwise, an increase in evidence for one accumulator results in a 474 

decrease in evidence for the other, and the sum of evidence remains constant. For weakly-475 

correlated LCA accumulators, however, total evidence fluctuates as rapidly as the accumulator 476 

values themselves. While spotlights in both FFI-control and LCA-control models share the 477 

general characteristics of narrowing through time at variable rates while maintaining the ability 478 

to widen as cognitive control relaxes, LCA-control naturally predicts a spotlight trajectory with 479 

higher within-trial variability in comparison to FFI-control. Due to the possibility that noise 480 
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alone would result in similarly-fitting models compared to the mechanisms of interest, we 481 

developed FFI and LCA model variants in which the spotlight is driven by time with additional 482 

within-trial variability. As described in Section 2.2.3, the standard deviation of the noise 483 

distribution was added as a free parameter, so that variability in the spotlight calculation could be 484 

added as needed to optimally fit the data. Figure 5 shows calculations of attentional spotlight 485 

widths through time, generated from the FFI-conflict and LCA-conflict models as well as time- 486 

and time+noise-based models. In the following sections, we will provide the mathematical 487 

details of each type of attentional spotlight mechanism that we explored in the current project. 488 

 489 

Figure 5: Model-generated spotlight widths through time. For each model, 50 trials were simulated from one 490 

participant’s best-fitting parameters. Panels show calculations of spotlight standard deviations through time, with 491 

each simulation displayed as a gray line to demonstrate the between-trial variability captured by each model. A 492 

single additional simulation is shown as a red line to illustrate differences in within-trial variability. 493 

 494 

 495 
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2.2.1 Time-based attention 496 

As in the original SSP, our two-accumulator implementations of the model calculate drift rate 497 

through time based on an attentional spotlight. Drift rate is governed by three free parameters: 498 

attentional strength , width of the spotlight at the beginning of a trial , and the rate at 499 

which the spotlight shrinks . Across models, the spotlight is a density function for a Gaussian 500 

distribution centered at 0 with standard deviation . The width of the spotlight is calculated 501 

continuously as a function of time, discretized as t:  502 

  503 

and the area of the attended spatial region allocated to target and flanker items is given by  504 

 505 

 506 

where n is the number of flanker items on each side of the target on a horizontal plane. 507 

Allocation of spatial attention based on the area under a Gaussian curve is illustrated in Panel 2 508 

of Figure 1. Limits reflect the assumption that each item in the stimulus array occupies one unit 509 

of perceptual space (White et al., 2011). Drift rates for the correct  and incorrect  510 

responses are calculated in each condition depending on the direction of the flanker items 511 

relative to the target via  512 

                         (1) 513 

.                                 (2) 514 

 515 

 516 

 517 



MODELING WITHIN-TRIAL CONFLICT                                     27 

2.2.2  Control-based attention 518 

In contrast to time being the driving force to the attentional spotlight, we defined a subset of 519 

models in which the spotlight standard deviation was calculated continuously as 520 

 521 

where   represents cognitive control. As described previously, cognitive control was calculated 522 

based on the cumulative distance between the total amount of evidence in the system and a 523 

conflict threshold , such that 524 

  525 

As in the time models, drift rates were calculated via Equations 1 and 2.  526 

 527 

2.2.3 Time with noise 528 

As shown in Figure 5, the control-based models allow for more variability in drive to the 529 

attention system compared to the time models. While this variability is a natural consequence of 530 

calculating  based on the state of noisy accumulators, we wanted to investigate whether the 531 

addition of random variability would be equally suitable for fitting the data. As such, we 532 

developed variants of the time models that included an additional free parameter . Noise  was 533 

drawn from a driftless Wiener process such that . The standard deviation of the 534 

spotlight was then calculated from the noisy time-based signal, such that 535 

  536 

. 537 

 538 

 539 
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2.3 Summary of model variants 540 

Our current investigation was centered around four variants of the SSP, each containing a 541 

different combination of evidence accumulation mechanisms (strongly-correlated, FFI vs. 542 

weakly-correlated, LCA) and calculations for visual attention (time-based vs. control-based). 543 

Because the control-based models allow for variability in the behavior of the attentional spotlight 544 

whereas the time-based models do not, we included FFI and LCA variants of time models in 545 

which within-trial noise was injected into the spotlight calculation. Table 1 summarizes the free 546 

parameters included in each of these six models. To investigate an alternative method for 547 

decision-based mechanisms for attention and cognitive control, we also included the DSTP 548 

model. The 9 free parameters in the DSTP model are listed in the supplementary materials. 549 

 550 

Table 1: Summary of free parameters 551 

  Model 

Parameter Description 
FFI  
time 

FFI  
time+noise 

FFI  
control 

LCA  
time 

LCA  
time+noise 

LCA  
control 

 rate of focus       

 
perceptual input 

strength       

 starting spotlight width       

 decision threshold       

 non decision time       

 within-trial variability       

 conflict threshold       

 leak       

 lateral inhibition       

Total 5 6 6 7 8 8 
 552 

 553 

 554 
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3 Experiments 555 

Data from three experiments served as the testbed for the seven model variants. The first 556 

experiment was a standard flanker task, which was intended to test each model’s ability to 557 

capture basic behavioral effects between conditions. The second experiment included a 558 

manipulation in which the perceptual strength of the target relative to the flanker items varied 559 

from trial to trial. These data were fit by adding free parameters to modify perceptual input 560 

strength (p) depending on the perceptual strength of each item in the stimulus array. The third 561 

experiment was a standard flanker task during which we also recorded scalp EEG measurements. 562 

The models were fit to behavior alone for all experiments, and simulation methods were used in 563 

our analysis of data collected in Experiment 3 to observe which models most successfully 564 

mapped onto within-trial EEG voltage at each electrode.  565 

 566 

3.1 Experiment 1 567 

Given that the SSP was designed to capture data in a standard flanker task and has successfully 568 

fit patterns of responses across conditions (White et al., 2011), we wanted to test all of our SSP 569 

model variants in this domain as well. Participants completed a standard flanker experiment, in 570 

which they indicated the direction of a central arrow while ignoring congruent, incongruent, or 571 

neutral distractor items. Although we only fit the models to data from congruent and incongruent 572 

trials, we hoped that the inclusion of neutral trials would boost flanker effects via increased rarity 573 

of incongruent trials (Gratton et al., 1992) while maintaining equal numbers of congruent and 574 

incongruent observations. 575 

 576 

 577 
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3.1.1 Method 578 

 579 

3.1.1.1 Procedure 580 

After providing written informed consent, participants were seated in a cubicle and asked to turn 581 

off all electronic devices. Instructions for the task appeared on the computer screen, and were 582 

read aloud by the experimenter. Each block began with a summarized instruction screen to 583 

remind participants of the appropriate response mappings while also providing an opportunity to 584 

take a short break from the task. The instruction summary remained on the screen until the 585 

participant pressed the ENTER key to proceed. During each trial, a fixation cross appeared in the 586 

center of the screen for 1000 ms before being removed. The trial stimulus then appeared on the 587 

screen after a jittered duration of 100-900 ms. Participants responded by pressing the ‘J’ key on 588 

the keyboard if the arrow in the center of the array pointed left, and the ‘K’ key if the center 589 

arrow pointed right. Participants were asked to respond with their right forefinger and right 590 

middle finger respectively. Only responses made 150 ms after the stimulus appeared were 591 

recorded, and the stimulus was removed from the screen immediately after the participant made 592 

a valid response. Participants were given an unlimited amount of time to respond, but were 593 

instructed to respond as quickly and accurately as possible.  594 

 595 

3.1.1.2 Stimuli and apparatus 596 

A custom program using the State Machine Interface Library for Experiments (SMILE; 597 

https://github.com/compmem/smile) was written to present stimuli, track timing, and log 598 

responses. Stimuli were presented on a desktop computer equipped with Linux OS connected to 599 

a 15-inch display with a refresh rate of 60 Hz. Participants were seated in individual cubicles 600 



MODELING WITHIN-TRIAL CONFLICT                                     31 

within view of an experimenter. Before beginning, participants completed 10 practice trials of 601 

the task. The task consisted of 8 blocks of a standard flanker task, each block containing 48 602 

trials. Including practice, participants completed 394 trials in total. Task condition (congruent, 603 

incongruent, neutral) and target direction (left, right) were counterbalanced within block. Stimuli 604 

were presented in white font on the horizontal midline of a dark gray field. Each stimulus 605 

consisted of a target arrow in the center of 6 flanker items, 3 to the left and 3 to the right.  606 

 607 

3.1.1.3 Participants 608 

27 undergraduate students at The Ohio State University participated in Experiment 1 in exchange 609 

for partial course credit. All participants provided informed consent in accordance with the 610 

requirements of the Institutional Review Board at the university. One participant’s data were 611 

excluded from analysis due to failure to exceed a chance level of performance on the task.  612 

 613 

3.1.1.4 Model-fitting and comparison 614 

The seven models were fit to each participant’s data independently using probability density 615 

approximation (PDA) methods described by Turner and Sederberg (2014) and implemented via 616 

custom programs with RunDEMC (https://github.com/compmem/RunDEMC). Because the 617 

models within the current investigation do not have analytic likelihood functions, PDA methods 618 

allowed us to approximate how likely the choice and RT data Y would be under a set of model 619 

parameters θ. After specifying each model, we defined a set of prior distributions π(θ) for each 620 

parameter that will be discussed in the next section. Parameter sets were proposed via differential 621 

evolution with Markov chain Monte Carlo (DE-MCMC; Ter Braak, 2006; Turner & Sederberg, 622 

2012; Turner, Sederberg, Brown, & Steyvers, 2013), a genetic algorithm that makes proposals 623 
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based on the relative success of previous proposals. Within DE-MCMC, a proposed parameter 624 

set in a chain is accepted with Metropolis Hastings probability, such that parameters have a 625 

higher probability of survival if they fit the data better than the previous proposal, and concurrent 626 

chains inform one another on each iteration. Using each proposed parameter set θ*, we simulated 627 

each model 30,000 times to produce a set of data X such that X ~ Model(θ*). From these 628 

distributions, we constructed a simulated probability density function using an Epanechnikov 629 

kernel (Turner & Sederberg, 2014; Turner et al., 2016) to estimate the form of X. We then 630 

calculated the density of each point in the observed data Y under the given set of parameters θ 631 

using the equation: 632 

 633 

Where  is an approximation of the functional form of simulated data X. We then approximated 634 

the likelihood function using the equation 635 

. 636 

Finally, the posterior density for a given parameter set was approximated by combining the 637 

likelihood function and the set of prior distributions π(θ) with the equation:  638 

