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Abstract
Visual attention is often through to take the form of a spotlight or zoom lens that gradually focuses on goal-relevant features of a
stimulus over the course of a trial. Several lines of evidence suggest that for spatially contiguous stimuli, the spotlight naturally
takes on the shape of a horizontally biased ellipse. Analyses of group-level behavior in the presence of horizontally versus
vertically configured stimuli, however, potentially obfuscate an important source of between-subject variability in the early stages
of attentional processing. In the current study, we used a two-dimensional flanker task paradigm and nested variants of a model of
within-trial attention and decision mechanisms to investigate individual differences in spotlight shapes. To account for the
influence of distractor stimuli in both horizontal and vertical positions relative to the target, we operationalized the attentional
spotlight as the density function for a bivariate normal distribution within our models. Horizontal and vertical shape parameters
governing the spotlight were constrained to be equal in one model variant, and were allowed to vary in the other. Within-subject
comparisons of Bayesian goodness-of-fit statistics revealed a general preference for an elliptical rather than a circular spotlight.
Follow-up analyses, however, demonstrated substantial variability in spotlight shapes across subjects. Although data from most
subjects were best captured by a horizontally biased elliptical spotlight, we observed individual differences in the extent of the
bias, with some subjects even demonstrating a circular or vertically biased elliptical spotlight.

Keywords Attention: theoretical and computational models . Cognitive and attentional control

Introduction

Although the mechanisms underlying visual attention remain
a topic of active research, it is widely accepted that the focal
area of attention can vary in size (Castiello & Umiltà, 1992; C.
Eriksen & St James, 1986; Henderson, 1991; Jonides, 1983;
LaBerge, 1983; Lavie, 1995) and that processing is more ef-
ficient when the focal area is small, compared to when it is
large (C. Eriksen & Schultz, 1979; C. Eriksen & Yeh, 1985;
Pan & Eriksen, 1993; Umiltà, 1998). The Eriksen flanker task
(B. Eriksen & Eriksen, 1974), which requires participants to
respond to a target while ignoring target-congruent or -
incongruent distractor stimuli, has proven to be a particularly
useful tool for studying attention. Notably, Gratton, Coles,
Sirevaag, Eriksen, and Donchin (1988) used the flanker task
to reveal a time-related component to attentional processing

efficiency, such that incongruent distractors cause markedly
less processing interference as response times (RTs) increase.
These and other behavioral and electrophysiological findings
suggest that distractor stimuli have an influence on processing
early in the trial, but that it decreases through time (Burle,
Possama ï , Vida l , Bonne t , & Hasbroucq , 2002 ;
Czernochowski, 2015; Nigbur, Schneider, Sommer,
Dimigen, & Stürmer, 2015; Ridderinkhof, 2002). In their sem-
inal theory, Eriksen and St. James (1986) provided the expla-
nation that attention behaves as a zoom lens or shrinking
spotlight that starts out wide and diffuse at the beginning of
a trial and gradually focuses on the target.

The size and shape of the attentional spotlight has been
extensively studied using mixtures of horizontally and verti-
cally arranged flanker stimuli (Chen & Tyler, 2002; Cohen &
Shoup, 1993; Livne & Sagi, 2011; Vejnović & Zdravković,
2015) and visual search paradigms (Hüttermann,Memmert, &
Simons, 2014; Luck, Hillyard, Mangun, & Gazzaniga, 1989;
Panagopoulos, Von Grünau, & Galera, 2004). By manipulat-
ing the spatial distance, position, and stimulus onset
asynchrony of distractors relative to targets, for example,
Pan and Eriksen (1993) concluded that the dimensions of the
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spotlight dynamically adjust from trial to trial based on the
spatial configuration of the stimulus at hand. In line with these
results, subsequent work showed that the spotlight can take on
the shape of a ring (Müller & Hübner, 2002) or a Mexican hat
(Müller, Mollenhauer, Rösler, & Kleinschmidt, 2005) or can
be divided among non-contiguous locations (Dubois,
Hamker, & VanRullen, 2009; Müller, Malinowski, Gruber,
& Hillyard, 2003; Treue & Martinez-Trujillo, 2012) depend-
ing on the spatial arrangement of the stimuli and the demands
of the task. Through group-level analyses of speed and accu-
racy, however, other studies have concluded that there is a
dimensional bias to the spotlight, such that it is elliptical in
shape, broadly distributed along the horizontal plane and nar-
rowly distributed along the vertical plane (Andersen &
Kramer, 1993; Feng, Jiang, & He, 2007; Hüttermann,
Memmert, Simons, & Bock, 2013). While we acknowledge
that the notions of a stimulus-dependent spotlight and a hori-
zontal attention bias are not mutually exclusive, we contend
that the extent to which these processing features trade off
within individual participants has not been thoroughly
investigated.

