
Bayesian Analysis of Simulation-based Models

Brandon M. Turnera,∗, Per B. Sederberga, James L. McClellandb

aDepartment of Psychology, The Ohio State University
bDepartment of Psychology, Stanford University

Abstract

Recent advancements in Bayesian modeling have allowed for likelihood-free
posterior estimation. Such estimation techniques are crucial to the under-
standing of simulation-based models, whose likelihood functions may be dif-
ficult or even impossible to derive. One particular class of simulation-based
models that have not yet benefited from the progression of Bayesian meth-
ods is the class of neurologically-plausible models of choice response time, in
particular the Leaky, Competing Accumulator (LCA) model and the Feed-
Forward Inhibition (FFI) model. These models are unique because their
architecture was designed to embody actual neuronal properties such as in-
hibition, leakage, and competition. Currently, these models have not been
formally compared by way of principled statistics such as the Bayes factor.
Here, we use a recently developed algorithm – the probability density approx-
imation method – to fit these models to empirical data consisting of a classic
speed accuracy trade-off manipulation. Using this approach, we find some
discrepancies between an assortment of model fit statistics. In some cases,
our results provide modest support for the FFI model, whereas in others
substantial support is found for the LCA model. However, when aggregating
across all four metrics, clear evidence is gained for one model or another in
half of our data.
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1. Introduction1

The goals of cognitive modeling are to understand complex behaviors2

within a system of mathematically-specified mechanisms or processes, to as-3

sess the adequacy of the model in accounting for experimental data, and to4

obtain an estimate of the model parameters, which carry valuable informa-5

tion about how the model captures the observed behavior for both individuals6

and groups. Cognitive models are important because they provide a means7

with which cognitive theories can be explicitly tested and compared with one8

another.9

Perhaps the greatest strength of many cognitive models is paradoxically10

the model’s greatest weakness. Many cognitive models put forth sophis-11

ticated mechanisms meant to capture psychologically plausible processes.12

While these mechanisms are entirely plausible, they often render the cogni-13

tive model intractable, or at least difficult to fully analyze in a principled14

way such as with Bayesian statistics. The difficulties encountered in deriving15

the full likelihood function have prevented the application of fully Bayesian16

analyses for many cognitive models, especially those that attempt to capture17

neurally-plausible mechanisms.18

Consider, for example, the Leaky Competing Accumulator (LCA; Usher19

and McClelland, 2001) model. The LCA model was proposed as a neurolog-20

ically plausible model for choice response time in a c-alternative task. The21

model possesses mechanisms that extend other diffusion-type models (e.g.,22

Ratcliff, 1978) by including leakage and competition by means of lateral in-23

hibition. Because the evidence accumulation process used by the LCA model24

was designed to mimic actual neuronal activation patterns, one critical as-25

sumption is that the signal propagated from one accumulator to another can26

never be negative. This assumption can be implemented by specifying a floor27

on each accumulator’s activation value, such that if the activation of an accu-28

mulator in the model becomes negative, it is reset to zero. The LCA model29

also assumes a competition among response alternatives that depends on the30

current state of each of the accumulators. Together, these features of the31

model sufficiently complicate the equations describing the joint distributions32

of choice and response time such that the likelihood function for the LCA33

model has not been derived. As a result, all model evaluations to this point34

have been performed using either a model simplification or least squares es-35
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timation (Usher and McClelland, 2001; Tsetsos et al., 2011; Bogacz et al.,36

2006; Gao et al., 2011; van Ravenzwaaij et al., 2012; Bogacz et al., 2007;37

Teodorescu and Usher, 2013), which have been shown to produce less accu-38

rate parameter estimates relative to techniques such as maximum likelihood39

or Bayesian estimation (e.g., Myung, 2003; Rouder et al., 2003; Van Zandt,40

2000; Turner et al., 2013a).41

Recent advances in likelihood-free techniques have allowed for new in-42

sights to simulation-based cognitive models (Turner and Van Zandt, 2012;43

Turner and Sederberg, 2012; Turner et al., 2013a; Turner and Sederberg,44

2014; Turner and Van Zandt, 2014). In particular, the probability density45

approximation (PDA; Turner and Sederberg, 2014) method now allows for46

fully Bayesian analyses of computational models exclusively by way of sim-47

ulation. In this article, we illustrate the importance of our method by com-48

paring two neural network models of choice response time that have never49

been compared using Bayesian techniques due to their computational com-50

plexity: the LCA model (Usher and McClelland, 2001) and the Feed-Forward51

Inhibition (FFI; Shadlen and Newsome, 2001) model.2 Both models embody52

neurologically plausible mechanisms such as “leakage”, or the passive decay53

of evidence during a decision, and competition among alternatives through54

either lateral inhibition (in the LCA model) or feed-forward inhibition (in the55

FFI model). However, it remains unclear as to which dynamical system best56

accounts for empirical data, due to the limitations imposed by intractable57

likelihoods. Specifically, complexity measures that take into account poste-58

rior uncertainty and model complexity have yet to be applied. Here, we will59

compare the models on the basis of an approximation to the Bayes factor.60

We begin by describing in greater detail our method for fitting the models61

to data. We then describe how our posterior estimates are converted into62

a comparison between the models. Finally, we compare the relative mer-63

its of the two models by evaluating the models’ fit to the data presented64

in Forstmann et al. (2011), which consisted of 20 subjects in three speed65

emphasis conditions.66

2Although Ratcliff and Smith (2004) used the Bayesian information criteria to compare
many simulation-based models, they did not obtain proper Bayesian posteriors, which is
the endeavor of the current manuscript.
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2. Experiment67