. 639 

This procedure was implemented in 50 chains for 600 “burn-in” iterations to identify the 640 

maximum a posteriori (MAP) estimate, followed by 1,600 sampling iterations to generate full 641 

posterior distributions. A purification step was implemented every 5 iterations for the accepted 642 

population, in which likelihood values were recalculated and replaced in order to prevent chains 643 

from getting stuck in spuriously high-likelihood regions of the posterior (Holmes, 2015; Turner, 644 

Schley, Muller, & Tsetsos, 2018). Priors were selected to be uninformative in terms of range, but 645 
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to provide a moderate level of constraint in terms of functional form. As none of these models 646 

have been fit in a Bayesian paradigm, we had no precedent to rely upon for selecting a prior 647 

distribution for each parameter. Prior distributions were specified as follows, and were the same 648 

across models that utilized common parameters: 649 

 650 

 651 

 652 

 653 

 654 

 655 

 656 

 657 

 658 

To compare the relative fit performances of the models, we calculated the Bayesian predictive 659 

information criterion (BPIC; Ando, 2007) for each model within-subject. We selected BPIC as 660 

our comparison metric for the present investigation because it is calculated in consideration of 661 

the full posterior distribution rather than a point estimate of the maximum log likelihood. This 662 

metric also accounts for model complexity by favoring models with fewer free parameters. To 663 

calculate BPIC values, a vector  of deviance values was calculated from the likelihood  for 664 

each set of parameters in the latter 1,400 sampling iterations of the posterior using the equation: 665 

. 666 
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We then calculated the mean and minimum deviance as  and  respectively. The effective 667 

number of parameters  was calculated as . Finally, the BPIC value was 668 

calculated as: 669 

 670 

where lower BPIC values indicated a better fit. 671 

 672 

3.1.2 Results 673 

 674 

3.1.2.1 Behavior 675 

Responses shorter than 150 ms or longer than 2000 ms were excluded from analyses and model-676 

fitting (<4% of trials across subjects). Neutral trials were excluded from analyses due to an 677 

unforeseen pop-out effect in our data, such that participants were slightly faster at responding to 678 

neutral stimuli compared to congruent. As such, only congruent and incongruent trials were 679 

analyzed further. A summary of behavioral results is shown in Table 2. Behavioral results were 680 

analyzed using paired-sample t-tests, where the degrees of freedom for within-condition 681 

performance comparisons were based on the number of subjects who made at least one error in 682 

the condition of interest. We observed the expected flanker task effects, including significantly 683 

lower accuracy on incongruent trials compared to congruent (t(25)=-2.919, p<0.01) and 684 

significantly slower RTs for incongruent trials compared to congruent (t(25)=7.520, p<0.001). 685 

Our data also demonstrated significantly faster errors than correct responses in the incongruent 686 

condition (t(22)=-3.778, p<0.01), but not in the congruent condition (t(9)=0.910, p=0.386). 687 

 688 

 689 
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Table 2: Average accuracy and mean RTs (ms) across participants for Experiment 1  690 

Condition Accuracy All RT Correct RT Error RT 
Incongruent 0.912 661 669 533 
Congruent 0.969 537 540 620 

 691 

3.1.2.2 Model fits 692 

BPIC values were calculated for each model and subject as a measure of goodness-of-fit. Values 693 

were mean-centered within subject, and are displayed as a heat map in Figure 6. Out of 26 total 694 

participants in Experiment 1, the LCA control model was the best performing model for 8 695 

participants, the FFI control model was the best performing model for 5 participants, the LCA 696 

time model was the best performing model for 2 participants, the DSTP model was the best 697 

performing model for 7 participants, and the FFI time model was the best performing model for 698 

4 participants. Accounting for the magnitude of the wins across subjects, the two conflict models 699 

outperformed their time-based alternatives and DSTP, though results were mixed overall.  700 

 701 

 702 

 703 
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 704 

Figure 6: Heat map of BPIC values, mean-centered within-subject for Experiment 1. Each column corresponds to a 705 

subject. Lower BPIC values (blue hues) indicate better model fits. The winning model for each subject is outlined in 706 

black. Average mean-centered values across subjects are shown in the panel to the right.  707 

 708 

Figure 7 shows observed choice-RT distributions averaged across participants, as well as mean 709 

distributions generated from each subject’s best-fitting parameters in our four main models of 710 

interest. All four models were able to capture typical flanker effects of slower, less accurate 711 

responses in the incongruent compared to the congruent condition, and faster errors than correct 712 

responses in the incongruent condition. Given that the SSP was specifically designed to capture 713 

robust congruency and conditional accuracy effects, it is unsurprising that all models were able 714 

to fit the standard pattern of data. Though the control-driven models were better suited for 715 

capturing the peaks of the correct response distributions than the time-driven models, across-716 

subject results reflect strong model mimicry. To gain more insight into the differences in 717 

predictions among the models, we need to delve into the more nuanced patterns of behavior that 718 

were not necessarily robust across all subjects. 719 
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 720 

Figure 7: Observed and model-generated choice-RT distributions. Observed RT distributions for correct (light gray 721 

histograms) and incorrect (dark gray histograms) responses were averaged across participants. Models were 722 

simulated 10,000 times for each condition, using each participant’s best-fitting parameters. Lines show average 723 

model-generated distributions across participants. Distributions generated by the FFI time and FFI control models 724 

are shown in the top row, whereas distributions generated by the LCA time and LCA control models are shown in 725 

the bottom row.  726 

 727 
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We provide analyses using two measures of response capture: error location indices (ELIs) and 728 

conditional accuracy functions (CAFs). An ELI value represents the proportion of incorrect 729 

responses that are faster than trials chosen at random (Servant, Gajdos, & Davranche, 2018). For 730 

example, a participant who performed less accurately when they made fast responses would 731 

likely have a high (close to 1.0) ELI, whereas a participant who performed less accurately when 732 

they made slower responses would likely have a low (close to 0.0) ELI. The SSP was developed 733 

to capture the general effect of fast errors specific to the incongruent condition of the flanker 734 

task, which manifests as higher ELI values in the incongruent compared to the congruent 735 

condition. While all four of the main models in the current investigation can capture this basic 736 

effect, we observed differences among the models in terms of their abilities to predict individual 737 

differences in ELIs in the incongruent condition. After fitting each model to data from each 738 

subject, we used best-fitting parameters to generate predicted ELI values. Figure 8 shows 739 

correlations between observed and predicted ELI values in the incongruent condition for each 740 

model. Per the requirements of the calculation, participants were only included if they made at 741 

least one error in the incongruent task condition (23 participants).  These results suggest that the 742 

LCA control model is best able to capture the nuanced subject-level differences that we observed 743 

in our dataset. To assess significance, we applied a Fisher’s z transformation to each r correlation 744 

and calculated an observed z test statistic at an alpha level of 0.05 for each pairwise combination 745 

of models. The observed vs. predicted ELI correlation for the FFI control model was 746 

significantly lower than that of the LCA control (z=2.284, p=0.011) and LCA time models 747 

(z=1.742, p=0.041). No other comparisons were significant (LCA control vs. LCA time: 748 

z=0.542, p=0.294; LCA control vs. FFI time: z=0.833, p=0.203; LCA time vs. FFI time: 749 

z=0.291, p=0.386; FFI time vs. FFI control: z=1.451, p=0.073). 750 
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 751 

Figure 8: Observed and predicted ELI values for incongruent trials. ELI values calculated from each subject’s data 752 

in the incongruent condition (x-axis) are plotted against the ELI values generated from each subject’s best-fitting 753 

parameters (y-axis) in each model (panels). Correlations and lines of best fit are displayed on each panel.  754 

 755 

While ELIs were developed as a quantitatively interpretable alternative to CAFs, CAFs remain a 756 

common tool for illustrating behavioral effects in the flanker task. In the CAF, performance is 757 

plotted as a function of RT. Figure 9 shows average CAFs across subjects calculated from 758 

observed data in the incongruent condition, overlaid by average predicted incongruent CAFs 759 

generated from each subject’s best-fitting parameters for each model. As mentioned previously, 760 

all four models can capture fast errors in the incongruent condition, which is illustrated by lower 761 

accuracy in the initial RT bins. The models differ, however, in their abilities to capture slow 762 

errors. Neither the LCA time nor the FFI time model appropriately captures the dropoff in 763 

accuracy for longer RTs. The control models, however, are able to predict a decrease in cognitive 764 

control toward the end of a trial, which allows the models to capture patterns of accuracy that 765 

reach a peak before slightly decreasing. This is due to the nature of our conflict signal as 766 

illustrated by Figures 1 and 4, which allows for the widening of the attentional spotlight toward 767 

the end of a trial depending on the parameter values. The FFI control model, however, appears to 768 

overpredict the proportion of slow errors due the combination of the control mechanism and the 769 
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strong correlation between accumulators, resulting in the lowest correlation between observed 770 

and predicted ELI values across the models as shown in Figure 8.   771 

Figure 9: Observed and predicted CAFs for incongruent trials. Data from each subject were sorted according to RT 772 

within 6 equally-spaced percentile bins. Performance and minimum RT for each bin were averaged across 773 

participants (red Xs). After generating 1,000 choice-RT pairs from each subject’s best-fitting parameters within each 774 

model, the same procedure was used to calculate CAFs for each model (gray lines).  775 

 776 

ELIs for the congruent condition were useful for distinguishing these models as well. Similar to 777 

Figure 8, Figure 10 shows ELI values calculated from observed data in the congruent condition 778 

in relation to the predicted ELI values generated from best-fitting parameters in each model. Per 779 

the requirements of the calculation, participants were only included if they made at least one 780 

error in the congruent task condition (10 participants). Predictions using the LCA control model 781 

best mapped onto subject-level ELIs in the congruent condition compared to the other models. 782 

