
Journal of Mathematical Psychology () –

Contents lists available at SciVerse ScienceDirect

Journal of Mathematical Psychology

journal homepage: www.elsevier.com/locate/jmp

Approximate Bayesian computation with differential evolution✩

Brandon M. Turner a, Per B. Sederberg b,∗

a University of California, Irvine, United States
b The Ohio State University, United States

a r t i c l e i n f o

Article history:
Received 16 May 2012
Received in revised form
12 June 2012
Available online xxxx

Keywords:
Approximate Bayesian computation
Differential evolution
Computational modeling
Likelihood-free inference

a b s t r a c t

Approximate Bayesian computation (ABC) is a simulation-based method for estimating the posterior
distribution of the parameters of amodel. TheABC approach is instrumentalwhen a likelihood function for
a model cannot be mathematically specified, or has a complicated form. Although difficulty in calculating
a model’s likelihood is extremely common, current ABC methods suffer from two problems that have
largely prevented their mainstream adoption: long computation time and an inability to scale beyond a
few parameters. We introduce differential evolution as a computationally efficient genetic algorithm for
proposal generation in our ABC sampler. We show how using this method allows our new ABC algorithm,
called ABCDE, to obtain accurate posterior estimates in fewer iterations than kernel-based ABC algorithms
and to scale to high-dimensional parameter spaces that have proven difficult for current ABC methods.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Bayesian statistics has become an enormously popular tool for
the analysis of random variables. While there are a myriad of
practical and theoretical reasons to adopt the Bayesian framework,
one clear advantage is the quantification of uncertainty in the form
of the posterior distribution. In contrast to classic null hypothesis
testing, directed analysis of the posterior distribution allows for
statistical inference that does not compromise the process theory
behind the experiments generating the data. In the last decade,
many have turned to the problem of Bayesian estimation when
the likelihood function is difficult or impossible to evaluate. One
popular method for solving this problem is called approximate
Bayesian computation (ABC). While ABC originated in genetics
(Beaumont, Zhang, & Balding, 2002; Marjoram, Molitor, Plagnol,
& Tavare, 2003; Pritchard, Seielstad, Perez-Lezaun, & Feldman,
1999; Tavaré, Balding, Griffiths, & Donnelly, 1997), it has received
a considerable amount of attention in ecology, epidemiology, and
systems biology (Beaumont, 2010), aswell as, more generally, with
regard to model choice (Robert, Cornuet, Marin, & Pillai, 2011).
Recently, ABC has also become an important tool in the analysis

✩ Portions of this work were presented at the 8th Annual Context and Episodic
Memory Symposium, Bloomington, Indiana, and the 45th Annual Meeting of the
Society for Mathematical Society, Columbus, Ohio. The authors would like to thank
Trisha Van Zandt, Simon Dennis, Rich Shiffrin, Jay Myung, and Dan Navarro for
helpful comments that improved an earlier version of this article.
∗ Corresponding author.

E-mail addresses: bmturner@uci.edu (B.M. Turner), sederberg.1@osu.edu
(P.B. Sederberg).

of models of human behavior, whose likelihoods are often rather
complex (Turner & Van Zandt, 2012).

The basic ABC algorithmproceeds as follows. Given an observed
data set Y , some unknown parameters θ with prior distribution
π(θ), and an assumed model such that Y ∼ Model(y|θ), ABC
algorithms propose candidate parameter values by randomly
sampling θ∗ and generating a data set X ∼ Model(x|θ∗), where
the method used to draw θ∗ varies from one algorithm to the
next. Because this random data set is always generated and paired
with the random parameter value θ∗, we often use the notation
(θ∗, X) to refer to a single point in the joint distribution of θ∗

and X . The idea is that if the distance ρ(X, Y) between the two
data sets is small enough, specifically, less than a value ϵ, we can
assume that the proposed candidate parameter value θ∗ has some
nonzero probability of being in the posterior distribution π(θ |Y).
In so doing, ABC algorithms attempt to approximate the posterior
distribution by sampling from

π(θ |Y) ∝

X

π(θ)Model(x|θ) I(ρ(X, Y) ≤ ϵ) dx, (1)

where X is the support of the simulated data and I(a) is an
indicator function returning a one if the condition a is satisfied and
a zero otherwise.