The data we will use to test the models were presented in Forstmann68

et al. (2011), and consist of 20 subjects. The experiment used a moving dots69

task where subjects were asked to decide whether a cloud of semi-randomly70

moving dots appeared to move to the left or to the right. Subjects indicated71

their response by pressing one of two spatially compatible buttons with ei-72

ther their left or right index finger. Before each decision trial, subjects were73

instructed whether to respond quickly (the speed condition), accurately (the74

accuracy condition), or at their own pace (the neutral condition). Following75

the trial, subjects were provided feedback about their performance. In the76

speed and neutral conditions, subjects were told that their responses were77

too slow whenever they exceeded a RT of 400 and 750 ms, respectively. In the78

accuracy condition, subjects were told when their responses were incorrect.79

Each subject completed 840 trials, equally distributed over the three condi-80

tions. These data serve as a benchmark for our metric comparison given that81

we have some experience in analyzing them in a variety of contexts (Turner82

et al., 2013c; Turner and Sederberg, 2014; Turner et al., 2013b).83

3. Likelihood-free Inference84

As the reader of this special issue is no doubt aware, there are many85

advantages of using Bayesian statistics in cognitive modeling. However, the86

widespread dissemination of Bayesian statistics can largely be attributed to87

advanced statistical techniques for approximating the posterior distribution88

(see, e.g., Robert and Casella, 2004; Gelman et al., 2004; ter Braak, 2006;89

Gilks and Wild, 1992; Gilks et al., 1995), rather than evaluating it precisely.90

Approximating any posterior distribution depends on efficient evaluation of91

two functions: (1) the prior distribution for the model parameters, and (2)92

the likelihood function relating the model parameters to the observed data.93

For purely statistical models, evaluating these functions is, generally speak-94

ing, straightforward. However, for cognitive models who attempt to provide95

mechanistic explanations for how data manifest, direct evaluation of the like-96

lihood function can be difficult, if not impossible. We refer to these models97

as “simulation-based” to indicate that explicit equations for the likelihood98

function are either (1) intensely difficult to practically evaluate (e.g., Myung99

et al., 2007; Montenegro et al., 2011; Turner et al., 2013a), or (2) have not100

yet been derived (e.g., Usher and McClelland, 2001; Shadlen and Newsome,101
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2001). Recently, a suite of algorithms have been developed specifically for an-102

alyzing (simulation-based) cognitive models in a fully (hierarchical) Bayesian103

context (Turner and Sederberg, 2012, 2014; Turner and Van Zandt, 2014).104

While combinations of these algorithms can be used to effectively evaluate105

the joint posterior distribution, we require only one algorithm – the proba-106

bility density approximation (PDA; Turner and Sederberg, 2014) method –107

to evaluate the models presented in this article.108

3.1. The Probability Density Approximation Method109

As discussed in Turner and Sederberg (2014), the PDA method is an alter-110

native likelihood-free algorithm that does not require sufficient statistics for111

the parameters of interest. Turner and Sederberg (2014) demonstrated the112

utility of their algorithm by verifying that it could be used to accurately esti-113

mate the posterior distribution of the parameters of the Linear Ballistic Ac-114

cumulator (LBA; Brown and Heathcote, 2008) model, which has a tractable115

likelihood function and is amenable to Bayesian estimation (Turner et al.,116

2013c; Donkin et al., 2009a,b). In addition, Turner and Sederberg (2014)117

showed that the PDA method could be used to estimate the parameters of118

the LCA model in a fully hierarchical Bayesian context.119

Although the details of how to apply the PDA method to various data120

types are explained in detail in Turner and Sederberg (2014), we will repro-121

duce the relevant details for applying the method to data containing both122

discrete and continuous measures. For ease of exposition, we consider the123

common case of data consisting of one discrete measurement (e.g., choice)124

and one continuous measurement (e.g., response time). For the discrete125

measurements, suppose there are C options, and for the continuous measure-126

ments there are an infinite number of possible values. For the observed data127

from N trials, we denote the continuous measures as Y = {Y1, Y2, . . . , YN},128

the discrete measures as Z = {Z1, Z2, . . . , ZN}, and the full set of data as129

D = {D1, D2, . . . , DN}. We assume that the ith data pair Di = (Yi, Zi) arise130

from a model with parameters θ so that D ∼ Model(θ). We can then write131

the density under the assumed model, conditional on the parameters θ, as132

Model(Di = {Yi, Zi}|θ). (1)