The observed vs. predicted ELI correlation for the LCA control model was significantly higher 783 

than that of the FFI time (z=3.088, p=0.001) and FFI control models (z=1.871, p=0.031), and the 784 

correlation for the LCA time model was significantly higher than that of the FFI time model as 785 

well (z=1.822, p=0.034). No other comparisons were significant (LCA control vs. LCA time: 786 

z=1.266, p=0.103; LCA time vs. FFI control: z=0.606, p=0.272; FFI control vs. FFI time: 787 

z=1.217, p=0.112). 788 
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 789 

Figure 10: Observed and predicted ELI values for congruent trials. ELI values calculated from each subject’s data 790 

in the congruent condition (x-axis) are plotted against the ELI values generated from each subject’s best-fitting 791 

parameters (y-axis) in each model (panels). Correlations and lines of best fit are displayed on each panel.  792 

 793 

To observe specific differences in model predictions within the congruent condition, mean CAFs 794 

were generated separately for participants with low (0.11-0.31) and high (0.74-1.00) observed 795 

ELIs as determined by median split. Figure 11 shows observed and model-predicted CAFs for 796 

low-ELI participants in the congruent condition, in which the observed data demonstrates a 797 

higher proportion of errors for longer compared to shorter RTs. While all models miss the mean 798 

performance values considerably, the LCA control, LCA time, and FFI control models are able 799 

to capture a general pattern of slow errors in the congruent condition. Though the LCA time 800 

model lacks the ability to relax attentional processing like the control models, it is presumably 801 

able to capture these slow errors via the leak  parameter. The FFI time model, however, has 802 

no mechanism for capturing slow errors in the congruent condition. 803 
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 804 

 805 

Figure 11: Observed and predicted CAFs for congruent trials across low-ELI participants. Data from each subject 806 

were sorted according to RT within 6 equally-spaced percentile bins. Performance and minimum RT for each bin 807 

were averaged across participants (blue Xs). After generating 1,000 choice-RT pairs from each subject’s best-fitting 808 

parameters within each model, the same procedure was used to calculate CAFs for each model (gray lines).  809 

 810 

Figure 12 shows observed and predicted CAFs for high-ELI participants in the congruent 811 

condition. The observed data demonstrates a higher proportion of errors for shorter compared to 812 

longer RTs. Neither of the time models are able to predict fast errors in the congruent condition. 813 

While the cognitive control-driven attentional system allows the FFI control model to predict fast 814 

errors, these processes in combination with a strongly-correlated accumulator structure result in 815 

an overprediction of slow errors. The LCA control model, however, is able to predict fast errors 816 

without inappropriately predicting slow errors as well. 817 

 818 



MODELING WITHIN-TRIAL CONFLICT                                     43 

 819 

Figure 12: Observed and predicted CAFs for congruent trials across high-ELI participants. Data from each subject 820 

were sorted according to RT within 6 equally-spaced percentile bins. Performance and minimum RT for each bin 821 

were averaged across participants (blue Xs). After generating 1,000 choice-RT pairs from each subject’s best-fitting 822 

parameters within each model, the same procedure was used to calculate CAFs for each model (gray lines).  823 

 824 

3.1.3 Discussion 825 

The results of Experiment 1 demonstrate strong mimicry between models, but showed overall 826 

better fits for models with control-driven attentional mechanisms compared to time-driven 827 

alternatives as determined by our BPIC comparison. In interpreting the BPIC results, it is 828 

important to remember that these calculations favor less complex models. With 8 free 829 

parameters, it is therefore notable that the LCA control model outperformed the more 830 

parsimonious alternatives in a substantial number of cases. For the 4 instances in which the more 831 

parsimonious FFI time model was the winning model, it appears that the improvements in fit 832 

afforded by the more flexible models were not substantial enough to justify the additional 833 

complexity. The most complex model was the DSTP with 9 free parameters, and its flexibility 834 

resulted in 7 wins. For a majority of subjects, however, the added complexity did not improve 835 

the fits over what the other models could provide, and the model barely performed better than 836 

FFI time on average. Interestingly, the conflict models provided better fits than the time+noise 837 

models in almost all cases, indicating that conflict mechanisms themselves are tapping into an 838 
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aspect of the data beyond improvements resulting from additional noise. Because each model 839 

makes the standard predictions for choice-RT distributions equally well, ELI and CAF analyses 840 

allowed us to investigate the predictions of the models at a finer granularity than what choice-RT 841 

summarizations could provide. Among the FFI time, LCA time, FFI control, and LCA control 842 

models, only LCA control could predict patterns of fast and slow errors in each condition that 843 

varied by subject. Although Experiment 1 has provided tentative evidence that cognitive control, 844 

rather than time alone, underlies attention processes in the flanker task, the data as a whole did 845 

not provide a strong dissociation between FFI and LCA mechanisms for interactions between the 846 

accumulators when considering general effects across subjects.  847 

 848 

3.2 Experiment 2 849 

Because the results of Experiment 1 did not favor strongly-correlated FFI or weakly-correlated 850 

LCA evidence accumulation mechanisms, we next fit the models to data from a task that we 851 

believed would challenge these alternative hypotheses. In the standard flanker task, the nature of 852 

the arrow stimuli results in an equal amount of perceptual strength for each item in an array, and 853 

evidence for a left response is equal and opposite to evidence for a right response. As such, it is 854 

not surprising that both FFI and LCA accumulation dynamics were able to capture the data 855 

equally well. In Experiment 2, we opted to test the models under task conditions in which the 856 

perceptual strength of the flanker items was not necessarily equal to that of the target. The task, 857 

designed and administered by Servant et al. (2014), required participants to indicate the color of 858 

a target circle amid flanker circles of a congruent or incongruent color. As a manipulation of 859 

relative perceptual strength, the color saturation of the target circle varied from trial to trial while 860 

the saturation of flanker circles was held constant. Due to the strongly-correlated behavior of the 861 
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accumulators in the FFI models, we predicted that the FFI models would be less capable of 862 

capturing the observed patterns of choices and RTs across conditions in this task relative to LCA 863 

models. Our hypothesis is in line with recent work showing that models with strongly-correlated 864 

accumulators fail to capture observed patterns of data across a range of equal- and unequal-865 

evidence task conditions (Kirkpatrick, Turner, & Sederberg, submitted). 866 

 867 

3.2.1 Method 868 

 869 

3.2.1.1 Procedure 870 

The data set used in the present investigation was collected at Aix-Marseille University by 871 

Servant et al. (2014). The paradigm and methods of the study are summarized here, but the 872 

reader is directed to the original paper for further details. Participants were shown arrays of 873 

circles, and were asked to respond as to whether the color of the center circle was red or blue. 874 

After providing informed consent, participants received instructions, completed a practice block, 875 

then began the task. Each trial began with the appearance of three circles, which remained on the 876 

screen until participants responded with a maximum duration of 1500 ms. After the stimulus was 877 

removed from the screen, there was an inter-trial interval of 1500 ms. Color-mappings were 878 

counterbalanced between participants, such that half of the participants were instructed to 879 

respond ‘left’ to a red target and ‘right’ to a blue target, and the other half were instructed to 880 

respond ‘right’ to a red target and ‘left’ to a blue target. 881 

 882 

 883 

 884 
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3.2.1.2 Stimuli and apparatus 885 

Participants completed 24 blocks of the task, each block containing 96 trials (2,304 trials in 886 

total). Stimuli were presented using PsychoPy software (Peirce, 2007) on a CRT color monitor 887 

with a refresh rate of 100Hz. Flanker circles could be the same color (congruent) or a different 888 

color (incongruent) relative to the target. Importantly, the color saturation of center target circles 889 

varied from trial to trial within six conditions (degrees of suprathreshold saturation levels: 15%, 890 

25%, 35%, 45%, 60% and 80%), while the color saturation of flanker circles was held constant at 891 

80%. Task condition (congruent or incongruent), target hue (red or blue), and target color 892 

saturation (6 levels) were counterbalanced within block. Stimuli appeared along the horizontal 893 

midline of a black field. To respond, participants made left or right button presses with their 894 

corresponding thumb. Buttons were set atop plastic hand grips that were 3 cm in diameter and 7 895 

cm in height, with 20 cm in between. Examples of the stimuli are provided in Figure 13, based 896 

on Figure 2 in Servant et al., 2014. 897 

 898 

  899 

 900 

 901 

 902 

 903 

 904 

 905 

 906 

 907 
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Figure 13: Examples of stimuli used in Experiment 2, based on Figure 2 in Servant et al., 2014. Each stimulus 908 

consisted of a target circle (red or blue), flanked by two circles of an incongruent (Left column) or congruent (Right 909 

column) color. Targets varied in saturation between 15 and 80% (rows) while the color saturation of the flankers was 910 

held constant at 80%. While only stimuli with red targets are shown here, the paradigm was counterbalanced so that 911 

50% of stimuli featured a blue target. 912 

 913 

3.2.1.3 Participants 914 

Twelve students provided informed consent in accordance with the Declaration of Helsinki, and 915 

participated in the study in exchange for 10€/hour. Participants had normal or corrected-to-916 

normal vision and normal color vision. 917 

 918 

3.2.1.4 Model-fitting 919 

Prior to fitting the models, we first needed to make adjustments to the models to accommodate 920 

the conditions of the target saturation manipulation. Following the example of Servant et al. 921 