The ABC rejection framework (see Turner & Van Zandt, 2012
for a tutorial) has been embedded in Markov chain Monte
Carlo (Marjoram et al., 2003), sequential Monte Carlo (Beaumont,
Cornuet, Marin, & Robert, 2009; Del Moral, Doucet, & Jasra,
2008; Sisson, Fan, & Tanaka, 2007; Toni, Welch, Strelkowa,
Ipsen, & Stumpf, 2009), expectation propagation (Barthelmé
& Chopin, 2011), and Gibbs sampling (Turner & Van Zandt,
submitted for publication). While these algorithms have become

0022-2496/$ – see front matter© 2012 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmp.2012.06.004

http://dx.doi.org/10.1016/j.jmp.2012.06.004
http://www.elsevier.com/locate/jmp
http://www.elsevier.com/locate/jmp
mailto:bmturner@uci.edu
mailto:sederberg.1@osu.edu
http://dx.doi.org/10.1016/j.jmp.2012.06.004

2 B.M. Turner, P.B. Sederberg / Journal of Mathematical Psychology () –

increasingly more complex and efficient, they all still rely on
satisfying the condition ρ(X, Y) ≤ ϵ. Hence, the accuracy of the
estimated posterior distribution and the computational efficiency
hinge on the selection of the tolerance threshold ϵ: large values of
ϵ produce inaccurate posteriors while small values of ϵ produce
long computation times. Long computation times are a result of
the decrease in the likelihood of proposing acceptable parameter
values θ∗ that produce data X such that the condition ρ(X, Y) ≤ ϵ
is satisfied.

A number of methods have been proposed to balance the
trade-off between long computation times and accurate posterior
estimates. One common approach is to select a set of ϵ values
that decrease monotonically from a larger tolerance value to
some small one. This allows the algorithm to converge slowly
to a computationally feasible final value of ϵ. Other methods
allow for larger values of ϵ, and instead rely on a post-simulation
correction to obtain accurate estimates of the posterior (Beaumont
et al., 2002; Blum & François, 2010). These algorithms proceed as
described above but then use regression techniques to reweigh
the samples based on their distance from the observed data Y .
Although these techniques are very useful in practice, the post hoc
nature of the correction suggests that the samplers used prior to
the correction could be substantially improved. That is, algorithms
that use the reweighing scheme internally would bemore efficient
than the regression correction schemes.

Although the basic ABC framework has been instrumental in
furthering the widespread usage of Bayesian analysis, it currently
suffers from the so-called ‘‘curse of dimensionality’’ (Beaumont,
2010). That is, when the number of parameters is increased
the acceptance rate declines dramatically because successful sets
of parameter values (i.e., sets of parameter values that satisfy
the tolerance threshold condition) become very hard to find.
To attenuate this problem, a few new algorithms replace the
indicator function in Eq. (1) with a kernel function ψ(ρ(X, Y)|δ)
(Wilkinson, submitted for publication). The kernel function
provides continuous measures to the evaluation of a proposal
parameter set θ∗ rather than a dichotomous accept or reject (a
one or a zero, respectively). While this dramatically improves
the computational efficiency, the accuracy of the estimated
posterior now relies on the selection of δ. In addition, when
sampling from a high-dimensional parameter space, the selection
of tuning parameters such as the transition kernel becomes vitally
important.

In this article we present a new ABC algorithm, which we call
ABCDE, that uses differential evolution (DE) as ameans of proposal
generation (Hu & Tsui, 2005; ter Braak, 2006; Vrugt et al., 2009).
DE is an extremely efficient population-based genetic algorithm
for minimizing real-valued cost functions (Storn & Price, 1997).
Instead of relying solely on random mutations of each member
of the population to drive evolution, DE creates a self-organizing
population by evolving each member based on the weighted
difference between two other members of the population, similar
in spirit to particle swarm optimization (Havangi, Nekoui, &
Teshnehlab, 2010; Kennedy & Eberhart, 1995; Tong, Fang, & Xu,
2006). In practice, DE requires far fewer population members than
other genetic algorithms, typically just enough to span the possible
parameter space, because the entire population evolves towards
the minimum cost function values (or in our case the regions of
the parameter space with the highest densities). Here we merge
ABC and DE, including enhancements to the basic DE algorithm to
make it suitable for posterior estimation instead of simply locating
the global minimum (Hu & Tsui, 2005).

We first describe the algorithm (presented in Fig. 1) and
motivate the use of each of its components. We then use the
algorithm to fit three models whose posterior distributions are
known to assess the accuracy of the estimates obtained using

Fig. 1. The ABCDE algorithm for estimating the posterior distribution of θ .

ABCDE. In the first example, we show that a reduced version of the
ABCDE algorithm can easily handle the classic mixture of normals
example that is prevalent in the ABC literature (Beaumont et al.,
2009; Sisson et al., 2007; Toni et al., 2009;Wilkinson, submitted for
publication). We then assess the accuracy of the ABCDE algorithm
by comparing it to a basic kernel-based ABC algorithm (Wilkinson,
submitted for publication). To do so, we use both algorithms to
fit a model whose joint posterior distribution is highly correlated.
In our final example, we test the scalability of ABCDE by fitting
it to a model with 20 parameters, a problem that is extremely
difficult for existing ABC algorithms to solve. We close with a brief
discussion of the potential advancements and provide guidelines
for the selection of the tuning parameters.