For simulation-based models, the density in Equation 1 is generally what133

cannot be easily evaluated. For these models, we must instead rely on an134
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approximation. In fact, the accuracy of our estimated joint posterior distribu-135

tion of the parameters θ depends almost entirely on our ability to accurately136

approximate Equation 1.137

To estimate Equation 1, we begin by generating a proposal parameter138

value θ∗. We then use θ∗ to simulate a set of data X = {X(1), . . . , X(C)},139

where X(c) is the set of continuous measurements for the cth discrete alterna-140

tive. In other words, we separate the continuous measures on the basis of the141

discrete measures. For example, in a two-alternative choice task where choice142

response time data are collected, we would divide the simulated data into two143

bins: X(1) could consist of the response times for choice one (e.g., the correct144

response), and X(2) could consist of the response times for choice two (e.g.,145

the incorrect response). We then introduce a vector containing the set of the146

number of observations for each alternative, so that n = {n(1), n(2), . . . , n(C)}147

and J =
∑C

c=1 n
(c) (i.e., J denotes the total number of model simulations).148

For each response time distribution, we construct a proper kernel den-149

sity estimate (see Turner and Sederberg, 2014, for details) for the simulated150

probability density function (SPDF) by evaluating151

fn(c)

(
x|X(c)

)
=

1

h(c)J

n(c)∑
j=1

K

(
x−X(c)

j

h(c)

)
, (2)

where K(·) is the kernel and h(c) is a smoothing parameter known as the152

bandwidth. The kernel is usually chosen to be unimodal and symmetric153

about zero to place a decreasing weight on observations Xj further from154

the point where the density is being estimated (i.e., at location x). While155

the kernel can take many forms, in this article we will only consider the156

Epanechnikov kernel, given by157

K(x) =


3

4
(1− x2) if x ∈ [−1, 1]

0 if x /∈ [−1, 1]
. (3)

The accuracy of kernel density function is measured by the mean integrated158

squared error (MISE), a measure of divergence between a true and an esti-159

mated density function. The Epanechnikov kernel was derived on the basis of160

minimizing the asymptotic MISE, and so it is optimal in a statistical sense161

(Epanechnikov, 1969; Silverman, 1986). We denote the set of bandwidth162

6



parameters h = {h(1), h(2), . . . , h(C)}, so that163

h(c) = 0.9 min

(
SD

(
X(c)

)
,
IQR

(
X(c)

)
1.34

)(
n(c)
)−1/5

, (4)

where SD(·) denotes the standard deviation, and IQR(·) denotes the in-164

terquartile range. This particular choice of the bandwidth is known as Sil-165

verman’s rule of thumb (Silverman, 1986), and has been shown to make the166

kernel density estimate more accurate.167

Equation 2 is known as a deffective probability density function, which168

means that if integrated for all values of x, it will integrate to the probability169

of making a particular response choice. In other words, it is scaled to reflect170

that for any given choice response time pair, other choices could have been171

made. Using Equation 2 in our calculations is important so that we our172

model fits simultaneously capture both aspects of our data (i.e., response173

choice and response time).174

Referring back to Equation 1, the likelihood function can be approximated175

by way of the following equation:176

L(θ|D) =
N∏
i=1

Model(Di|θ) =
N∏
i=1

fn(Zi)

(
Yi|X(Zi)

)
. (5)

With a suitable approximation of the PDF in hand, we have only to combine177

the approximated likelihood function with the prior distributions to obtain178

an approximation of the joint posterior distribution for the model parameters179

θ:180

π(θ|D) ∝ π(θ)L(θ|D).

As in conventional Markov chain Monte Carlo, the proposal parameter value181

θ∗ is accepted with Metropolis Hastings probability. Namely, on the tth182

iteration, the current state of the algorithm is at the previous location θt−1.183

We set θt = θ∗ with probability184

min

(
1,

π(θ∗|D)q(θt−1|θ∗)
π(θt−1|D)q(θ∗|θt−1)

)
, (6)

otherwise we set θt = θt−1. In Equation 6, q(θ∗|θ) is the probability density185

function (PDF) of a “proposal distribution” from which θ∗ is generated.186
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The PDA method is surprisingly easy to program and use because many187

statistical software packages such as R, Python, and MATLAB, already pos-188

sess density functions that can be modified to use the (popular) Epanechnikov189

kernel and Silverman’s rule of thumb for bandwidth selection. Thus, in prac-190

tice, implementing the method involves (1) calling the density function for191

each of the C alternatives, and (2) scaling (i.e., multiplying) the resulting192

density values obtained by the number of times the corresponding alternative193

was chosen in the simulation. These scaled densities serve as Equation 2.194

4. Comparing the Models195

To compare the relative fit of the two models to the data, we will com-196

pute a total of four metrics: the Akaike information criterion (AIC; Akaike,197

1973), the Bayesian information criterion (BIC; Schwarz, 1978), the Bayesian198

predictive information criterion (BPIC; Ando, 2007), and the Bayes factor.199

The AIC measure is obtained by calculating200

AIC = −2 log(L(θ̂|D)) + 2p, (7)

where L(θ̂|D) represents the likelihood function evaluated at the best-fitting201

parameter θ̂ (i.e., the maximum likelihood value obtained during estimation),202

and p represents the number of parameters. Lower values of AIC indicate203

a better model “fit”, which is defined by a balance of predictive ability and204

model complexity.205

The BIC is obtained in a similar way as the AIC, specifically by evaluating206

the following equation:207

BIC = −2 log(L(θ̂|D)) + log(N)p, (8)