(2014), we made the assumption that the p parameter, representing perceptual input strength that 922 

behaves within the SSP as a scalar on the spotlight, was the logical candidate for tracking the 923 

perceptual strength of each item in the stimulus array. We therefore modified all models of 924 
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interest to include six separate values of p representing the six conditions of target saturation 925 

included in the experiment. Drift rates   and  for each accumulator were calculated via the 926 

following modifications to Equations 1 and 2: 927 

                                                (3) 928 

                       (4) 929 

where  and was selected depending on the color 930 

saturation of the target in each trial. In Equations 3 and 4,  was always scaled by  931 

since the color saturation of flanker stimuli was held constant at 80% across trials. Values of  932 

were constrained so that . In each model, the vector 933 

of values  such that  was calculated via a sigmoidal 934 

function  935 

 936 

where  and , , and  were free parameters. We decided on 937 

this parameterization because we assumed perceptual input strength values of  varied 938 

monotonically as a function of perceptual strength, but did not have any strong hypotheses about 939 

the functional form of the relationship among them. The sigmoidal function provided an 940 

appropriate level of constraint while still being able to capture a wide variety of curves as 941 

illustrated in Figure 14.  942 

 943 
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 944 

Figure 14: Range of sigmoid functions for calculating . Sigmoid functions were implemented to capture the 945 

attention allocated to stimuli in the six saturation conditions in Experiment 2. Panel A shows the effect of modifying 946 

the a parameter while keeping b and c constant. Panels B and C similarly show the effects of modifying the b and c 947 

parameters respectively, while the other parameters are held constant.   948 

 949 

Priors for parameters , , and  were selected to be mildly informative, and were defined as 950 

follows: 951 

 952 

 953 

 954 

Priors for all other parameters as well as all model fitting procedures were otherwise identical to 955 

those described for Experiment 1. We modified the DSTP to include a sigmoid function for 956 

fitting the target color saturation conditions as well. Details of the modified DSTP models are 957 

included in the supplementary materials.  958 

 959 

 960 

 961 

 962 

 963 
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3.2.2 Results 964 

 965 

3.2.2.1 Behavior 966 

Responses shorter than 150 ms were excluded from analyses and model-fitting (<0.01% of trials 967 

across subjects). Detailed behavioral results of Experiment 2 are presented in Servant et al. 968 

(2014). In summary, participants were significantly slower (t(11)=6.491, p<0.001) and less 969 

accurate (t(11)=-3.437, p<0.01) on incongruent trials relative to congruent, across target color 970 

saturation conditions. Participants were also significantly slower (15% saturation - 80% 971 

saturation: t(11)=11.583, p<0.001) and less accurate (15% saturation - 80% saturation: 972 

t(11)=7.425, p<0.001) on lower saturation trials relative to higher saturation trials, and the effect 973 

persisted both within incongruent (RT: t(11)=9.109, p<0.001; accuracy: 6.390, p<0.001) and 974 

congruent trials (RT: t(11)=11.646, p<0.001; accuracy: t(11)=7.571, p<0.001). Table 3 contains 975 

mean RTs and error rates in each condition of Experiment 2.  976 

 977 

Table 3: Average mean RTs (ms) and error rates (in parentheses) across participants for Experiment 2 978 

 Target Saturation 

Condition 15% 25% 35% 45% 60% 80% 

Incongruent 477 (0.326) 458 (0.224) 443 (0.154) 437 (0.132) 425 (0.114) 422 (0.107) 

Congruent 449 (0.142) 421 (0.081) 410 (0.053) 399 (0.043) 391 (0.041) 386 (0.047) 

 979 

3.2.2.2 Model fits 980 

BPIC values for each model were mean-centered within subject, and are shown as a heat map in 981 

Figure 15. The LCA control model was the winning model in 8 out of the 12 participants, the 982 

FFI control model was the winning model for 3 participants, and the DSTP was the winning 983 
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model for 1 participant. Accounting for the magnitude of the wins across subjects, the LCA 984 

control model outperformed all alternatives, including FFI control, while the FFI time and DSTP 985 

models fit the worst overall.  986 

Figure 15: Heat map of BPIC values, mean-centered within-subject for Experiment 2. Each column corresponds to a 987 

subject. Lower BPIC values (blue hues) indicate better model fits. The winning model for each subject is outlined in 988 

black. Average mean-centered values across subjects are shown in the panel to the right.  989 

 990 

Figure 16 includes observed choice-RT distributions for each task condition (congruent and 991 

incongruent) and target color saturation condition (low: 15%, 25%, 35% and high: 45%, 60%, 992 

80%), averaged across participants. Mean distributions generated from each subject’s best-fitting 993 

parameters in our four main models of interest are shown as well. Similarly to the results of 994 

Experiment 1 shown in Figure 7, the two control-based models provided better qualitative fits to 995 

the RT distributions for correct responses, compared to the time-based models. This again 996 

reflects the ability of the control-driven models to capture the nuanced differences in behavior 997 

across subjects, specifically subject-level differences in fast and slow responses across conditions 998 

due to the nature of the control signal. More importantly, Figure 16 shows that the FFI and LCA 999 
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models make drastically different predictions about the error RT distributions, particularly in the 1000 

incongruent condition. While the LCA models are generally able to capture the peak and spread 1001 

of the incongruent error RTs, the FFI models consistently predict a larger proportion of fast 1002 

errors across target color saturation conditions than we observe in the data. This overprediction 1003 

of fast errors is a natural consequence of the strongly-correlated evidence accumulation 1004 

mechanism in the FFI models. The FFI models are able to predict different drift rates across 1005 

saturation conditions due to differences in the perceptual input strength scaling parameters , 1006 

and are therefore able to capture the general pattern of faster correct responses for high target 1007 

saturation trials. Because of the strongly-correlated evidence accumulation mechanism, however, 1008 

faster positive drift rates for one accumulator result in correspondingly faster negative drift rates 1009 

for the other. As such, the FFI models are limited in their ability to concurrently capture 1010 

observed RTs for correct and error responses across all conditions. In contrast, the flexibility of 1011 

the weakly-correlated evidence accumulation mechanism in the LCA models allow the models to 1012 

seamlessly adapt to conditions of unequal perceptual strength between target and flanker stimuli.   1013 
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Figure 16: Observed and model-generated choice-RT distributions. Observed RT distributions for correct (light 1014 

gray histograms) and incorrect (dark gray histograms) responses were averaged across participants. Models were 1015 

simulated 10,000 times for each condition, using each participant’s best-fitting parameters. Lines show average 1016 

model-generated distributions across participants. Distributions generated by the FFI time and FFI control models 1017 

are shown in the left panel, and distributions generated by the LCA time and LCA control models are shown in the 1018 

right panel. Choice-RT distributions for low target saturation trials are shown in the top row and high saturation 1019 

trials are shown in the bottom row.  1020 

 1021 

3.2.3 Discussion 1022 

We hypothesized that the flanker saturation manipulation in Experiment 2, in which targets and 1023 

flankers differed in perceptual strength from trial to trial, would cause models with strongly- and 1024 

weakly-correlated evidence accumulation mechanisms to make contrasting predictions. Because 1025 

an increase evidence for one choice option results in an equivalent decrease in evidence for the 1026 

other choice, the FFI models do not predict any mechanistic differences for how a participant 1027 

processes stimuli across different target saturation conditions. These models, therefore, depend 1028 
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on the values of the perceptual input strength scalars  to capture any behavioral differences 1029 

between high- and low-saturation target conditions. As shown in Figure 16, however, the FFI 1030 

models were only able to approximate RTs for correct responses at the expense of the error 1031 

distributions--both the FFI time and the FFI control models predicted faster error RTs in the 1032 

incongruent condition. The LCA models were more successful overall compared to the FFI 1033 

models at fitting the shapes of all choice-RT distributions across saturation and congruency 1034 

conditions, suggesting that the flexibility afforded by a weakly-correlated evidence accumulation 1035 

structure is necessary for fitting these data.  1036 

 1037 

Consistent with the results of Experiment 1, models with control-based attention mechanisms 1038 

provided better fits to the data compared to time-based alternatives. Despite being the most 1039 

complex model in our comparison with 14 free parameters (compared to 7 in FFI time, 8 in FFI 1040 

time+noise and FFI control, 9 in LCA time, and 10 in LCA time+noise and LCA control), the 1041 

DSTP provided the worst quantitative fits as determined by BPIC. We included the DSTP in the 1042 

current project to test our control-based attention mechanism against an alternative decision-1043 

based mechanism. The results of Experiments 1 and 2 indicate that our control-based mechanism 1044 

strikes a more effective balance between flexibility and parsimony than the DSTP.  1045 

Taken together, the results of Experiment 2 indicate that both LCA evidence accumulation 1046 

mechanisms and control-driven attention mechanisms are necessary for appropriately predicting 1047 

behavior under conditions of differing perceptual strength. 1048 

 1049 

 1050 

 1051 
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3.3 Experiment 3 1052 

Our main motivation for the current project was to develop a neurally-plausible mechanism for 1053 

modulation of attention within-trial. Our theory, which we operationalized via our cognitive 1054 

control-based models, is that modulation of attention is an emergent property of the dynamics of 1055 

the decision process. While we do find evidence for cognitive control-based processes across 1056 

Experiments 1 and 2 by fitting our models to behavioral data alone, we wished to determine 1057 

whether our model-generated signal for cognitive control actually maps onto an observable, 1058 

within-trial signal in the brain. In Experiment 3, we collected EEG data alongside the same 1059 

standard flanker task administered in Experiment 1 and designed a latent input joint modeling 1060 

analysis to gain insight into the within-trial processes that we could not observe from behavior 1061 

alone. Based on the results of Experiments 1 and 2, we predicted that LCA mechanisms in 1062 

combination with control-based attentional mechanisms would most effectively track latent EEG 1063 

measures.  1064 

 1065 

3.3.1 Method 1066 

 1067 

3.3.1.1 Procedure and EEG acquisition 1068 

Participants completed a standard flanker task that was identical to the one administered in 1069 

Experiment 1. After providing written informed consent, participants were fitted with an elastic 1070 

cap embedded with 64 Ag-AgCl active scalp electrodes arranged in an extended 10-20 array 1071 

(BrainProducts GmbH, Munich, Germany), and seated in an electrically-shielded, sound-1072 

attenuated testing room. Participants were asked to turn off all electronic devices and leave them 1073 

outside of the testing room before the experiment began. The EEG signal was sampled at a rate 1074 
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of 1000 Hz via a DC-powered actiCHamp amplifier connected to a desktop PC. The ground 1075 

electrode was located at Fpz and the reference was set to the average of mastoid electrodes TP9 1076 

and TP10 during recording. Electrode impedances were reduced to less than 25K ohms via 1077 

application of electrolyte gel as recommended by the equipment manufacturer. Instructions for 1078 

the task appeared on the computer screen, and were read aloud by the experimenter. Participants 1079 

were given the opportunity to take breaks from the task in between task blocks, but remained 1080 

seated in the testing room throughout. During each trial, a fixation cross appeared in the center of 1081 

the screen for 1000 ms before being removed. The trial stimulus then appeared on the screen 1082 

after a jittered duration of 100-900 ms. Participants responded by pressing the ‘J’ key on the 1083 

keyboard if the arrow in the center of the array pointed left, and the ‘K’ key if the center arrow 1084 

pointed right. Participants were asked to respond with their right forefinger and right middle 1085 

finger respectively. Only responses made 150 ms after the stimulus appeared were recorded, and 1086 

the stimulus was removed from the screen immediately after the participant made a valid 1087 

response. Participants were given an unlimited amount of time to respond, but were instructed to 1088 

respond as quickly and accurately as possible. EEG signal was monitored by the experimenter 1089 

throughout the session for abnormalities using PyCorder software (BrainProducts GmbH, 1090 