2. The algorithm

The ABCDE algorithm combines DE with a distributed genetic
algorithm approach that relies on three steps: crossover, mutation,
and migration (Hu & Tsui, 2005). After a high-level overview of
the algorithm, we will discuss each of these steps in turn. Fig. 1
illustrates the structure of the ABCDE algorithm. We begin by
selecting a pool of P particles and dividing this pool evenly into K
groups, each of size G = P/K . Although we will refer to the group
of individualmembers of our sampler as particles, they are actually
a pool of Markov chains that interact, forming an entire system
very similar to population Monte Carlo samplers. The particles are
first initialized; for example, one could initialize the particles by
sampling from the prior distribution π(θ) for the parameters θ .
In Fig. 1, this step is represented by Lines 1–2. Once all particles
are initialized, the first step in the algorithm is to decide whether
or not a migration step should be performed with probability
α. As we will soon discuss, the migration step is the distributed
genetic algorithm method of diversifying each of the groups, and
it is represented in Fig. 1 by Lines 4–6. Subsequently, the ABCDE
algorithm updates the particles by means of a crossover step (the
core DE particle update mechanism) performed with probability β
or by means of a mutation step (the standard particle perturbation
method) with probability 1 − β . The decision to update via the
crossover or the mutation step is performed for each of the K
groups. This cyclical updating procedure is represented in Fig. 1 by
Lines 7–13.

In practice, the ‘‘decision’’ tuning parameters will be small
(e.g., α = β = 0.10), such that a majority of the particle updates

B.M. Turner, P.B. Sederberg / Journal of Mathematical Psychology () – 3

occur via the DE crossover step, and migration only occurs a few
times throughout the simulation. The new proposed particles are
assigned ‘‘fitness’’ values, which are used to decide individually
whether the new proposals will replace the current particles. As
with all ABC algorithms, an estimate of the posterior is formed
by collapsing the values obtained from the sampler across all
iterations, ignoring a (short) burn-in period. In the next sections,
we first describe how to evaluate the particles at each iteration and
thenwe discuss each of the components of the ABCDE algorithm in
detail.

2.1. Weighing particles

One of the advancements that makes the ABCDE algorithm
possible is the ability to assign continuousmeasures for a particle’s
‘‘fitness’’, rather than simply accepting or rejecting a proposed
parameter value. We make a careful distinction here between a
particle’s weight and a particle’s fitness. There are many particle
filtering ABC algorithms (e.g., Beaumont et al. (2009), Del Moral
et al. (2008), Sisson et al. (2007), and Toni et al. (2009)) that apply
continuous weights to their particles; however, these algorithms
do not apply continuous measures to a particle’s fitness. Instead,
they rely on a simple accept/reject evaluation of a particle’s fitness
prior to calculating theweights. That is,when a particle is proposed
that does not satisfy the tolerance condition ρ(X, Y) ≤ ϵ, the
proposal is given a weight of zero because the indicator function
in Eq. (1) will be zero. Thus, the fitness evaluation used by these
rejection-based algorithms can result in many samples being
drawn that are never used, producing high inefficiency.

To calculate our weights, we draw on a framework for applying
continuous measures to a particle’s fitness (Beaumont et al., 2002;
Blum & François, 2010; Wilkinson, submitted for publication).
Specifically, we assume that the data Y is a realization of a model
simulation under the best possible parameter values plus some
random error, so that

Y = Model(y|θ)+ ζ , (2)

where ζ follows the distributionψ(·|δ) governed by the parameter
δ. By assuming that the random error is continuous, we can use
this error term to evaluate a particle’s fitness. For example, if
ψ(·|δ) is centered at zero, we can compute the distance ρ(X, Y)
and evaluate ψ(ρ(X, Y)|δ). If ψ(·|δ) then follows, say, a normal
distribution, simulated data that are closer to the observed data
will have higher ψ(ρ(X, Y)|δ) values than simulated data that are
far from the observed data because ρ(X, Y) will be smaller. As a
result, the approximation in Eq. (1) becomes

π(θ |Y) ∝

X

π(θ)Model(x|θ) ψ(ρ(X, Y)|δ) dx.

We will refer to the class of algorithms that use this weighing
scheme as kernel-based ABC (KABC) algorithms. Because ABCDE
is, at its core, a KABC algorithm, we will compare the efficiency of
the proposalmechanismused in ABCDE (discussed in detail below)
against the proposal mechanism used by a simple Markov chain
Monte Carlo KABC algorithm later on in this article.