where N represents the number of data points. Equations 7 and 8 differ only208

in the treatment of the penalization for number of model parameters. For the209

AIC, the number of parameters are multiplied by two, whereas for the BIC,210

the natural logarithm of the number of data points is used. Hence, when211

N > 7.39, a stronger penalty is applied for the BIC relative to the AIC. In212

comparing the two metrics, Kass et al. (2014) noted the following:213

“In practice, BIC is conservative compared to AIC in that it214

imposes a larger penalty for dimensionality. Thus, BIC is used,215

rather than AIC, when there is a strong preference for models of216

lower dimensionality.” (p. 297)217

8



The third metric is the BPIC. The BPIC was designed as a correction218

to the deviance information criterion (DIC; Spiegelhalter et al., 2002) on219

the grounds that the DIC tends to prefer models that over-fit the data (c.f.,220

Ando, 2007). To compute the BPIC, we first define the “deviance” as V (θ) =221

−2 log(L(θ|D)). We then evaluate the expectation V̄ of the deviance by222

taking the mean of V over all sampled values of θ (i.e., V̄ = E(V (θ)), where223

E denotes the expected value). Subtracting from this expectation the best224

log-likelihood value obtained, V̂ = min(V ) (Celeux et al., 2006; Spiegelhalter225

et al., 2002), we obtain a measure of the effective number of parameters226

pV = V̄ − V̂ . The effective number of parameters is based on the difference227

between the expected deviance and an estimate of the deviance at the most228

likely value of the parameters (Dempster, 1997).3 The choice of V̂ = min(V )229

rather than V̂ = V (E(θ)) is justified here because the posterior distributions230

are non-normal and are not symmetric (Celeux et al., 2006). As pV increases,231

the model becomes more flexible, making it easier for the model to fit the232

data. The BPIC value is obtained by evaluating233

BPIC = V̄ + 2pV (9)

(Ando, 2007). As with the AIC and BIC, models with smaller (i.e., more234

negative) BPIC values are preferred over models with larger BPIC values.235

4.1. Estimating Bayes Factor236

The final metric is the Bayes factor. For a given model candidate Mq,237

model parameters θq, and data D, the posterior distribution of the model238

parameters can be expressed as239

p(θq|D,Mq) =
L(θq|D,Mq)p(θq|Mq)∫
L(θq|D,Mq)p(θq|Mq)dθq

, (10)

where p(θq|Mq) represents the prior distribution of the parameters θq, and240

L(θq|D,Mq) represents the likelihood function. The denominator of Equation241

10 represents the degree of model evidence, or in other words, the probability242

of observing the data D given a candidate model Mq. The degree of model243

evidence is often written as p(D|Mq), such that244

p(D|Mq) =

∫
L(θq|D,Mq)p(θq|Mq)dθq. (11)

3Given that this metric is based on the information in the posteriors themselves, a
direct comparison between the BPIC, BIC, and AIC is not straightforward.
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We can use Bayes rule to evaluate the probability of a particular model Mq245

among a set of Q models, conditional on the data, given by246

p(Mq|D) =
p(D|Mq)p(Mq)∑Q
j=1 p(D|Mj)p(Mj)

. (12)

Equation 12 implies that for Models q and r,247

p(Mq|D)

p(Mr|D)
=
p(D|Mq)p(Mq)

p(D|Mr)p(Mr)
. (13)

Within Equation 13, the Bayes factor comparing Models q and r is given by248

BFq,r =
p(D|Mq)

p(D|Mr)
.

We face two issues at this point. First, Equation 11 is not analytically249

tractable for the models we will examine in this article, and as a conse-250

quence, Equation 11 must be estimated by using numerical integration or251

approximated asymptotically. Second, because exact equations to calculate252

the likelihood functions for each model are unavailable, we must resort to an253

approximation. To approximate the Bayes factor, we rely on a method pre-254

sented in Kass and Raftery (1995) for estimating the Bayes factor through a255

comparison of each model’s BIC (see Equation 8). Kass and Raftery (1995)256

show that when comparing Models q and r, the difference in the BIC values257

BICq − BICr asymptotically approximates −2 log(BFq,r) as the sample size258

increases (i.e., as N →∞). Hence, we can approximate the Bayes factor by259

evaluating260

BFq,r ≈ exp

[
−1

2
(BICq − BICr)

]
. (14)

The approximation in Equation 14 does produce more relative error in ap-261

proximating the Bayes factor than other, Hessian-based methods (e.g., De Bruijn,262

1970; Tierney and Kadane, 1986; Kass and Vaidyanathan, 1992), but in large263

samples the Equation 14 should provide a reasonable indication of model ev-264

idence (cf. Kass and Raftery, 1995) For the data we will examine in the265

present manuscript, the number of data points N is around 400 per subject,266

which increases the penalty term in the BIC calculation and improves the ac-267

curacy of the Bayes factor. Additionally, because the models we investigate268

in this manuscript have intractable likelihood function, the Hessian matrix269
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is unavailable, making other approximations to the Bayes factor infeasible270