In the current study, we used a two-dimensional flanker
task paradigm and a corresponding computational model to
investigate the hypothesis that individuals vary in dimensional
biases related to attentional allocation when controlling for the
spatial configuration of stimuli across conditions. As shown in
Fig. 1, stimuli were designed to be identical in spatial distri-
bution across conditions in an effort to limit stimulus-
dependent modulation of the spotlight. Within each condition,
we manipulated the arrangement of target-congruent and -
incongruent distractors that participants must ignore in order
to indicate the direction of the center target. We fit two vari-
ants of a sequential sampling model of within-trial decision
processing during the flanker task to each participant’s data,
which allowed us to calculate parameter estimates based on
trial-level choices and RTs (Weichart, Turner, & Sederberg,
2020). Both model variants contain an attentional spotlight,
implemented as the density function for a bivariate normal
distribution that narrows onto the target throughout the deci-
sion process. The shape of the spotlight is specified by sepa-
rate horizontal and vertical standard deviation (SD) parame-
ters. In the circular spotlight model, the shape parameters
were constrained to be equal in order to reflect the horizontally
and vertically symmetric spatial configuration of the stimuli.

The alternative elliptical spotlight variant subsumes the circu-
lar spotlight model, and allows the horizontal and vertical
shape parameters to take on different values to optimally fit
each participant’s data, if needed. Our results show that an
elliptical rather than a circular spotlight is favored for most
subjects, and demonstrate notable variability between subjects
in terms of horizontal or vertical biases.

Methods

Participants

Twenty-six undergraduate students were recruited from the
University of Virginia to participate in exchange for partial
course credit. All participants provided informed consent in
accordance with the requirements of the Institutional Review
Board at the university.

Stimuli and apparatus

A custom program using the State Machine Interface Library
for Experiments (SMILE; https://github.com/compmem/
smile) was written to present stimuli, track timing, and log
responses. The experiment was administered on a desktop
computer with Windows 10, connected to a 24-in., 1,920 ×
1,080-pixel LED display with a refresh rate of 120 Hz. Stimuli
were presented in white text on a dark gray background.
Participants made responses using the outer two keys of a
four-key Black Box ToolKit response pad. Stimulus arrays
were comprised of 13 left- or right-facing arrows arranged in
a diamond formation. Distractor arrows took on one of five
configurations, as illustrated in Fig. 1, and participants were
asked to indicate the direction of the arrow in the center of the
array while ignoring all distractors. The stimuli were designed
in consideration of research demonstrating that distractor in-
terference is positively correlated with the proximity of
distractors to the target (Andersen & Kramer, 1993; Feng
et al., 2007; Pan & Eriksen, 1993). In the easy condition, all
distractors were congruent to the target. In the moderate and
hard conditions, distractors were incongruent to the target in
the outer and inner layers of the array, respectively.Horizontal
and vertical conditions were included to test for asymmetries
in dimension-level response competition. On each trial, the

Fig. 1 Examples of stimuli.Colors are used to highlight the contrasting configurations of left (red) and right (blue) arrows. All stimuli shown here contain
a left-facing target, but analogous stimuli with right-facing targets were included in the experiment as well
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array was presented in one of eight locations around the
screen. Possible locations were equidistant from the center
of the screen in increments of 45°. Task condition (easy, mod-
erate, hard, horizontal, or vertical), target direction (left or
right) and screen location (0, 45, 90, 135, 180, 225, 270, or
315°) were counterbalanced and randomized within block.
Across eight blocks each consisting of 80 trials, participants
completed a total of 640 trials.