The ABCDE algorithm uses theMetropolis–Hastings probability
to determine if a proposal should be accepted or rejected, and so
we begin by outlining the Metropolis–Hastings step in the context
of our algorithm. First, we let the current particle state at Iteration
t +1 be denoted θt and the corresponding simulated data that was
generated on Iteration t be denoted Xt . Then, for a given proposal
and corresponding simulated data (θ∗, X), we can evaluate the
proposal’s fitness by calculating

π(θ∗)ψ(ρ(X, Y)|δ)q(θt |θ∗),

where q(a|b) is called the ‘‘transition kernel’’ and it represents
the probability of transitioning to a from b. We will delay

further discussion of the transition kernel to the sections on the
mutation and crossover steps, because the form of q(a|b)will vary
between these two different steps because they rely on different
perturbationmethods.We can then compare the proposal’s fitness
to the current particle state by calculating

π(θt)ψ(ρ(Xt , Y)|δ)q(θ∗
|θt).

Once the fitness for both the current state and the proposal have
been calculated, we ‘‘jump’’ from the current state to the proposal
state with Metropolis–Hastings probability

min

1,
π(θ∗)ψ(ρ(X, Y)|δ)q(θt |θ∗)

π(θt)ψ(ρ(Xt , Y)|δ)q(θ∗|θt)

. (3)

Here, a jump is performed by setting (θt+1, Xt+1) = (θ∗, X), other-
wise the chain will not move and (θt+1, Xt+1) = (θt , Xt).

2.1.1. Selecting δ
Most other ABC algorithms rely on a rejection sampling routine

to first decide if a proposal θ∗ is suitable for approximating
the posterior distribution. As previously discussed, this decision
is based on a comparison to a tolerance threshold ϵ so that a
particle is accepted only if ρ(X, Y) ≤ ϵ. As such the accuracy
of the estimated posterior distribution π(θ |ρ(X, Y) ≤ ϵ) clearly
depends on the precision of ϵ. Using a kernel function to evaluate
a particle’s fitness does not solve this estimation problem because
our approximation of the true posterior distribution π(θ |Y) will
still depend on the value of δ.

While thismight appear concerning, the difference between the
two approaches lies in the specification of the model, as shown
in Eq. (2). The observed data is assumed to have arisen from a
particular model plus some error term ζ . As a result, we can
incorporate the parameters of the distribution of ζ directly into
our model. Specifically, we can treat δ as a parameter in the model
and estimate it rather than (subjectively) choosing a tolerance
condition. To do so, we must specify a prior distribution for δ
(e.g., an exponential distribution that favors small values) and
include it in the calculation of Eq. (3). At first, the values of δ will
be large because the chains are unlikely to be in the high-density
regions of the posterior. However, as the algorithm proceeds,
smaller values of δwill carry largerweights, and, as a consequence,
the estimated posterior distribution will becomemore accurate. In
the simulations that follow, we demonstrate how freeing δ allows
for a nearly automatic parameter estimation procedure.

It has been shown that under the assumption of model error
(see Eq. (2)), ABC provides exact samples from the posterior
distribution (Wilkinson, submitted for publication). We extend
this finding by applying a weighing scheme that uses continuous
measures into an entire network of Markov chains to facilitate
estimation that is both accurate and fast. In particular, using a
system of chains allows our ABCDE algorithm to jump across the
modes of a target distribution, as well as tacklemore difficult high-
dimensional problems where ABC MCMC approaches are likely to
suffer from high rejection rates.

2.2. Crossover

We propose an efficient method of generating candidate
particles based on DE (Storn & Price, 1997; ter Braak, 2006).
The central idea behind DE is to allow the particles in the set
to inform the proposal process. Particles that are performing
well are selected to guide other, poorer performing particles to
higher-density regions. We implement DE within a distributed
genetic algorithm framework, which divides the population of
particles into sub-populations that evolve largely independently.
This distributed sub-population approach has been shown to help

4 B.M. Turner, P.B. Sederberg / Journal of Mathematical Psychology () –

Fig. 2. Examples of the crossover step (left panel) and the migration step (right panel).

prevent falling into local minima when minimizing global cost
functions (Tanese, 1989).

Fig. 2 (left panel) provides an illustration of the crossover
procedure for generating the new proposals for each particle in
the kth group. In this example we are updating the individual
particle θt . First, we sample a ‘‘base’’ particle θb (shown as the
vector from the origin) with the current weights as probabilities
and two other particles θm and θn (bottom most vectors) with
uniform probabilities, so that θm ≠ θn ≠ θt . Next, we compute
two directional vectors. The first directional vector is obtained by
taking the difference between the two randomly selected particles
and scaling by a constant, given by γ1(θm − θn). The dark gray
lines in the left panel of Fig. 2 represent the difference vector
θm − θn. This first vector is the component in ABCDE that allows us
to generate efficient proposals that match the shape of the target
distribution. The second directional vector is obtained by taking
the difference between the particle being updated and the base
particle, and scaling by another constant, given by γ2(θb − θt).
The second vector is what quickly drives the ABCDE sampler to
the high-density regions of the posterior. Finally, we generate a
proposal θ∗ for the original particle θt by calculating

θ∗
= θt + γ1(θm − θn)+ γ2(θb − θt)+ b, (4)

where γ ∼ CU[0.5, 1.0] and b is drawn from some symmetric
distribution with very small variance (e.g., b ∼ CU[−ϵ, ϵ], where
ϵ = 0.001). The small amount of random noise introduced by
sampling γ provides enough diversity in the proposals to allow the
sampler to traverse the entire range of the target posterior.