(e.g., De Bruijn, 1970; Tierney and Kadane, 1986; Kass and Vaidyanathan,271

1992). Finally, as noted in Kass and Raftery (1995), in the usual case where272

the precision of the prior information is small relative to the information273

provided by the data (i.e., the likelihood function), the Schwarz criterion274

(Schwarz, 1978) indicates that the model that minimizes the BIC (see Equa-275

tion 8) is the model with the highest posterior probability. Furthermore,276

when the prior distribution is a multivariate normal prior with mean at the277

maximum likelihood estimate and the variance is set equal to the expected278

information matrix for one observation of data (i.e., a prior called the “unit279

information prior”), the BIC approximation becomes more accurate (Weak-280

liem, 1999). Specifically, using the Hessian-based method produces an error281

of order O(N−1), using the BIC approximation with the unit information282

prior the approximation has an error of order O(N−1), and using the BIC283

approximation with no explicit assumptions about the priors the approxima-284

tion produces an error of order O(1), where O(x) refers to a term bounded285

in probability to some constant multiplied by x.286

5. Models287

In this article, we will compare two models inspired by neurophysiology.288

Both models were designed to embody certain characteristics of actual neu-289

ronal functions, such as leakage, lateral and feed-forward inhibition. The290

first model is the LCA model, and the second is the FFI model. We will now291

describe each of these models in turn.292

5.1. The Leaky Competing Accumulator Model293

The LCA model was developed as a neurologically plausible way to de-294

scribe the dynamics of response competition. For this model, we denote the295

rate of accumulation for the cth accumulator as ρc, the lateral inhibition296

parameter as β, the leakage parameter as κ, and the degree of noise in the297

accumulation process as ξt, which when simulated is drawn from a normal298

distribution with a mean of zero and standard deviation η. In other words, at299

each time step t in the evidence accumulation process, ξt ∼ N (0, η). The ac-300

tivation of the cth accumulator in the model is represented by the stochastic301
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differential equation302

dxc =

(
ρc − κxc − β

∑
j 6=c

xj

)
dt

∆t

+ ξt

√
dt

∆t

xc → max (xc, 0) ,

where ∆t is a time constant parameter. Once the degree of evidence for any303

accumulator reaches a threshold α, the process is terminated and a response304

is elicited. Similar to most models of choice RT, the LCA model assumes a305

non-decision time parameter, which we will denote τ . Although other choices306

can certainly be made, we assumed that the accumulation dynamics start at307

zero by setting xc = 0 for both c = {1, 2}.308

Although in Turner and Sederberg (2014) we fit a hierarchical version of309

the LCA model to a small subset of the data, here we will fit each subject310

independently to better assess each model’s ability to fit data from different311

individuals. To satisfy mathematical scaling properties, we constrained the312

drift rate parameters to sum to one (i.e.,
∑

c ρ
(c) = 1 for each subject). The313

sum-to-one assumption is a simplifying assumption that is commonly used,314

but can have an influence on model discriminability (cf. Teodorescu and315

Usher, 2013). We fixed dt = 0.01 (with the unit of seconds), and ∆t = 0.1.316

In fitting the model to data, we specified the following uninformative priors:317

α
(k)
j ∼ U(0, 25),

ρ
(1)
j ∼ U(0, 1),

ηj ∼ U(0, 25),

κj ∼ U(0, 1),

βj ∼ U(0, 1), and

τj ∼ U(0,min [RTj]),

where k ∈ {A,N, S} (i.e., the accuracy (A), neutral (N), and speed conditions318

(S), respectively), and min(RTj) is the minimum of the observed response319

times for the jth subject. We use the uniform distribution to enforce the320

constraint that β, κ ∈ [0.0, 1.0], which preserves the model’s neurological321

plausibility. Specifically, values of β and κ greater than 1.0 would imply322

that the effect of lateral inhibition and/or leak would be greater than the323

activation of the accumulator itself (recall that the drift rates are bound by324

ρ ∈ [0, 1]), a parameter regime that we felt was at odds with the underlying325

motivation of the LCA model.326
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A

DC

B

Figure 1: Graphical depiction of models compared. The top row (i.e., Panels A and B)
corresponds to the LCA model, whereas the bottom row (i.e., Panels C and D) corresponds
to the FFI model. The left column (i.e., Panels A and C) shows a graphical representation
of how the stimulus input is mapped to the behavioral response. The right column (i.e.,
Panels B and D) shows a representative simulation of each corresponding model in a
two-alternative decision task.
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Panel A in Figure 1 shows a graphical diagram of the LCA model in a two327

choice decision task. The bottom nodes represent the input of the stimulus,328

which are connected to the observer’s internal belief state (i.e., middle nodes)329

by the drift rates ρ. In the LCA model, the stimulus input only affects the330

corresponding belief state. At the belief state level, a competition ensues331

between the alternatives. The dynamics of the competitive process is depen-332

dent on the amount of evidence that has been accumulated as well as the333

lateral inhibition parameter β. Essentially, as more evidence is accumulated334

for a particular alternative, the influence of the competition becomes more335

pronounced, and the leading alternative gains even more of an advantage. In336

addition, the belief state is “leaky”, meaning that some of the accumulated337

evidence is lost at a rate proportional to κ. Similar to the competition pro-338

cess, the amount of leakage also depends on the current state of accumulated339

evidence such that a larger amount of evidence is lost as more evidence is340

accumulated. Finally, the internal belief state level is mapped to an overt341

response once a threshold amount of evidence α has been accumulated.342

Panel B in Figure 1 shows a representative simulation of the LCA model in343

a two-choice task. At stimulus onset, the evidence for each of the alternatives344