Procedure

Participants provided informed consent and were seated
in individual testing rooms. Written instructions and ex-
ample stimuli appeared on the screen, and instructions
were also provided verbally by an experimenter. A prac-
tice module with visual feedback for correct and incor-
rect responses was administered until the experimenter
verified that the participant understood the task (~1
min). Prior to beginning the main task, the experimenter
provided the following information: “You will complete
eight blocks of the task, each lasting about 2 minutes.
At the end of each block, you will receive a score
based on speed and accuracy. Please try to get the
highest score that you can.” Once the task began, a
fixation cross appeared in the center of the screen and
remained present for the duration of the block. Stimuli
appeared on the screen and remained until a response
was made, or for a maximum of 3,000 ms. Participants
responded by pressing the leftmost key on the response
pad if the arrow in the center of the array pointed left,
and the rightmost key if the center arrow pointed right.
Only responses made at least 150 ms after the stimulus
appeared were recorded. At the end of each block, par-
ticipants received a composite score between 0 and 100
that was calculated as shown in Equations 1–3:

accuracy ¼
Ncorrect

N total
−0:5

0:5
ð1Þ

speed ¼
∑
i∈I

log RTmax þ 1:0ð Þ−log iþ 1:0ð Þ
log RTmax þ 1:0ð Þ−log RTmin þ 1:0ð Þ

Ntotal
ð2Þ

score ¼ speed*accurancy*100 ð3Þ
where I is a vector of RTs in seconds. Within this scoring
metric, performance across conditions was scaled between
chance (0.5) and perfect accuracy (1.0), and RTs were scaled
to fall within an expected range of RTmin = 350ms to RTmax =
1350ms. Log transformswere used in Equation 2 to correct for
rightward skew in the RT distributions, and 1.0 was added to
prevent negative log RT values. To earn a high score, partic-
ipants needed to respond both quickly and accurately in all
conditions.

Computational models

The basemodel in our current investigation was designed after
the zoom lens theory of Eriksen and St James (1986), with
decision and attention mechanisms implemented within a
leaky-competing accumulator (LCA; Usher & McClelland,
2001) model framework. Specifically, we modified the LCA-
control model of the flanker task described by Weichart et al.
(2020) to accommodate two-dimensional stimuli. Details of
the LCA-control model are provided in the original article, but
will be summarized here. In LCA-control and other accumu-
lator models, trial-level decisions are thought to result from
the noisy build-up of evidence for competing response options
up to a threshold (α). Evidence accumulation is governed by
drift rates that reflect the strength of information provided by
the stimulus, lateral inhibition (β), and passive decay through
time (κ). Each accumulator i with drift rate ρi and current
evidence xi is updated continuously as shown in Equation 4.

dxi ¼ ρi−κxi−β ∑
j≠i
x j

 !
dt
Δt

þ ξ

ffiffiffiffiffiffi
dt
Δt

r
xi→max xi; 0ð Þ

ð4Þ

In our implementation, time is discretized via the Euler
method, using a step size of dt = 0.01 modified by a time
constant of △t = 0.1. The degree of noise is represented as a
driftless Wiener process distributed as ξ∼N 0; 1ð Þ. Responses
are made in favor of the first accumulator to exceed α, and
RTs are equal to the duration of the decision process plus a
non-decision time parameter (τ). Similar to the shrinking spot-
light model designed by White, Ratcliff, and Starns (SSP;
2011), LCA-control features an attentional spotlight that grad-
ually focuses on the target throughout the trial. Unlike the
original SSP, the spotlight shrinks due to the dynamics of
the decision process and not simply due to the passage of time.
In previous work, the LCA-control model outperformed alter-
native time-based spotlight models in terms of fits to data from
two variants of the flanker task, uniquely demonstrated an
ability to capture nuanced differences in behavior between
subjects, and accurately predicted trial-level buildup in EEG
activity related to visual attention (Weichart et al., 2020). For
our current purposes, the spotlight takes the form of a density
function for a bivariate normal distribution centered on the
target stimulus with initial horizontal and vertical SDs of
sd0(h) and sd0(υ), respectively. The spotlight shrinks as a
function of an online measure of cognitive control (c), modi-
fied by a rate parameter (rd) as shown in Equations 5 and 6.

sda hð Þ ¼ sd0 hð Þ−rdc ð5Þ
sda υð Þ ¼ sd0 υð Þ−rdc ð6Þ

A ratio parameter Θ governs the relationship between

sd0(h) and sd0(υ), such that Θ ¼ sd0 hð Þ
sd0 υð Þ. Θ was fixed to 1.0
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when fitting the circular spotlight model, but was a free pa-
rameter when fitting the elliptical spotlight model. The behav-
iors of the attentional spotlights in the circular and elliptical
spotlight models are illustrated in Fig. 2.