Some model-fitting problems may benefit from only updating
some of the parameters of each particle to slow the exploration of
the parameter space (Storn & Price, 1997). To implement this, we
reset someof theproposal parameters to their previous valueswith
probability (1 − κ). In addition to slowing the sampler, resetting
only some of the parameters in the vector θ∗ will increase the
diversity in the pool because the new proposal will be a mixture of
parameters accepted in the past and the present, which will likely
make this vector very unique. In practice, κ is typically set to 1.0 or
0.9, meaning all, or nearly all, parameters are updated tomatch the
proposal vector. The proposal θ∗ is then evaluated by generating
a data set X ∼ Model(x|θ∗), comparing it to the observed data Y
through the distance metric ρ(X, Y), and then deciding to jump
from the current state (θt , Xt) to the proposal state (θ∗, X) by
evaluating Eq. (3).

2.3. The two modes of sampling

While generating proposals using Eq. (4) leads to fast conver-
gence to the high-density regions of the posterior (i.e., the maxi-
mum a posteriori estimate), the term γ2(θb − θt)makes the prob-
ability of transitioning from θ∗ to θt lower than the reverse move

that transitions θt to θ∗. To see this, suppose the density of b is an
independent multivariate normal centered at zero with a variance
matrix of ϵ. Then, the probability of transitioning from the current
state to the proposal is

q(θ∗
|θt)

=

i

j

k

wkNp(θt + γ1(θi − θj)+ γ2(θk − θt), ϵ),

where Np(a, b) is the multivariate normal density of dimension
equal to the number of parameters p with mean a and covariance
matrix equal to the identity matrix times b, wk is the weight
associated with the kth particle θk and θi ≠ θj ≠ θt . However, the
reverse move is given by

q(θt |θ∗)

=

i

j

k

wkNp
θ∗

− γ1(θi − θj)− γ2(θk − θt)

(1 − γ2)
,

ϵ

(1 − γ2)

.

Here, we can see that q(θ∗
|θt) ≠ q(θt |θ∗), but one could calculate

the transition probabilities for each possible state to evaluate
Eq. (3). Unfortunately, calculation of these transition probabilities
would need to be done on each iteration, which can be very time
consuming when the population of particles G is large.

However, when γ2 = 0, Eq. (4) reduces to

θ∗
= θt + γ1(θm − θn)+ b, (5)

and the probability of transitioning from θt to θ∗ is given by

q(θ∗
|θt) =

i

j

Np(θt + γ1(θi − θj), ϵ),

whichwill be equal to the probability of the reversemove given by

q(θt |θ∗) =

i

j

Np(θ
∗
− γ1(θi − θj), ϵ)

=

i

j

Np(θ
∗
+ γ1(θj − θi), ϵ),

because the elements of the difference vector are selected with
equal probability.

As a result of the asymmetry of q(·|·) when γ2 ≠ 0, we imple-
ment the algorithm in two modes. The first mode is a ‘‘burn-in
mode’’, in which γ2 can be tuned to locate the high-density regions
of the posterior. During this phase, we still evaluate Eq. (3), but
we ignore the transition kernel probabilities. That is, we accept the
proposal θ∗ with probability

min

1,
π(θ∗)ψ(ρ(X, Y)|δ)
π(θt)ψ(ρ(Xt , Y)|δ)

. (6)

B.M. Turner, P.B. Sederberg / Journal of Mathematical Psychology () – 5

This approach is very similar to methods of generating initial
values for chains used when carrying out Markov chain Monte
Carlo sampling. One could even adopt stricter, deterministic rules
for proposal acceptance such as accepting a proposal θ∗ if

π(θ∗)ψ(ρ(X, Y)|δ) > π(θt)ψ(ρ(Xt , Y)|δ). (7)

However, we recommend retaining the random acceptance rule
in Eq. (3) because it results in more variability in the particle
set. Once the high density regions have been found, we switch to
‘‘sampling mode’’, in which we constrain γ2 = 0 and fix δ to the
value obtained during the burn-in mode. The estimate of δ can
be any user-defined value, but we recommend using the median
or the minimum of the estimates from the pool of particles. As
explained, setting γ2 = 0 results in q(θ∗

|θt) = q(θt |θ∗) and Eq.
(3) can be evaluated without having to calculate the transition
probabilities q(θ∗

|θt) and q(θt |θ∗) because they cancel out. Thus,
for both the burn-in and sampling modes in the crossover step,
the transition kernel can be ignored as proposals are acceptedwith
probability given by Eq. (6).