is equivalent. As the trial continues, one alternative gains an advantage, and345

due to the competitive process, the leading alternative gains even more of346

an advantage and accumulates evidence at a faster rate until the leading347

alternative reaches the threshold.348

5.2. The Feed Forward Inhibition Model349

The FFI model assumes no leakage and uses a different competitive mech-350

anism where inhibition is based on the average input to the other alternatives,351

such that352

dxc =

(
ρc −

ν

C − 1

∑
j 6=c

ρj

)
dt

∆t

+ ξt

√
dt

∆t

xc → max (xc, 0) ,

where ν is the feed-forward inhibition parameter, ρc represents the rate of353

evidence accumulation for the cth alternative, ξt ∼ N (0, η) represents the354

within-trial variability, and C represents the number of choice alternatives355

(i.e., C = 2 here). We again constrained the drift rates to sum to one, as in356

the LCA model, to satisfy mathematical scaling properties. As in the LCA357

model, we again fixed dt = 0.01 (with the unit of seconds), and ∆t = 0.1. As358
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in the LCA model above, we assumed that the accumulation dynamics start359

at zero by setting xc = 0 for both c = {1, 2}.360

In fitting the model to data, we specified the following uninformative361

priors:362

α
(k)
j ∼ U(0, 25),

ρ
(1)
j ∼ U(0, 1),

ηj ∼ U(0, 25),

νj ∼ U(0, 1), and

τj ∼ U(0,min [RTj]).

As in the LCA model above, we constrained νj ∈ [0, 1] to preserve the model’s363

neurological plausibility.364

Panel C in Figure 1 shows a graphical diagram of the evidence accumula-365

tion process in the FFI model. Similar to the LCA model above, the internal366

belief state is primarily affected by the stimulus input, again regulated by367

the parameters ρ. Unlike the LCA model, however, the stimulus input for368

each alternative also affects the input for the remaining alternatives (shown369

in the diagram as the crossing arrows) by way of a feed-forward inhibition370

process regulated by the parameter ν. At the internal belief state level, there371

is no internal competition between the alternatives as in the LCA. Finally,372

the belief state is mapped to the overt response once a threshold amount of373

evidence α has been reached. In contrast to the LCA model, the FFI model374

assumes that the mapping to the response state is not subject to imperfec-375

tions such as leakage. Furthermore, the competitive mechanisms assumed by376

the FFI are never dependent on the amount of accumulated evidence, as in377

the LCA model.378

Panel D in Figure 1 shows a representative simulation of the FFI model in379

a two-choice decision task. On stimulus presentation, evidence accumulates380

for each alternative and they race to the threshold α. In this case, one381

particular alternative gains a slight advantage and that advantage prevails382

until it eventually reaches the threshold first. Note that the advantage gained383

by the (eventual) winning alternative does not increase its win margin as384

evidence accumulates, as in the LCA model.385

5.2.1. A Constrained FFI Model386

In addition to the LCA and FFI models, we also examined a constrained387

version of the FFI model that resembles the popular drift diffusion model388
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(DDM; Ratcliff, 1978). Specifically, we examined a version of the FFI model389

that constrained ν = C−1 = 1, which we will refer to as the constrained FFI390

(CFFI). In the two-alternative case, this constraint modifies the accumulation391

process to be completely anticorrelated, turning Equation 15 above to392

dxc = (ρc − ρ−c)
dt

∆t

+ ξt

√
dt

∆t

xc → max (xc, 0) ,

where ρ−c represents the drift rate for the opposing decision alternative with393

respect to c. In this parameter regime, the CFFI behaves much like the classic394

DDM with a few exceptions. First, the CFFI does not have trial-to-trial395

variability in either the nondecision time, drift rate, or starting point. Second,396

the CFFI still maintains a floor on evidence accumulation such that neither397

accumulator can ever be negative. Finally, if starting points are manipulated,398

the two models are not equivalent (Teodorescu and Usher, 2013).399

6. Results400

6.1. Estimating the Posterior401

To estimate the posterior distributions for each model, we used the PDA402

method for mixed data types (Turner and Sederberg, 2014). For each pa-403

rameter proposal, we simulated the model J = 50, 000 times to form a stable404

approximation of the likelihood function (see Equations 2 and 5). For these405

models, some parameter combinations lead to model simulations that could,406

in theory, take an infinitely long time to finish. To avoid this issue, we set a407

threshold of 10 seconds for the response times. If the model had not crossed408

a boundary at that point, we recorded the response time as 10 seconds with409

the choice being randomly selected. Because these model simulations led to410

poor fits to the data, these particular parameter combinations were never411

observed in the joint posterior distributions. The bandwidth parameters h412

were calculated for each proposal by means of Equation 4. To increase the413

accuracy of the Epanechnikov kernel density approximation, we applied a log414

transformation to the simulated RTs, which helped produce more normally-415

distributed data. As described above, we scaled the approximate density416

functions for each choice by the corresponding proportion of total responses417

out of the J simulations to determine the defective distribution for each418

choice.419
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As shown in Turner et al. (2013c), the parameters of choice RT models can420