The mechanism for cognitive control is based on descrip-
tions of reactive control discussed in Braver’s dual mecha-
nisms of control framework (Braver, 2012; Braver, Gray, &
Burgess, 2008; De Pisapia & Braver, 2006), and is calculated
as the cumulative distance between the total evidence and a
conflict resolution threshold, δ. The continuous change in c is
given by Equation 7.

dc ¼ δ− ∑
i∈ 1;2f g

xi

 !
dt
Δt

ð7Þ

Each individual arrow in a stimulus array occupies
one square unit of perceptual space, and the spotlight
is centered on the target. Drift rates corresponding to
correct (ρ1) and incorrect (ρ2) responses are calculated
as the total volume of the spotlight allocated to target-

congruent and target-incongruent arrows, respectively.
Within each unit square of the 5 × 5 stimulus array,
we used the trapezoidal method to estimate the bivariate
probability density at 100 equally spaced points
(Kalambet, Kozmin, & Samokhin, 2018). The spotlight
volume allocated to each unit square was then estimated
from the integral of the density values over the range of
interest, multiplied by the perceptual strength of a single
arrow (p), as shown in Equation 8.

V ¼ p∫nþ1
n ∫mþ1

m
1

2πsda hð Þsda υð Þ exp −
1

2

x2

sda hð Þ2 þ
y2

sda υð Þ2
" # !

dydx

ð8Þ

Values of dx and dywere set to 0.1, and (x, y) coordinates fell
within the unit square occupied by an arrow with vertices (n,
m), (n + 1, m), (n + 1,m + 1), (n, m + 1), such that n,m ∈ [−2.5,
−1.5, −0.5, 0.5, 1.5]. A summary of free parameters in the two
models and their respective prior distributions is shown in
Table 1.

Fig. 2 Representation of the shrinking two-dimensional spotlight of visu-
al attention. Over the course of a trial, illustrated from left to right, the
spotlight shrinks and focuses on the center arrow of a stimulus array,
rendered in each subplot at z = 0. The strength of visual attention
allocated to each arrow in a stimulus array is calculated from the

density of a bivariate normal distribution within the corresponding unit
square. The top panels show a circular spotlight, such that the shape
parameters of the bivariate normal are constrained to be equal. The
bottom panels show an elliptical spotlight, such that the two shape
parameters are free to vary
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Model fitting and assessment

We used the model-fitting procedures described in detail
by Weichart et al. (2020) with probability density ap-
proximation methods (PDA; Turner & Sederberg, 2014)
that were implemented via custom programs in
RunDEMC (https://github.com/compmem/RunDEMC).
Broadly, fitting a model to a set of trial-level data from
an individual subject was a six-step process: First, we
specified the relevant model as a system of equations,
prior distributions that were determined through a series
of pilot investigations, and starting values for each free
parameter. Next, the model was simulated 30,000 times
using the starting set of parameter values. This step
generated distributions of data in each task condition.
The probability density function for the simulated data
was then approximated using an Epanechnikov kernel
(Turner & Sederberg, 2014; Turner, Sederberg, &
McClelland, 2016). The estimated functional form of
the simulated data is an approximation of the likelihood
function of each observed response under the current set
of parameter values. The posterior density of the param-
eter set was calculated as a combination of the likeli-
hood function and the priors. A new proposal parameter
set was then selected using differential evolution with
Markov chain Monte Carlo (DE-MCMC; Ter Braak,
2006; Turner & Sederberg, 2012; Turner, Sederberg,
Brown, & Steyvers, 2013), a genetic algorithm that se-
lects parameter values according to the success of pre-
vious proposals. This procedure was implemented for
800 iterations across 90 chains. Goodness of fit was
assessed using estimates of Bayes factor, which allowed
us to make inferences about the strength of evidence in
favor of one model over the other using the scale de-
scribed by Kass and Raftery (1995). We first calculated

the Bayesian information criterion (BIC; Schwarz, 1978)
value for each model using the equation