It is important to note that accepting new particles based on
the Metropolis–Hastings probability ensures that the distribution
of particles in a group will match the target distribution. While
proposals with higher target densities are always accepted,
proposals with lower target densities can also be accepted (see
Eq. (6), and, more generally, Eq. (3)), so the sampler will maintain
the diversity required to explore the entire target distribution.
However, if we only accepted new proposals based on Eq. (7),
as in standard genetic algorithms, the group of particles would
converge to the maximum a posteriori probability estimate and
it would not match the variability of the true target distribution.
We stress that while using Eq. (7) may satisfy the goals of some
researchers who seek ‘‘best-fitting’’ parameter values, using Eq. (7)
will be unacceptable for those interested in obtaining the Bayesian
posterior.

2.4. Mutation

The mutation step is very similar to other perturbation
methods, such as in standard KABC algorithms (Wilkinson,
submitted for publication). However, for our algorithm, we do
not need our perturbation kernel to be as variable as in other
ABC algorithms because we are relying on the crossover step to
exhaustively search the parameter space. Themutation step serves
only to further diversify the particles within the groups and, as we
show in our simulations, often is not required to arrive at highly
accurate posterior estimates.

The mutation step is performed for all particles in each of the K
groups (see the algorithm in Fig. 1), taken in turn. On each update,
a given particle, denoted θ∗∗, is perturbed using a transition kernel
such that θ∗

∼ K(θ∗∗). For example, the transition kernel could
be a normal distribution with variance equal to one so that θ∗

∼

N (θ∗∗, 1). We then generate data X by using the assumed model
so thatX ∼ Model(x|θ∗). The simulated dataX is then compared to
the observed data Y through the distance metric ρ(X, Y), and we
jump from the current state (θt , Xt) to the proposed state (θ∗, X)
with Metropolis–Hastings probability given by Eq. (3).

For the mutation step, the transition kernel densities q(·|·) are
determined by the specific transition kernelK(·) that is chosen. In
the example above, the transition kernel was normal, and so the
transition kernel density can be written as

q(a|b, σ) =
1

√
2πσ

exp

−
(a − b)2

2σ 2

,

where σ is a tuning parameter (e.g., σ = 1 in the example
above). When the transition kernel densities are equal so that
q(a|b) = q(b|a), which happens when K(·) is chosen to be

symmetric, the densities cancel out and so Eq. (3) reduces to
Eq. (6). However, sometimes the mutation step can benefit from
asymmetric transition kernels, and so Eq. (3) is required. In
particular, we often use asymmetric transition kernels when the
support of a parameter does not have infinite support to improve
the acceptance rate.

2.5. Migration

The migration step is the algorithm’s way of diversifying par-
ticles across groups in a distributed genetic algorithm framework
(Hu & Tsui, 2005; Tanese, 1989). Because the particles from each
group are randomly traversing the space, one group may land in
a high-density region of the posterior very quickly, while others
converge much more slowly. To allow for efficient posterior map-
ping, we simply allow the poorly-performing group to be assisted
by the high-performance group by initiating a particle swap be-
tween the groups. For ABCDE, the particle swap is (typically) per-
formed on the particles that have small weights through sampling.
These particles, while doing poorly in their groups, can still carry
valuable information about the location of a higher-density re-
gion. Performing the swap in this way allows particles that would
have been discarded (because theywere theworst performing par-
ticles in their groups) a chance to become the best performing
particles in another group. In thisway, the ‘‘leaders’’ from the high-
performance groups can continue directing their group to higher
density regions.

To perform the migration step, we first determine the num-
ber of groups that will be involved in the swapping by sampling a
number η uniformly from the set K = {1, 2, . . . , K}. Then, to de-
termine which of the groups to use, we sample η numbers with-
out replacement from K , forming the group set G = {G1,G2, . . . ,
Gη}. Next, for each group in G we sample a single particle θ∗ with
probabilities based on the inverse of the current weight set from
each group. Finally, we swap the particles from each of the sets in
a cyclical fashion so that
θ∗

G1
, θ∗

G2
, . . . , θ∗

Gη−1
θ∗

Gη

→

θ∗

Gη
, θ∗

G1
, . . . , θ∗

Gη−2
, θ∗

Gη−1

.

Unlike the mutation and crossover steps, we recommend that the
migration step be deterministic, and so it will not rely on the
Metropolis–Hastings probability in Eq. (3). However, probabilistic
rules can be adopted so that each swap is determined by first
adding a small amount of random noise and evaluating Eq. (3)
as proposed by Hu and Tsui (2005). Unfortunately, in the ABC
context, generating proposals in this way requires another data
simulation step which might be costly, so we recommend the
simpler, deterministic swapping rule.

Fig. 2 (right panel) provides an illustration of a migration step.
Each of the four different groups is represented by a different
symbol (circles, asterisks, squares and triangles). In this example,
we randomly sampled from K and obtained η = 3. We then
sampled from K again without replacement to form the set G,
consisting of the circle, asterisk and square groups. A single particle
is sampled from each of the three groups, and these particles are
swapped in a cyclical fashion.