Munich, Germany) on the acquisition PC.  1091 

 1092 

3.3.1.2 Stimuli and apparatus 1093 

Stimuli were presented and recorded via a desktop PC equipped with Linux OS connected to a 1094 

24” LCD display with a refresh rate of 120Hz. As in Experiment 1, stimuli were presented via a 1095 

custom program in SMILE. Stimuli were presented in white text on the horizontal midline of a 1096 

dark gray field. Arrays on each trial consisted of a central target arrow pointing left or right, 1097 
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accompanied by 3 flanker items to the left and right that could be congruent (same direction), 1098 

incongruent (opposite direction) or neutral (lowercase ‘o’ characters) relative to the target. 1099 

Participants completed 20 blocks of the task, each block containing 48 trials that were 1100 

counterbalanced by condition (congruent, incongruent, neutral) and target direction (left, right). 1101 

In total, each participant completed 960 trials.  1102 

 1103 

3.3.1.3 Participants 1104 

8 right-handed participants who were fluent in English were recruited from The Ohio State 1105 

University, and were compensated at a rate of $10/hour. All participants provided informed 1106 

consent in accordance with the requirements of the Institutional Review Board at the university.  1107 

 1108 

3.3.1.4 Model fitting 1109 

Models were fit to behavioral data only, using procedures identical to those described in the 1110 

methods for Experiment 1.  1111 

 1112 

3.3.1.5 EEG preprocessing 1113 

All EEG preprocessing was completed using custom functions in the software package Python 1114 

Time Series Analysis (PTSA; https://github.com/compmem/ptsa). Data were filtered at 30 Hz to 1115 

eliminate low-frequency noise, and were resampled to 100 Hz to match the time step parameter 1116 

dt used in our model-fitting procedure. We employed wavelet-enhanced independent component 1117 

analysis (wICA; Castellanos & Makarov, 2006) to remove artifacts from eye-blinks and 1118 

saccades. Trials were segmented into epochs and time-locked to when the stimulus appeared on 1119 

the screen. Epochs were 2500 ms long beginning 500 ms before stimulus onset, and were 1120 
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baseline-adjusted according to the mean voltage within a 200 ms pre-stimulus window. Epochs 1121 

were rejected if kurtosis exceeded 5.0 or if the amplitude range exceeded 100V (17% of all 1122 

trials).  1123 

 1124 

3.3.1.6 Model-based EEG analysis 1125 

Given that the models in the current investigation make different predictions about the behavior 1126 

of the spotlight within each trial, our goal was to determine which mechanism best mapped onto 1127 

observed neural signals. As such, we used within-trial correlation analyses to assess the link 1128 

between model-generated attention signal and EEG voltage at each channel. Here, the “attention 1129 

signal” refers to vectors of time or cognitive control that contribute to the calculations of 1130 

spotlight standard deviation throughout a trial. We first fit each model to behavioral data from 1131 

each participant, and identified MAP estimates for each parameter. For each model, subject, and 1132 

task condition, we generated 30,000 trials using best-fitting parameters. Each simulation 1133 

generated a choice (correct or incorrect), RT, and vector of values representing drive to the 1134 

attentional mechanism at each timestep during the decision process. For each observed response, 1135 

we defined a selection window from  to  and identified the simulated 1136 

responses that terminated therein for the relevant subject and task condition. Observed trials that 1137 

matched fewer than 100 out of the 30,000 simulated trials in at least one model were discarded 1138 

from further analyses (38.5% of trials). Despite excluding a large proportion of trials, 3,914 trials 1139 

across participants were still included in our final analysis.  Across simulated trials that matched 1140 

a given observed trial, we calculated the mean attention signal value at each timepoint. The result 1141 

was a single attention signal vector for each observed trial and model. We then identified the 1142 

decision-relevant neural data on each trial. Once the EEG voltage data at each electrode was 1143 
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preprocessed and segmented into trial-level epochs as described in the methods, we defined a 1144 

decision-relevant window on each trial in between  after the stimulus appeared on the screen 1145 

and  prior to the response being executed, where  was the best-fitting non decision time 1146 

parameter value from the model at hand. The next step was to determine the relationship between 1147 

model-generated attentional drive and EEG voltage at the within-trial level. For each trial, 1148 

model, and electrode, we calculated the Pearson’s r correlation between EEG voltage and 1149 

attentional drive through time. We then performed a Fisher’s Z-transform on the trial-level r 1150 

values at each electrode. P-values were calculated via one-sample t-tests at the level of each 1151 

electrode, where the null hypothesis was that trial-level Z values did not differ from 0. 1152 

Significance was determined via the Benjamini-Hochberg procedure for adjusting for multiple 1153 

comparisons, which entails a rank-ordering of p-values at each electrode and a sliding 1154 

significance criterion (Benjamini & Hochberg, 1995). The result was a single EEG topography 1155 

for each model, indicating the extent to which model-generated attentional drive significantly 1156 

correlates with trial-level EEG activity. Because the DSTP model does not contain a continuous 1157 

within-trial mechanism for attention modulation, we fit the DSTP to the behavioral data but did 1158 

not include it in the EEG analysis.  1159 

 1160 

3.3.2 Results 1161 

 1162 

3.3.2.1 Behavior  1163 

Responses shorter than 150 ms or longer than 2000 ms were excluded from analyses and model-1164 

fitting (<2% of trials across subjects). As in Experiment 1, neutral trials were excluded as well 1165 

due to unforeseen perceptual pop-out effects. A summary of behavioral results is shown in Table 1166 
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4. We observed a similar pattern of results as in Experiment 1, specifically lower accuracy on 1167 

incongruent trials compared to congruent (t(7)=-6.652, p<0.001) and slower RTs for incongruent 1168 

trials compared to congruent (t(7)=4.935, p<0.05). We observed fast errors in both conditions, 1169 

but the RT difference between correct and error responses was only significant among 1170 

incongruent (t(7)=-6.392, p<0.001) and not among congruent trials (t(6)=0.187, p=0.858). 1171 

 1172 

Table 4: Average accuracy and mean RTs (ms) across participants for Experiment 3 1173 

Condition Accuracy All RT Correct RT Error RT 
Incongruent 0.936 738 756 486 
Congruent 0.990 552 553 520 

 1174 

3.3.2.2 Condition-level EEG 1175 

Stimulus-locked ERP results for correct responses in Experiment 3 replicated standard flanker 1176 

effects (Kopp et al., 1996). In central-posterior electrode locations, an N2 peak occurred 340-400 1177 

ms after stimuli appeared in the incongruent but not the congruent condition. We assessed 1178 

significance by means of a non-parametric permutation test with threshold-free cluster 1179 

enhancement (TFCE; S. Smith & Nichols, 2009). Each participant’s data were randomly shuffled 1180 

500 times with replacement, and we performed a 1-sample t-test at the level of each participant, 1181 

electrode, and time point within-trial, where the null hypothesis was that there was no difference 1182 

in voltage between congruent and incongruent trials. Using a critical family-wise error threshold 1183 

of p=0.05, we identified one cluster encompassing electrodes CP1, Cz, CPz, and P1 at time 1184 

points between 350 and 380 ms post-stimulus at which the voltage difference between the 1185 

congruent and incongruent conditions was significant. Topographic plots and grand average ERP 1186 

waveforms at CPz for the condition-level comparison are shown in Figure 17. 1187 
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Figure 17: Condition-level EEG results for Experiment 3. Topographic maps show voltage differences between 1188 

congruent and incongruent conditions at 370 ms post-stimulus, before (Panel A) and after (Panel B) threshold-free 1189 

cluster enhancement (TFCE). Panel C shows grand average ERP stimulus-locked waveforms for congruent and 1190 

incongruent trials at electrode CPz. Significant condition-level differences as determined by TFCE are shown as 1191 

green points. 1192 

 1193 

3.3.2.2 Model fits to behavior 1194 

Because we used the same task paradigm in Experiment 3 as in Experiment 1, we expected to 1195 

observe the same patterns in our model fits. Indeed, goodness-of-fit as measured by BPIC values 1196 

replicated the mixed results we observed in Experiment 1. When we calculate the average mean-1197 

centered BPIC values across subjects, the LCA control model outperforms the alternatives 1198 

(average mean-centered BPIC=-51.0) with the FFI control model coming in second place 1199 

(average mean-centered BPIC=-28.7). A heatmap showing the full goodness-of-fit results is 1200 

included in the supplementary materials. 1201 

 1202 

3.3.2.3 Model-based EEG results 1203 

Using data generated from each model, we calculated correlations between the signals 1204 

controlling the width of the attentional spotlight (e.g. time, time+noise, or cognitive control) and 1205 

EEG voltage during the decision. Because our current investigation was intended to bridge the 1206 
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gap between neurally plausible mechanisms in connectionist models and within-trial mechanisms 1207 

in SSMs, we were interested in seeing if any of our models generated attention mechanisms that 1208 

mapped onto an observed within-trial neural signal. Figure 18 illustrates the foundation of our 1209 

model-based EEG analysis. Visually, we observe that the control models generate attention 1210 

signals that gradually increase through time and begin to stabilize before a decision is made, 1211 

similar to the EEG signals. The time and time+noise models both predict more linear signals. 1212 

The time+noise models are able to predict variability in the rate of signal increase depending on 1213 

the duration of the decision, but the time models predict an identical trajectory of the attention 1214 

signal on every trial. 1215 

 1216 

 1217 

 1218 

 1219 

 1220 

 1221 

 1222 

 1223 

 1224 

 1225 

 1226 

 1227 

 1228 

 1229 
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Figure 18: Observed EEG voltages and model-generated attention modulation signals. Data and simulations are 1230 

shown for one subject. Analyses were completed at the level of every trial and electrode, but for the purposes of this 1231 

visualization, EEG voltages were averaged across electrodes that demonstrated the highest correlation with model-1232 

generated attention signals (TP8, P2, C6, CP6, CPz, Pz, FC6, C2, CP1, T8, P1, P4, FC4). Data were divided into 1233 

three bins based on three equal RT percentiles. Vertical lines represent the boundaries of the decision-relevant 1234 

interval between stimulus onset and the mean RT within-bin, limited by the mean best-fitting  across models.  1235 