BIC ¼ −2log L bθ���D� �� �
þ log Nð Þp; ð9Þ

where L bθ���D� �� �
is the maximum log likelihood esti-

mate of parameter set θ, N is the number of trials, and
p is the number of free parameters. We then approxi-
mated Bayes factor by comparing BIC values for each
candidate model using the following equation (Kass &
Raftery, 1995):

BFi; j≈exp −
1

2
BICi−BIC j
� �� 	

: ð10Þ

Results

Behavioral results

Performance scores based on speed and accuracy were calcu-
lated for each participant and task condition using Equations
1–3. As shown in panels A, B, and C of Fig. 3, we observed
the expected pattern of decreasing performance from the easy
to the moderate condition (accuracy: t(25) = 3.48, p = 0.0018;
speed: t(25) = -10.75, p < 0.0001; composite score: t(25) =
9.65, p < 0.0001) and from the moderate to the hard condition
(accuracy: t(25) = 5.54, p < 0.0001; speed: t(25) = -6.21; p <
0.0001; composite score: t(25) = 8.74, p < 0.0001).
Performance was also better across participants in the horizon-
tal compared to the vertical condition when considering com-
posite scores, and this effect was driven by faster RTs rather
than an a difference in accuracy (accuracy: t(25) = 1.01, p =
0.3244; speed: t(25) = -4.20, p = 0.0003; composite score:
t(25) = 3.92, p = 0.0013). Panels D, E, and F of Fig. 3 present
nuanced insight into the latter comparison. The majority (20
out of 26) of participants performed better in the horizontal
compared to the vertical condition, but some participants (six
out of 26) displayed the opposite pattern of results. This indi-
cates that most participants were better at ignoring incongru-
ent distractors that were placed immediately above and below
the target, compared to those that were placed immediately to
the left and right. Model predictions shown in panels A, B,
and C of Fig. 3 are discussed in the Model results section
below.

Model results

Before assessing our results, we first compared maxi-
mum log-likelihood (MLL) estimates from the circular
and elliptical spotlight models at the level of each

Table 1 Model free parameters and priors

Parameter description Prior

Decision threshold logit α
30:0

� �
∼N μ ¼ −1:0;σ ¼ 1:2ð Þ

Lateral inhibition logit βð Þ∼N μ ¼ 0:0;σ ¼ 1:4ð Þ
Evidence leak logit κð Þ∼N μ ¼ 0:0;σ ¼ 1:4ð Þ
Non-decision time logit τ

RTmin

� �
∼N μ ¼ −0:2;σ ¼ 1:2ð Þ

Initial spotlight SD
(horizontal)

logit sd0 hð Þ−0:1
30:0−0:1

� �
∼N μ ¼ −0:2;σ ¼ 1:2ð Þ

Spotlight dimension ratioa Θ~γ(α = 3.0, β = 2.0)

Rate of focus logit rd
20:0

� �
∼N μ ¼ −2:;σ ¼ 1:0ð Þ

Conflict resolution
threshold

logit δ
30:0

� �
∼N μ ¼ −1:0;σ ¼ 1:2ð Þ

Perceptual input strength logit p
20:0

� �
∼N μ ¼ −0:8;σ ¼ 1:2ð Þ

a Spotlight dimension ratio was a free parameter in the elliptical spotlight
model only.
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subject as a check for our fitting procedures. Because
the elliptical model subsumes the circular variant, the
MLL for the elliptical model should always be greater
than or approximately equal to that of the circular mod-
el. We indeed found this to be true for all subjects. We
then estimated Bayes factor values to compare the two
models in order to account for model complexity in
addition to MLL when assessing model performance.
Results are shown in Fig. 4. Log Bayes factor values
favor the circular model (negative values) in cases
where the addition of the free parameter Θ did not
improve the fit of the model (six out of 26 subjects).
For 20 out of 26 subjects, however, the additional flex-
ibility of the elliptical model provided improved model
fits as determined by Bayes factor estimates. Evidence
was “strong” or “very strong” for 16 out of 26 subjects
in favor of the elliptical model, and for one out of 26
subjects in favor of the circular model.