3. Simulations

We now present three examples meant to test the validity,
speed, and scalability of the ABCDE algorithm. First, we use the
ABCDE algorithm to fit the classic mixture of normals example.
In this first example, we employ a simplified version of the
ABCDE algorithm that uses only the crossover step. In the second
example, we compare the speed of the ABCDE algorithm to a
recently developed KABC algorithm (Wilkinson, submitted for

6 B.M. Turner, P.B. Sederberg / Journal of Mathematical Psychology () –

publication). In this example, the joint posterior distribution is
highly correlated, which makes optimal transition kernels difficult
to specify for other samplers (see Turner, Sederberg, Brown, and
Steyvers (submitted for publication)). Finally, we use ABCDE to
fit a 20-parameter model to data and show that despite the
model’s complexity, the ABCDE algorithm is able to obtain accurate
estimates of the posterior distribution in a very small amount of
time.

3.1. Mixture of normals

To demonstrate the advancement of the vectorized perturba-
tion approach, we begin by fitting what has become a classic
problem in the ABC literature, a relatively simple mixture of nor-
mal distributions (Beaumont et al., 2009; Sisson et al., 2007; Toni
et al., 2009;Wilkinson, submitted for publication). We will use the
ABCDE algorithm to estimate this posterior distribution using only
the crossover step.

Suppose the posterior distribution of interest is given by
the sum of two normal distributions with known variance and
common mean parameter so that

f (θ) =
1
2
φ (θ |0, 0.1)+

1
2
φ (θ |0, 1) ,

where φ(a, b) is the normal density with mean a and standard
deviation b. To fit the model using ABCDE, we need only sample
a candidate parameter θ and generate a single data point X from
the above model. To compare the simulated data to the observed
data Y = 0, we use a simple Euclidean metric

ρ(X, Y) = X − Y .

To estimate the posterior using ABCDE, we assumed that the
distribution of errors were Gaussian so that

ζ ∼ N (0, δ).

Thus, the particle’s fitness is determined by evaluating

ψ(ρ(X, Y)|δ) = φ(ρ(X, Y)|0, δ).

Wewill again assume a noninformative prior for θ as in Beaumont
et al. (2009) and Sisson et al. (2007), namely

θ ∼ CU[−10, 10],

where CU[a, b] is the continuous uniform distribution over the
interval [a, b]. In addition, we placed an exponential prior on δ so
that

δ ∼ Exp(20).

Weused only the crossover component of the ABCDE algorithm
to fit the data so that α = β = 0. We specified uniform additive
sampling error so that b ∼ CU[−0.001, 0.001]. We set κ = 1,
γ2 = 0 and sampled a new γ1 ∼ CU[0.5, 1] for each iteration. We
divided 100 total particles into 10 groups of 10 particles each.
We then ran the algorithm for 500 iterations with no burn-in
period, fitting both θ and δ simultaneously. The total number of
model simulations required to fit the joint distribution of (θ, δ)
was 50,000. Given that wewere sampling from a two-dimensional
space, this is substantially better than the ABC PRC algorithm,1
which used 75,895 model simulations (Sisson et al., 2007). We
emphasize that we were not able to control for the accuracy of the

1 Although the ABC PRC method was subsequently found to have a bias in its
parameter estimates, this bias would not give rise to a decrease in performance
for this simulation and, consequently, this comparison in total number of function
evaluations is valid.

two samplers, so we instead based our estimation accuracy on the
bottom right panel of Fig. 2 in Sisson et al. (2007).

The left panel of Fig. 3 shows the estimated target distribution
obtained using the crossover component of the ABCDE algorithm
along with the true target density (black line). The right panel
shows the estimated posterior distribution of the standard
deviation of the error term δ. The figure shows that although small
values of δ are preferred (i.e., there ismore density at lower values),
the distribution has a long tail, extending out to around 0.4. Thus,
themarginal posterior distribution of δ informs our understanding
about of the model specified in Eq. (2). Specifically, the data that
were observed could be the result of an appropriately selected
model (i.e., the mixture of normal distributions), in which case δ
would be small (e.g., δ = 0.05), or it could be the result of a poorly
specified model and random error, in which case δ would be larger
(e.g., δ = 0.35). Comparing the true density with the estimates we
obtain (left panel), we see that using only the crossover component
of ABCDE, we can recover the target distribution with remarkable
accuracy.

This simulation was useful in demonstrating that the crossover
perturbation method that relies on vector operations is equally
capable of recovering the full target density of the classic mixture
of normals problem, which has been challenging for previous
ABC algorithms (Beaumont et al., 2009; Sisson et al., 2007). We
emphasize that all that was required to fit the model was the prior
specification of δ, and we did not require explicit specification of a
tolerance threshold.