be highly correlated, which makes conventional sampling algorithms such as421

Markov chain Monte Carlo (MCMC; Robert and Casella, 2004) inefficient to422

use. As such, we used a genetic algorithm called differential evolution (DE)423

with MCMC (DE-MCMC; ter Braak, 2006; Turner et al., 2013c; Turner and424

Sederberg, 2012). DE-MCMC is a population Monte Carlo algorithm that425

generates proposals on every trial based on the information learned in the426

current estimate of the posterior. The communication between the “chains”427

in the algorithm allows DE-MCMC to generate proposals to match the shape428

of the posterior, regardless of how correlated the parameters may be. Fur-429

thermore, the DE-MCMC algorithm is well-designed for high-dimensional430

parameter spaces (see, e.g., Turner and Sederberg, 2012). For each of the431

four different likelihood evaluation methods, we implemented our DE-MCMC432

sampler, with 50 chains for 2,000 sampling iterations following 500 burn-in433

iterations, producing 100,000 samples of the joint posterior distribution. For434

each DE proposal, we randomly sampled the scaling factor γ ∼ (0.5, 1.0). We435

set the random perturbation parameter b of the uniform distribution equal to436

0.001. Convergence was assessed through visual inspection and the R pack-437

age coda (Plummer et al., 2006). Additional implementation details of the438

sampler can be found in Turner et al. (2013c).439

6.2. Comparing the Models440

Once the posteriors had been estimated, we could then evaluate the rela-441

tive merits of the models by calculating the three model fit statistics discussed442

above. We calculated the AIC by Equation 7, the BIC by Equation 8, and443

the BPIC by Equation 9. Table 1 shows these calculations for each of the444

three models and each of the 20 subjects. The table is arranged so that the445

three metrics are grouped together to facilitate a comparison across the three446

models. The last row in the table summarizes the results by calculating for447

each column, the number of times the model in the corresponding column448

provided the best fit (i.e., lowest value) in the dataset. Interestingly, the449

three metrics do not tell the same story. Specifically, while the AIC and BIC450

measures put the FFI model slightly ahead of the LCA model, the BPIC451

measure heavily favors the LCA model. The CFFI model clearly performs452

worse than all of the other models, regardless of the fit statistic.453
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Table 1: Fit statistics comparing each of the three models.
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Table 2: Bayes factors comparing each of the three models.

Subject FFI/CFFI FFI/LCA LCA/CFFI Winner
1 3.43× 1072 34.13 1.01× 1071 FFI
2 3.86× 1017 26.26 1.47× 1016 FFI
3 3.63× 1026 4.67× 10−5 7.77× 1030 LCA
4 1.20× 1053 16.54 7.28× 1051 FFI
5 2.15× 1031 71.62 3.01× 1029 FFI
6 9.97× 10−3 9.67× 10−13 1.03× 1010 LCA
7 1.79× 1041 36.31 4.93× 1039 FFI
8 1.75× 1012 0.031 5.59× 1013 LCA
9 9.40× 1015 36.53 2.57× 1014 FFI
10 1.93× 107 3.16× 10−6 6.10× 1012 LCA
11 1.43× 1030 41.54 3.45× 1028 FFI
12 7.69× 1015 8.81× 10−10 8.73× 1024 LCA
13 4.19× 1036 9.92× 10−5 4.22× 1040 LCA
14 1.32× 1045 7.78 1.69× 1044 FFI
15 6.92× 1033 61.37 1.13× 1032 FFI
16 1.43× 1029 690.48 2.07× 1026 FFI
17 6.35× 1065 110.93 5.73× 1063 FFI
18 4.62× 1011 0.93 4.98× 1011 LCA
19 6.26× 1034 5.00× 10−8 1.25× 1042 LCA
20 1.41× 1042 14.56 9.69× 1040 FFI

6.3. Bayes Factors454

Once an approximation for each of the posterior distributions had been455

obtained, we evaluated the BIC values according to Equation 8, and subse-456

quently used the BIC values to approximate the Bayes factor for each possi-457

ble model comparison by evaluating Equation 14 for each individual subject.458

Table 2 shows the estimated Bayes factors comparing the FFI to the CFFI459

(second column), the FFI to the LCA (third column), and the LCA to the460

CFFI (fourth column). Table 2 shows that the FFI provides the best fit for461

12 out of the 20 subjects, and the LCA model provides the best fit for the462

remaining 8 subjects. The constrained FFI model did not provide the best463

fit to any subject in this particular suite of models.464

Figure 2 illustrates a comparison of the FFI model to the LCA model465

(see column 3 in Table 2). The figure shows the Bayes factor for each sub-466

ject, ranked according to increasing evidence for the FFI model. The point467
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Figure 2: A comparison of the Bayes factors comparing the FFI model to the LCA model
for each subject. Subjects have been ranked in increasing order, where a higher Bayes
factor corresponds to greater evidence for the FFI model. The point of indifference between
the two models is represented as the dashed horizontal line at zero.
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of indifference for the two competing models is shown as the dashed black468