 1236 

Mean Z values across trial-level correlations between EEG voltage and model-generated 1237 

attention modulation signals at each electrode are illustrated as topographic plots in Figure 19. 1238 
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All 6 models predicted attentional mechanisms that were most correlated with EEG activity at 1239 

right-posterior electrode locations. Out of all of the models, only the correlations between 1240 

attentional mechanisms in the LCA control model and EEG activity were statistically significant 1241 

(critical value = 0.1; electrodes TP8, P2, C6, CP6, CPz, Pz, FC6, C2, CP1, T8, P1, P4, FC4).  1242 

 1243 

Figure 19: Mean Z correlation maps for observed EEG data and model-generated attention modulation signals. 1244 

Data were generated by each model using each participant’s best-fitting parameters. For each trial, we calculated an 1245 

average vector of drive to the attention mechanism through time using each model’s simulations. Trial-level 1246 

correlations between EEG voltage and model-generated attention were calculated. Pearson’s r values were Fisher’s 1247 

Z-transformed, and p values were calculated for each model and electrode using a 1-sample t-test. Significance was 1248 

determined via Benjamini-Hochberg correction for multiple comparisons, and are indicated by yellow points. 1249 

 1250 

To observe differences in model predictions of attention modulation and how they relate to 1251 

neural signals, we calculated the pairwise differences in model-EEG correlations at the level of 1252 

each trial, and then calculated means at each electrode. Three comparisons yielded significant 1253 
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electrode-level differences: LCA control vs. FFI control (C4, C2, C1, C3, CP4, CP2, CPz, CP1, 1254 

CP3, P1, Pz, P2, P4), LCA control vs. FFI time (FC2, FCz, FC1, FC3, C4, C2, Cz, C1, C3, C5, 1255 

CP4, CP2, CPz, CP1, CP3, CP5, P3, P1, Pz, P2, P4, POz, PO3, Oz) and LCA control vs. FFI 1256 

time+noise (FC4, FC2, FCz, FC1, FC3, C6, C4, C2, Cz, C1, C3, C5, CP6, CP4, CP2, CPz, CP1, 1257 

CP3, CP5, P6, P5, P3, P1, Pz, P2, P4, PO4, POz, PO3, Oz). Topographic plots in Figure 20 show 1258 

that increased correlations between EEG voltage and attention modulation in LCA control, 1259 

relative to the predictions of the other models, are widespread across the scalp. All other pairwise 1260 

difference maps are shown in the supplementary materials. 1261 

Figure 20: Mean Z correlation difference maps for observed EEG data and model-generated attention modulation 1262 

signals. After calculating Z correlation values for each model and each electrode, we calculated the pairwise 1263 

difference topographic maps for each possible pair of models. P values were calculated for each model comparison 1264 

and electrode using a 1-sample t-test. Significant correlation differences were identified using a Bejamini-Hochberg 1265 

correction for multiple comparisons, indicated by yellow points. 1266 

 1267 

3.3.3 Discussion 1268 

Because we were interested in developing a neurally plausible model of the flanker task, we 1269 

wanted to test whether the attention mechanisms in any of our models resembled the fluctuations 1270 

of within-trial neural signals as measured by EEG. Attention mechanisms in all models were 1271 

most correlated with EEG activity in right-posterior regions, as shown in Figure 19, but only the 1272 
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LCA control model yielded significant correlation results. This is an interesting pattern of 1273 

findings in light of previous EEG studies designed to probe the spotlight view of spatial 1274 

attention, which often reported attentional correlates at posterior electrodes as well (Awh, Anllo-1275 

Vento, & Hillyard, 2000; Busch & VanRullen, 2010; Handy, Soltani, & Mangun, 2001). These 1276 

studies, however, tended to observe attention-related activity at central-posterior electrodes, and 1277 

lateralized effects only occured when stimuli appeared in the edges of the visual field (Hillyard, 1278 

Teder-Sälejärvi, & Münte, 1998; Mangun & Hillyard, 1988; M. Müller, Malinowski, Gruber, & 1279 

Hillyard, 2003). For example, Mangun and Hillyard (1988) investigated the hypothesis that early 1280 

sensory-evoked peaks would reflect a spotlight-like filtering of information. The authors 1281 

identified gradual decreases in P1 and N1 amplitudes that varied as a function of distance 1282 

between attended and evoking stimuli. These effects were specifically observed in posterior 1283 

electrode locations, contralateral to the screen location of the attended stimuli. Because stimuli 1284 

were only presented in the center of the screen in our paradigm, we believed our right-lateralized 1285 

results could reflect contamination by motor effects given that participants made all responses 1286 

with the right hand. Because this would result in strong motor-related activity in the left 1287 

hemisphere, it potentially obfuscated the attention-related activation.  It is nevertheless notable 1288 

that only the LCA control model generates a within-trial attention modulation signal that 1289 

significantly correlated with the gradual ramp-up and relaxation of neural amplitudes at 1290 

attention-relevant locations on the scalp.  1291 

 1292 

We calculated the pairwise differences maps shown in Figure 20 for two purposes: 1) to cancel 1293 

out the motor effects that could have affected each individual model-based EEG analysis, and 2) 1294 

to observe how each model compared to the others in terms of generating a neurally plausible 1295 
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attention modulation signal. Specifically for comparisons involving the LCA control model, we 1296 

identified large differences in correlation means that were widespread across the scalp. This 1297 

implies that the LCA control model was able to generate within-trial signals that resemble the 1298 

general time course of EEG voltages better than the alternative models. While we do not make 1299 

any strong claims here about the LCA control model capturing any specific neural processes, the 1300 

results of Experiment 3 support the notion that the mechanisms in the LCA control model behave 1301 

in a way that is in line with observed voltage time courses in the brain. 1302 

 1303 

4 General discussion 1304 

 1305 

4.1 Summary  1306 

In the current project, we presented a mechanistic theory of cognitive control in which within-1307 

trial modulation of attention is a byproduct of interacting decision processes. We tested our 1308 

theory by developing a set of SSMs, each making alternative assumptions about evidence 1309 

accumulation and attention modulation mechanisms. Models included time-based attention 1310 

processes like the existing flanker SSMs, or control-based attention mechanisms inspired by the 1311 

connectionist models (i.e. Botvinick et al., 2004; De Pisapia & Braver, 2006; Verguts 2017). 1312 

Because the control-based models calculate attention modulation from the noisy accumulators 1313 

while the time-based models operate in a strictly linear manner, we also included model variants 1314 

that calculate attention based on time with additional random noise. When specifying the 1315 

evidence accumulation processes in our models, we developed models with either strongly-1316 

correlated accumulators defined by FFI mechanisms, or weakly-correlated accumulators defined 1317 

by LCA mechanisms. These two mechanisms represent different hypotheses about the neural 1318 
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underpinnings of the decision process: the former assumes decisions are based on the difference 1319 

in firing across populations of neurons, and the latter assumes decisions are based on the 1320 

competition between the two most active populations of neurons. Though the competing 1321 

hypotheses concerning attention modulation and evidence accumulation were implemented and 1322 

compared within the SSP model, we fit the DSTP model as an additional point of comparison as 1323 

well. The DSTP presents an alternative mechanistic explanation for decision-guided attention, in 1324 

which response selection processes are conditionally dependent upon the outcome of stimulus 1325 

selection processes. Across three experiments, we found evidence that weakly-correlated LCA 1326 

mechanisms in combination with dynamic, control-guided attention modulation mechanisms 1327 

best-accounted for the data in each task condition. 1328 

 1329 

In Experiment 1, we fit the models to data from a standard flanker task. While all models fit the 1330 

data well, the two control-based models provided the best fits as determined by BPIC. Further 1331 

insights from ELI and CAF analyses revealed that the LCA control model was particularly 1332 

effective at capturing nuanced differences in performance between subjects, including slow 1333 

errors in the incongruent condition and fast errors in the congruent condition. To hone in on the 1334 

mechanistic assumptions of the FFI and LCA mechanisms, Experiment 2 featured a 1335 

manipulation of target color saturation. Because the FFI models assume that an increase in 1336 

evidence for one response requires a decrease in evidence for the other, we found that the FFI 1337 

models overestimated the speed of error distributions across conditions. The LCA models, and 1338 

particularly the LCA control model, were more flexible and therefore able to capture behavior 1339 

under conditions where targets and flankers differed in perceptual strength. In Experiment 3, we 1340 

collected EEG data alongside a standard flanker task in an effort to determine if any of our 1341 
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model-generated attention modulation signals resembled within-trial processes in the brain. 1342 

Using latent input joint modeling analyses, we found that the within-trial control signal generated 1343 

by the LCA control model uniquely mapped onto the time course of EEG voltages in between 1344 

stimulus onset and response. In an effort to summarize fit results across experiments, Figure 21 1345 

illustrates across-subject rank order sums, normed within experiment such that lower values 1346 

indicate more wins. Considering our results together, the LCA control model was the best-fitting 1347 

model compared to all other alternatives. 1348 

Figure 21: Rank order sums of BPIC values for each model and experiment. The best-fitting model for each subject 1349 

and experiment as determined by BPIC was assigned a rank of ‘1’, the second best model was ranked ‘2,’ and so on. 1350 

Rank values were summed within-experiment and normed based on the number of subjects in each experiment. 1351 