We next wanted to gain insight into the range of spotlight
dimensions calculated within the elliptical model. We first
determined the scaled difference between horizontal and ver-
tical standard deviations (Dh, υ) from each subject’s best-

Fig. 3 Results. Top row: Observed and model-predicted scores within
condition. Bars show observed mean accuracy (A), mean response times
(RTs) (B), and composite scores (C). Triangular and circular points show
mean scores predicted by the elliptical and circular spotlight models,
respectively. Error bars show 95% confidence intervals across subjects.
Bottom row: Observed performance differences, horizontal vs. vertical
conditions. (D) Points show x2 statistics from tests comparing subject-
level frequencies of correct and incorrect responses in the horizontal and
vertical conditions. Values were plotted negatively if raw vertical

accuracy exceeded raw horizontal accuracy. Points outside of the gray
panel denote significance (α = 0.05, critical value = + / -3.841). (E)
Points show t statistics from independent samples t-tests comparing
trial-level RTs in the horizontal and vertical conditions for each subject.
Points outside of the gray panel denote significance (α = 0.025,
critical value = + / -1.969). (F) Differences in composite scores in the
horizontal and vertical task conditions, calculated within-subject.
Subjects in panels D and E are sorted according to panel F

Fig. 4 Subject-level differences in Bayes factor estimates comparing the
elliptical spotlight and circular spotlight models. The elliptical model
outperforms the circular model for the majority of subjects (higher
estimated values indicate a stronger win for the elliptical model). Points
that fall outside of the light gray range (− log (10) < log (BF) < log (10))
indicate “strong” evidence for one model over the other, and points that
fall outside of the dark gray range (− log (100) < log (BF) < log (100))
indicate “very strong” evidence (Kass & Raftery, 1995)
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fitting parameter values in the elliptical spotlight model using
Equation 11:

Dh;υ ¼ sd0 hð Þ−sd0 υð Þ
sd0 hð Þ þ sd0 υð Þ

2

ð11Þ

where sd0(υ) = sd0(h)Θ. The left panel of Fig. 5 shows the
range of best-fitting spotlight shapes for each subject: data
from 17 out of 26 subjects were best-fit by a horizontally
biased spotlight (points above y = 0.0), and data from nine
out of 26 subjects were best-fit by a vertically biased spotlight
(points below y = 0.0). As shown by the right panel of Fig. 5,
we identified a positive correlation between the extent of hor-
izontal bias in spotlight shape and the extent of performance
benefit in the horizontal relative to the vertical task condition,
when considering composite scores (R2 = 0.31). The direction
of this relationship indicates that participants with a horizon-
tally biased attentional spotlight are better equipped to ignore
distractors placed above and below the target compared to
those placed to the left and right of the target, and participants
with a vertically biased spotlight show the opposite perfor-
mance benefit. When considering the relationship between
horizontal bias and performance in terms of speed and accu-
racy separately, we find that the shape of the spotlight has a
stronger correlation with horizontal versus vertical differences
in speed (R2 = 0.25) compared to accuracy (R2 = 0.07).

To investigate why the elliptical model tended to fit better
than the circular variant, we simulated data in each model, and
compared it to the behavior that our participants actually pro-
duced. We first found best-fitting parameters for each model
and subject by identifying the particle in the joint posterior
with the maximum weight. Using best-fitting parameters and
the relevant model, we generated 10,000 choice-RT trials in
each condition. We were then able to calculate a performance
score for eachmodel and subject using Equations 1–3. Ranges
of condition-level scores generated by each model are shown
in Fig. 3, alongside the observed data. Panels A, B, and C of