horizontal line at zero. As a reference, other gray lines are plotted to show469

differing amounts of model evidence. From the point of indifference, regions470

are color-coded to illustrate greater degrees of evidence for either the FFI471

model (top) or the LCA model (bottom). Figure 2 suggests that when the472

LCA model is the preferred model, the evidence greatly outweighs the ev-473

idence for the FFI model. However, when the FFI model is the preferred474

model, there is a smaller degree of evidence for the FFI model over the LCA475

model.476

7. Discussion477

In this article, we used the recently developed probability density approxi-478

mation (PDA) method to fit two neural network models to the data presented479

in Forstmann et al. (2011). The first model, the Leaky Competing Accumu-480

lator (LCA; Usher and McClelland, 2001) uses neurally plausible mechanisms481

such as competition via lateral inhibition, and leakage. The second model,482

the Feed-forward Inhibition (FFI; Shadlen and Newsome, 2001) model, as-483

sumes that competition between alternatives follows a feed-forward inhibition484

process, and assumes that leakage is not present in the network. Both models485

are neurally inspired and have been shown to account for many enriched ex-486

perimental manipulations (e.g., Usher and McClelland, 2001; Tsetsos et al.,487

2011; Bogacz et al., 2006; Gao et al., 2011; van Ravenzwaaij et al., 2012;488

Bogacz et al., 2007; Shadlen and Newsome, 2001; Teodorescu and Usher,489

2013)490

On fitting the models to data, we then compared the models by calculat-491

ing several statistics, namely the Akaike information criterion (AIC; Akaike,492

1973), the Bayesian information criterion (BIC; Schwarz, 1978), the Bayesian493

predictive information criterion (BPIC; Ando, 2007), and the Bayes factor.494

The AIC and BIC measures provided evidence that the FFI model was pre-495

ferred over the LCA model, but only by two (for the AIC) or four (for the496

BIC) subjects out of 20. However, when using the BPIC measure, the LCA497

model provided the best fit to 15 out of 20 subjects, with the FFI model498

capturing the remaining five. Given the discrepancies among the metrics, it499

is clear that more extensive analyses are needed to fully differentiate these500

particular models. We could also compare the models by aggregating across501

the three metrics. For four subjects (i.e., Subjects 1, 4, 16, and 20) the FFI502

model provided the best fit on all three metrics, whereas for eight subjects503
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(i.e., Subjects 3, 6, 8, 10, 12, 13, 18, and 19) the LCA model provided the504

best fit. Examining Table 2 in this way suggests that the decision making505

processes used by these particular subjects are best described by a particular506

model.507

We also compared the models by approximating the Bayes factor through508

the Bayesian information criterion (see Equation 14; Schwarz, 1978; Kass509

and Raftery, 1995). We first determined that the constrained version of the510

FFI model, which maintained that ν = C − 1 = 1, performed substantially511

worse than either the full FFI or the LCA models. We then compared the512

LCA model to the FFI model for each subject. In total, the FFI model513

outperformed the LCA model for 12 of the 20 subjects. However, we noted514

that when the LCA model outperformed the FFI model, it did so in an515

extreme way. This aspect of our results may indicate that there is something516

unique about the decision processes used by a subset of the subjects in our517

data. For example, the decision process for these subjects may be prone518

to a leaky mapping of the internal belief state to the response state, or it519

may be that the competition between the decision alternatives resembles a520

time-dependent process (as assumed by the LCA model) rather than a time-521

invariant one (as assumed by the FFI model). Another possible explanation522

is that the simplifying assumptions used hindered the LCA model’s ability523

to fit the data for some subjects.524

While in this manuscript, we have relied on the BIC approximation to525

the Bayes factor, there are other choices available in the likelihood-free con-526

text. One approach is to treat the model selection problem as a hierarchical527

modeling problem (Grelaud et al., 2009; Toni and Stumpf, 2010; Turner and528

Van Zandt, 2014), and estimate the model probabilities using a specific sam-529

pling algorithm such as sequential Monte Carlo (Toni and Stumpf, 2010;530

Toni et al., 2009), Gibbs approximate Bayesian computation (Turner and531

Van Zandt, 2014), or random forests (Pudlo et al., 2014). However, these532

methods require certain conditions on the statistics that characterize the533

observed data for the approximation to hold (Didelot et al., 2011; Robert534

et al., 2011). Namely, the models must be nested and statistics much be535

chose that characterize the data in a sufficient manner for the entire collec-536

tion of models under examination (Didelot et al., 2011). In our case, the537

problems associated with approximate Bayesian model choice do not apply538

because we consider the entire set of data, which is guaranteed to be a suf-539

ficient statistic (c.f. Toni et al., 2009; Turner and Van Zandt, 2012; Turner540

and Sederberg, 2014). However, future work could build on our approach by541
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estimating the model evidence explicitly.542

In conclusion, for the data tested here (Forstmann et al., 2011), the met-543

rics AIC, BIC, and Bayes factor provided a small amount of evidence to544

support the FFI model, whereas the BPIC provided a strong amount of ev-545

idence in favor of the LCA model. We noted that for some subjects, one546

model was preferred when corroborating all four metrics. A more exten-547

sive analyses of the models would examine other important factors such as548

the number of decision alternatives, stimulus types (e.g., stationary versus549

time-varying evidence), and payoff manipulations.550
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