Black points indicate mean normed rank order sums across experiments.  1352 

 1353 

4.2 Interpretation of results 1354 

In the current project, we aimed to address a gap in the literature concerning within-trial 1355 

mobilization of cognitive control and modulation of attention. Several dominant theories suggest 1356 

that cognitive control operates on multiple timescales to appropriately focus attention on goal-1357 
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relevant information while also conserving cognitive resources (Braver et al., 2008; e.g. J. Brown 1358 

et al., 2007; Davelaar, 2008). These theories have often been operationalized within 1359 

connectionist models, which feature biologically-inspired mechanisms for engaging cognitive 1360 

control as a direct response to mutual activation of multiple choice units. Connectionist models, 1361 

however, typically include within-trial mechanisms only en route to explaining between-trial 1362 

effects, such as improved accuracy on flanker trials immediately following errors. Theories 1363 

specifically designed to explain trial-level effects, such as fast errors in the incongruent flanker 1364 

task condition, have instead been implemented within the SSM framework as variants of the 1365 

single-accumulator DDM (Hübner et al., 2010; Ulrich et al., 2015; White et al., 2011). These 1366 

models make specific predictions about attention processes that vary as a function of time, and 1367 

mutually-inhibitory evidence accumulation mechanisms. Here, we introduced an SSM in which 1368 

modulation of attention via cognitive control occurs as an emergent property of the dynamics of 1369 

the decision process. Our model draws upon neurally-plausible mechanisms from connectionist 1370 

models such as continuously-updated cognitive control and flexible evidence accumulation 1371 

mechanisms, but was implemented in an SSM framework to allow for trial-level data-fitting and 1372 

quantified model comparisons.  1373 

 1374 

Despite being designed to fit data from tasks that present conflicting information for two possible 1375 

options, the existing flanker SSMs do not include mechanisms for tracking or modulating 1376 

parameters based on mutual activation of two options. Changes to drift rate occur as a function 1377 

of time, regardless of the state of competition between the two choice alternatives. By 1378 

considering only the difference in activation of the two choices, these models are potentially 1379 

missing an important piece of the story concerning how the brain recruits cognitive control. 1380 
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Furthermore, the single-accumulator structure of the flanker SSMs make the powerful 1381 

assumption that an increase in evidence for one choice results in a decrease in evidence for the 1382 

other. Given the assertion that inhibitory control decisions involve two separate routes of 1383 

processing, automatic and controlled, it may be overly constraining to assume that evidence 1384 

accumulation between two choices is perfectly anticorrelated. By developing separate groups of 1385 

models with strongly-correlated FFI mechanisms and weakly-correlated LCA mechanisms, we 1386 

aimed to directly test and compare competing hypotheses about how the brain represents 1387 

competing information in inhibitory control tasks. While both FFI and LCA models were able to 1388 

capture general behavior in a standard flanker task as shown by the results of Experiment 1, LCA 1389 

processes were important for capturing subject-level differences in performance. The perceptual 1390 

strength manipulation in Experiment 2 further dissociated the predictions of the FFI and LCA 1391 

models. Models with FFI mechanisms failed to appropriately capture error distributions for 1392 

incongruent trials across target saturation conditions, while the flexibility of the LCA models 1393 

resulted in more successful fits. Together, these findings may suggest that decisions on inhibitory 1394 

control tasks may be based on the direct competition between choice options as represented by 1395 

weakly-correlated mechanisms in the LCA model, rather than the difference between them. Our 1396 

results seem to stand in contrast to recent findings from a stop-signal study, which found that 1397 

perfect negative dependence between racing accumulators predicted aspects of observed 1398 

behavior better than independent accumulators (Colonius & Diederich, 2018). This, perhaps, is 1399 

indicative of mechanistic differences between 2-alternative choices and go-nogo choices, or 1400 

indicates that accumulator dependence exists as a gradient and manifests differently from task to 1401 

task as has been suggested in the past (P. Smith & Ratcliff, 2004). Because it has been shown 1402 

that the LCA model can mimic a standard DDM under conditions of balanced leak and lateral 1403 
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inhibition (Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006), the most parsimonious 1404 

assumption favors the model that is flexible enough to capture all observed patterns in the data. 1405 

 1406 

We hypothesized that within-trial attentional mechanisms were based on some element of the 1407 

decision process rather than the mere passage of time. As such, we defined sets of models with 1408 

attention mechanisms driven by time like the original SSP, models driven by time with added 1409 

variability, and models driven by cognitive control which was calculated from the accumulators 1410 

at each timestep within the decision process. In Experiment 1 and even more strikingly in 1411 

Experiment 2, the control models outperformed the time-based models in terms of fits to 1412 

behavioral data. It is important to note that the control models consistently fit the data better than 1413 

time models with added variability, indicating that control mechanisms were tapping into a 1414 

signal present in the data beyond random noise. In Experiment 3, this contention was reinforced 1415 

by model-based EEG findings, indicating that the LCA conflict model was the only one with a 1416 

time course of visual attention mechanisms that significantly correlated with within-trial EEG 1417 

voltage.  1418 

 1419 

Our findings provide a model-based, mechanistic complement to recent neuroimaging work that 1420 

has investigated attention processes within-trial. One study recorded EEG data while participants 1421 

completed a variant of the flanker task with a manipulation of visual probe locations. Probes 1422 

were presented at different distances from the target on each trial in order to force modulation of 1423 

the visual field (Nigbur et al., 2015). N1 ERP amplitudes, which have been shown to be an index 1424 

of spatial attention (Heinze et al., 1994; Mangun & Hillyard, 1988), provided evidence that 1425 

conflict resolution on incongruent trials occurred mainly via target enhancement, not distractor 1426 
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suppression. The critical difference between Nigbur et al.’s findings and our own is that the N1 1427 

ERP reflects early perceptual processing 150-200 ms after stimulus onset (Haider, Spong, & 1428 

Lindsley, 1964), which is distinct from decision-related processes of interest in the current study. 1429 

Considering the two sets of results together, it is possible that initial stimulus-processing in the 1430 

spotlight framework of attention depends on target enhancement only, but that higher-order 1431 

decision processes require additional distractor suppression mechanisms. Indeed, previous 1432 

studies in EEG (Philiastides, Ratcliff, & Sajda, 2006; VanRullen & Thorpe, 2001) have shown 1433 

that visual processing and decision-making reflect distinctly different mechanisms. Philiastides 1434 

and colleagues (2006), for example, recorded EEG data while participants indicated either the 1435 

color or category of stimuli with different levels of phase coherence. The researchers showed 1436 

that a negative ERP at 170 ms post-stimulus onset reflected identification of the goal-relevant 1437 

feature in a trial (color vs. category), and that later ERPs reflected components of the decision 1438 

process (red vs. green or face vs. car). Importantly, only the late ERP components reflected trial-1439 

level difficulty or conflict between the two competing choice options. Nevertheless, further work 1440 

is needed to understand the possible dissociation between perceptual processing and decision-1441 

relevant computations in the presence of conflict.  1442 

 1443 

Despite converging findings across three experiments, the current study is not without 1444 

limitations. First, we mathematically defined within-trial cognitive control as the cumulative 1445 

distance between total evidence and a conflict threshold. We defined this function based on the 1446 

DMC framework of Braver and colleagues (Braver, 2012; De Pisapia & Braver, 2006), in which 1447 

cognitive control increases within-trial until conflict is resolved, and then may decrease toward 1448 

the end of a trial. Both of these properties were observed in neuronal firing patterns in the 1449 
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conflict-relevant ACC during a recent single-unit recording study (Hunt et al., 2018). Our 1450 

specific definition of the cognitive control function, however, may not be precisely correct in 1451 

terms of representing drive to attentional mechanisms. For example, a related mechanism 1452 

described by Yeung and colleagues (2004) calculated conflict as the product of activations across 1453 

possible responses. Within the SSM framework, however, the product of activations would result 1454 

in an unchanging attentional spotlight if one accumulator sporadically reached zero, which 1455 

would be a frequent occurrence on congruent trials. While it seems possible that the attentional 1456 

spotlight would not be necessary on congruent trials, Servant and colleagues (2014) compared 1457 

the original SSP to a variant in which the spotlight only shrank on incongruent trials. The authors 1458 

found that the alternative model provided worse fits to behavioral data compared to the original 1459 

model, and was specifically unable to capture the range in performance across subjects in the 1460 

congruent condition. Future work will investigate the nature of the cognitive control signal as it 1461 

relates to the amount of evidence in the system at a given time.  1462 

 1463 

A second limitation of the current investigation is that we investigated competing hypotheses 1464 

within the SSP model. We made this choice despite results from other studies demonstrating that 1465 

the SSP cannot capture patterns of data beyond the flanker task (notably, negative-going delta 1466 

functions in the Simon task; Ulrich et al., 2015), and that a version of the SSP implemented in 1467 

the LCA framework could not capture pre-motor partial error responses as measured by MEG 1468 

(Servant et al., 2015). We believe with modifications such as those explored in the current 1469 

project, the shrinking spotlight framework can indeed extend beyond what it was designed to 1470 

capture. Preliminary investigations of extensions for the LCA control SSP model presented here 1471 
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are currently underway, specifically for tasks involving gradations of conflict outside of the 1472 

flanker paradigm.  1473 

 1474 

4.3 Conclusions 1475 

In the current study, we sought to investigate the possibility of within-trial modulation of 1476 

attention based on the dynamics of the decision process, within a modeling framework that is 1477 

amenable to quantifiable comparisons. We systematically developed and compared models that 1478 

featured time-based or control-based attention mechanisms, and strongly- or weakly-correlated 1479 

evidence accumulation mechanisms. Across three experiments, we found that a flexible 1480 

accumulator structure in combination with control-based attention processes provided the best 1481 

fits to behavioral data. Additionally, we found that the within-trial attention modulation signal in 1482 

the LCA control model uniquely correlated with neural signals in the brain. While we have 1483 

focused on within-trial mechanisms in the current study, future work will investigate the 1484 

possibility that the decision-related signals driving the within-trial effects of interest here can 1485 

also result in between-trial effects, such that the end-state of cognitive control in one trial 1486 

contributes to the starting point of the attentional spotlight on the next.  1487 

 1488 

 1489 

 1490 

 1491 

 1492 

 1493 

 1494 



MODELING WITHIN-TRIAL CONFLICT                                     76 

Supplementary materials 1495 

 1496 

S1 Dual-stage two-process (DSTP) model implementation 1497 

 1498 

S1.1 Experiments 1 and 3 1499 

The DSTP model designed by Hübner and colleagues (2010) specifies two discrete stages of 1500 

visual processing: 1) an early stage for identifying simple stimulus features and perceptual 1501 

filtering, and 2) a late stage dedicated to processing the target. For reference, a diagram of the 1502 

DSTP model is provided in Figure 2 of the main manuscript. Stage 1 begins with two separate 1503 

diffusion processes running in parallel, one representing the stimulus selection phase (which will 1504 

be denoted “SS”)  and the other representing the response selection phase (which will be denoted 1505 