Fig. 3 show that both models predict the observed pattern of
decreasing accuracy, speed, and composite performance as we
move from the easy, to the moderate, to the hard conditions.
The elliptical model also captures the observed pattern of bet-
ter performance in the moderate and horizontal conditions,
compared to the hard and vertical conditions. Given that data
from most participants favored a horizontally biased spotlight
(see Fig. 5), elliptical model predictions reflect the fact that
moderate and horizontal stimuli contained the identical con-
figuration of distractors along the horizontal midline, as did
the hard and vertical conditions (see Fig. 1). While the ellip-
tical model made accurate predictions in the moderate and
horizontal conditions, it was unable to capture the pattern of
better performance in the vertical condition compared to the
hard condition. We suspect this is due to perceptual continuity
or grouping effects that are not currently accounted for in the
model, but that would disproportionately affect performance
in the hard condition due to the deliberately “interrupted”
configuration of the distractors in the array (Livne & Sagi,
2010; Logan, 1996; Manassi, Sayim, & Herzog, 2012).
Problems arising from a lack of perceptual continuity-related
mechanisms appear to be exacerbated by over-constraint of
the spotlight dimensions in the circular model. In addition to
overestimating performance in the hard condition, the circular
model underestimates performance in both the horizontal and
the vertical conditions. Because the spotlight in the circular
model is constrained to be round, it is unable to predict the
observed differences in performance between the horizontal
and vertical conditions that are shown in the panels D, E, and
F of Fig. 3.

Discussion

Here, we used model-based analyses to investigate individual
differences in the shape of the attended visual area while sub-
jects responded to two-dimensional flanker task stimuli.

Fig. 5 Model results.Left panel: Subject-level scaled differences in best-
fitting horizontal and vertical shape parameters for the spotlight in the
elliptical spotlight model. Right panel: Behavior (x-axis) vs. scaled

differences in parameter estimates (y-axis). Spotlight shape asymmetry
predicts behavioral performance differences in the horizontal and vertical
conditions
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Given evidence of an attentional spotlight that dynamically
adjusts to the spatial configuration of stimuli from trial to trial
(Pan & Eriksen, 1993), we developed stimulus arrays that
were perceptually identical across conditions in order to iden-
tify subject-level biases in spotlight dimensions. We con-
structed two variants of a model that was designed after the
zoom lens hypothesis of visual attention (C. Eriksen & St
James, 1986; Weichart et al., 2020). Consistent with previous
results (Andersen & Kramer, 1993; Feng et al., 2007;
Hüttermann et al., 2013), we found that most participants
use an elliptical spotlight, specifically one with a horizontal
bias. This was not the case for all subjects, however, and we
identified a widely variable range of spotlight configurations.

Previous studies investigating dimensional biases in
visual attention have inferred the shape of the spotlight
based on group-level differences in responses to hori-
zontally and vertically configured stimuli. To explore
individual differences in attentional biases, our model-
based methods allowed us to account for the spotlight
configuration’s critical effects on the cascade of mech-
anisms that ultimately results in a specific pattern of
behavior. Our results therefore add to the existing liter-
ature on attentional allocation, highlighting individual
differences in dimensional biases that should be consid-
ered in future work. One avenue for further study will
be to test the stability of the baseline spotlight shape in
the context of different task demands. Because all of the
stimuli in the current study contained left- or right-
facing arrows, participants were potentially biased to
implement a horizontally oriented spotlight. Follow-up
work will additionally use stimuli consisting of up- or
down-facing arrows to help determine the extent to
which task demands influence the baseline shape of
the spotlight, and the extent to which spotlight mallea-
bility varies between subjects.

Our results present compelling evidence of dimension-
dependent differences in attentional processes that have not
been considered in existing mechanistic models of the flanker
task. All other within-trial flanker decision models have been
designed to fit data from stimulus arrays oriented along a
single horizontal plane (Hübner, Steinhauser, & Lehle, 2010;
Ulrich, Schröter, Leuthold, & Birngruber, 2015; White et al.,
2011). Real-world challenges to visual attention, however,
require integrated processing across multiple spatial dimen-
sions. By failing to consider multidimensional stimuli, our
results indicate that these models are potentially missing an
important source of variability between individuals in visual
processing mechanisms.

Open practices statement The data, stimuli, and experiment
code used in the current study are available via the Center for
Open Science at https://osf.io/nef6j/(DOI:10.17605/OSF.IO/
NEF6J).
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