“RS1”). Evidence accumulation within each phase was implemented as a stochastic differential 1506 

equation: 1507 

  1508 

Here,  is evidence and  is the drift rate. The degree of noise in the accumulation process is 1509 

represented by , a driftless Wiener process distributed as . To approximate this 1510 

continuous differential equation, we used the Euler method to discretize time, choosing a step 1511 

size of , modified by a time constant of  The drift rate for SS is a free 1512 

parameter ( ) and the drift rate for RS1 is the sum of free parameters representing the strength 1513 

of target and flanker stimuli, respectively: 1514 

  1515 

where  is always positive and  is negative in the incongruent task condition and 1516 

positive in the congruent task condition. In SS and RS1, evidence accumulated through time until 1517 
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either process reached a decision threshold. Evidence accumulation processes were bounded 1518 

between decision thresholds relevant to each phase ( ) and 0. Starting points for each 1519 

phase were determined from proportions  of the relevant threshold, such that 1520 

  1521 

 . 1522 

 If  reached  or 0 before  reached  or 0, a response was made immediately 1523 

with an RT equal to the sum of the duration of RS1 and non−decision time . In RS1, crossing 1524 

the  boundary meant the response corresponding to the target stimulus was selected, whereas 1525 

crossing the 0 boundary meant the response corresponding to the flanker stimuli was selected.  If 1526 

 reached  or 0 before  reached  or 0, a stimulus is selected for further 1527 

processing in Stage 2. In SS, crossing the  boundary indicated selection of the target for 1528 

further processing, whereas crossing the 0 boundary indicated selection of the flankers for further 1529 

processing. Response selection in Stage 2 (denoted “RS2”) is another diffusion process with drift 1530 

rate  and threshold . The starting point  of RS2 was the value of  at time  1531 

when  reached a decision boundary.  was negative when the stimulus was incongruent 1532 

and  crosses 0. As in Stage 1, crossing the  boundary in Stage 2 meant the response 1533 

corresponding to the target stimulus was selected, whereas crossing the 0 boundary meant that 1534 

the response corresponding to the flanker stimuli was selected. The RT was equal to the sum of 1535 

the durations of RS1 and RS2, and non decision time parameter . Free parameters and priors in 1536 

our implementation of the DSTP model are provided in Table S1.  1537 

 1538 

 1539 

 1540 
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Table S1: Summary of free parameters and priors in the DSTP 1541 

Parameter Description Prior 

 drift rate, RS1, target  

 drift rate, RS1, flankers  

 drift rate, SS  

 drift rate, RS2  

 decision threshold, RS1 & RS2  

 decision threshold, SS  

 starting point, RS1  

 starting point, SS  

 non decision time  
 1542 

The model was able to capture basic effects such as a higher proportion of errors in the 1543 

incongruent condition compared to congruent, and faster errors than correct responses in the 1544 

incongruent condition. Figure S1 illustrates the performance of the DSTP model via model-1545 

generated choice-RT distributions for each condition. The model performers similarly to the FFI 1546 

time model, predicting more variability in RTs for correct responses in the incongruent condition 1547 

than we observe in the data. As shown by conditional accuracy functions (CAFs) in Figure S2, 1548 

the DSTP model also does not predict slow errors in either the congruent or incongruent 1549 

condition, similar to the FFI models in our investigation. Interestingly, the DSTP model is able to 1550 

capture fast errors in the congruent condition, unlike the time-based models in our investigation. 1551 

As discussed in the main text, the poor performance of the DSTP model in comparison to the 1552 

conflict-based alternatives appears to be due in part to its complexity. 1553 

 1554 

 1555 

 1556 
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Figure S1: Observed and DSTP model-generated choice-RT distributions. Observed RT distributions for correct 1557 

(light gray histograms) and incorrect (dark gray histograms) responses were averaged across participants. Models 1558 

were simulated 10,000 times for each condition, using each participant’s best-fitting parameters. Lines show average 1559 

model-generated distributions across participants.  1560 

Figure S2: Observed and DSTP-predicted CAFs for congruent and incongruent trials. Data from each subject were 1561 

sorted according to RT within 6 equally-spaced percentile bins. Performance and minimum RT for each bin were 1562 

averaged across participants in the congruent (blue Xs) and incongruent (red Xs) conditions. After generating 1,000 1563 

choice-RT pairs from each subject’s best-fitting parameters within each model, the same procedure was used to 1564 

calculate CAFs for each model (gray lines).  1565 
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S1.2 Experiment 2 1566 

Experiment 2, designed and administered by Servant et al. (2014), required participants to 1567 

indicate the color of a target circle amid flanker circles of a congruent or incongruent color. The 1568 

color saturation of center target circles varied from trial to trial within six conditions (degrees of 1569 

suprathreshold saturation levels: 15%, 25%, 35%, 45%, 60% and 80%), while the color 1570 

saturation of flanker circles was held constant at 80%. An example of the stimuli used in 1571 

Experiment 2 is provided in Figure 13 of the main manuscript. To fit the DSTP model, we 1572 

needed to make adjustments to accommodate the target color saturation manipulation. When 1573 

modifying our SSP variants to fit data from Experiment 2, we replaced the perceptual input 1574 

strength parameter  with six points along a monotonically increasing sigmoid function. We took 1575 

a similar approach to modifying the DSTP. We made the assumption that the target color 1576 

saturation manipulation would affect both RS1 and SS phases of Stage 1, with RS1 representing 1577 

automatic feature-driven attentional processes and SS representing a more controlled mode of 1578 

selecting a stimulus for further processing. Because RS2 in Stage 2 represents decision processes 1579 

after the target has already been identified in the SS phase, specific perceptual features of the 1580 

target like color saturation should not have an affect on  We therefore implemented 1581 

sigmoidal functions to calculate drift rates in both RS1 and SS. Because the color saturation of 1582 

targets varied between trials while the color saturation of flanker stimuli was held constant, we 1583 

specified a vector  such that 1584 

 was 1585 

calculated via a sigmoidal function  1586 

 1587 
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where  and , , and  were free parameters. 1588 

, representing the floor value of the sigmoidal function, was fixed to 0 since values of  1589 

were constrained to be positive in the original model.  was then calculated with the equation  1590 

  1591 

for each target color saturation condition , where  was negative on incongruent trials. 1592 

Similarly for the SS phase, we specified a vector  such that 1593 

 was calculated via a 1594 

sigmoidal function 1595 

 1596 

Where , , , and  were free parameters. Here,  was free to allow drift rates in the 1597 

SS phase to take on negative values. Examples of sigmoidal functions calculated from various 1598 

values of , , and  are shown in Figure 14 of the main manuscript. Priors for free parameters 1599 

governing the sigmoidal functions for phases RS1 and SS are provided in Table S2. 1600 

 1601 

Table S2: Summary of free parameters and priors in the DSTP added for Experiment 2 1602 

Parameter Prior 

  

  

  

  

  

  

  
 1603 

 1604 

 1605 
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S3 Full BPIC comparison from Experiment 1 1606 

The LCA control model that was described in the main manuscript included free parameters for 1607 

both leak ( ) and lateral inhibition ( ). To test if either  or  was independently driving the 1608 

model’s success at fitting the data from Experiment 1, we additionally fit variants with free  and 1609 

fixed  ( ), and free  and fixed  ( ). Figure S3 is a modified version of Figure 6, 1610 

which illustrates BPIC values for each model, mean-centered within-subject. Our results show 1611 

that the full LCA control model with free  and  outperform the fixed-parameter variants. By 1612 

calculating differences in BPIC values between the fixed  and fixed  variants across subjects, 1613 

we found that the model with fixed  fit better than the model with fixed  on average (15 wins 1614 

for model with fixed  compared to 11 wins for the model with fixed ). Compared to the full 1615 

LCA-control model with free leak and lateral inhibition terms, however, neither model fit the 1616 

data as well (14 wins for full model, 6 wins for model with fixed , 6 wins for model with fixed 1617 

). Our results indicate that both leak and lateral inhibition are necessary for fitting the data 1618 

across subjects within our control framework. 1619 
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Figure S3: Heat map of BPIC values, mean-centered within-subject for Experiment 1. Each column corresponds to a 1620 

subject. Lower BPIC values (blue hues) indicate better model fits. The winning model for each subject is outlined in 1621 

black. Average mean-centered values across subjects are shown in the panel to the right.  1622 

 1623 

S3 Additional results from Experiment 3 1624 

A comparison of model fits to the behavioral data collected in Experiment 3 is shown as a 1625 

heatmap in Figure S4. BPIC values were mean-centered within-subject, and lower values 1626 

indicate better fits. When considering mean values across subjects, we observed similar results in 1627 

Experiment 3 as in Experiment 1, such that the two control-based models outperformed the 1628 

alternatives. 1629 

 1630 

 1631 

 1632 

 1633 
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Figure S4: Heat map of BPIC values, mean-centered within-subject for Experiment 3. Each column corresponds to a 1634 

subject. Lower BPIC values (blue hues) indicate better model fits. The winning model for each subject is outlined in 1635 

black. Average mean-centered values across subjects are shown in the panel to the right.  1636 

 1637 

In our model-based EEG analysis of data from a standard flanker task administered in 1638 

Experiment 3, we calculated correlations between the signals controlling the width of the 1639 

attentional spotlight (e.g. time, time+noise, or cognitive control) and EEG voltage during the 1640 

decision. Correlation maps for each individual model are shown in Figure 19 of the main 1641 

manuscript. Topographic plots in Figure S5 show that increased correlations between EEG 1642 

voltage and attention modulation in LCA control, relative to the predictions of the other models, 1643 

are widespread across the scalp. None of the other difference maps reveal significant results. 1644 

 1645 
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 1646 

Figure S5: Mean Z correlation difference maps for observed EEG data and model-generated attention modulation 1647 

signals. After calculating Z correlation values for each model and each electrode, we calculated the pairwise 1648 

difference topographic maps for each possible pair of models. P values were calculated for each model comparison 1649 

and electrode using a 1-sample t-test. Significant correlation differences were identified using a Bejamini-Hochberg 1650 

correction for multiple comparisons, indicated by yellow points. 1651 

 1652 

 1653 

 1654 

 1655 

 1656 

 1657 

 1658 

 1659 
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