3.2. The Wald distribution

The analysis of response time (RT) has a long and interesting
history in psychology. The focus on the RT distribution has
highlighted the importance of Bayesianmodeling of RTs. However,
our most sophisticated models of RTs do not lend themselves
well to Bayesian modeling because of their complexity (Lee,
Fuss, & Navarro, 2006; Oravecz, Tuerlinckx, & Vandekerckhove,
2009; Vandekerckhove, Tuerlinckx, & Lee, 2011). Instead, Bayesian
models of RT have often resorted to simplified but well-fitting
descriptive models with likelihoods such as the Weibull, ex-
Gaussian, or log Gaussian (Craigmile, Peruggia, & Van Zandt, 2010;
Lee & Wagenmakers, 2012; Peruggia, Van Zandt, & Chen, 2002;
Rouder, Lu, Speckman, Sun, & Jiang, 2005; Rouder, Sun, Speckman,
Lu, & Zhou, 2003).

One statisticalmodel of RTs that is both simple and theoretically
useful is the Wald or inverse Gaussian distribution (Chhikara &
Folks, 1989; Wald, 1947). The Wald distribution describes the
behavior of the first-passage time of a diffusion process with a
single boundary. This process can explain effects on RTs from a
simple RT experiment (Luce, 1986), where subjects respond as
soon as a signal is perceived, regardless of what the signal is,
or go/no-go tasks (Heathcote, 2004; Schwarz, 2001). The two-
parameter Wald distribution, with density

f (y|α, ν) = α

2πy3

−1/2
exp

−
(α − νy)2

2y

, (8)

provides a simple, psychologically meaningful interpretation of
observed RT data. Specifically, the parameters α and ν correspond
to different components of the psychological process of stimulus
detection. The parameter α is the threshold amount of evidence
that a subject requires to respond that a signal has been presented.
The parameter ν is the drift rate or rate of accumulation of evidence
(Heathcote, 2004; Matzke & Wagenmakers, 2009). Given these
parameters, theWald distribution can be thought of as a simplified
version of the drift diffusion model (DDM; Ratcliff (1978)), which
is a popular model for two-choice RT data. However, the likelihood
function for the DDM is technically intractable because it requires

B.M. Turner, P.B. Sederberg / Journal of Mathematical Psychology () – 7

Fig. 3. The estimated target distribution (left panel) overlaid with the true target distribution (black line) and the estimated posterior distribution of the error parameter δ.

the evaluation of an oscillating but convergent infinite sum (see
Feller (1968), Lee et al. (2006), and Navarro and Fuss (2009)). This
is not the case for the two-parameter Wald distribution, whose
likelihood function is given by

L(α, ν|Y) =

N
i=1

f (yi|α, ν),

and can be factored into

L(α, ν|Y) =

N
i=1

α

2πY 3

i

−1/2
exp

−

N
i=1

(α − νYi)
2

2Yi

=

N
i=1

α

2πY 3

i

−1/2

× exp

−

N
i=1

α2
− 2ανYi + νY 2

i

2Yi

=

N
i=1

α

2πY 3

i

−1/2

× exp

−
α2

2

N
i=1

1
Yi

−
ν2

2

N
i=1

Yi + Nαν

.

Thus, by the Fisher–Neyman Factorization Theorem (Rice, 2007),
the statistics S1(y) =

i Yi and S2(y) =

i 1/Yi are jointly

sufficient for the parameters α and ν.2
For the purposes of this demonstration, we simulated 100 RTs

in a simple RT task. We denote Yi for the ith RT and let Yi be
distributed as a Wald random variable with parameters {α, ν}.
We chose mildly informative priors for each of these parameters,
namely

α ∼ Γ (1, 1), and
ν ∼ Γ (1, 1).

Our goal is to show that even without the Wald density
function, ABCDE is able to recover the same posterior distributions
for the parameters of this model as a standard Bayesian approach.
To make the comparison between the estimates of the posteriors
from different algorithms, we used three methods. The first
methodmade use of the likelihood function andwe performed DE-
MCMC sampling as described in ter Braak (2006).

The other two methods were likelihood-free methods: the
first was a basic KABC algorithm as presented in Wilkinson

2 This result is easy to see because the Wald distribution belongs to the
exponential family, so sufficient statistics are the functions of the data in the
exponential.

(submitted for publication), and the second was the ABCDE
algorithm. To compare the algorithms as closely as possible, we
constrained the ABCDE algorithm to match the KABC algorithm so
that the two methods differed only in their method of proposal
generation. For both of these likelihood free methods, we used the
two sufficient statistics S1(y) =

i Yi and S2(y) =

i 1/Yi derived

above and assumed separate error terms for each statistic. We
employed a Gaussian kernel (see Silverman (1986)) and assumed
that our data Y arose from the process

Y = Model(y|θ)+ ζ ,

where ζ = [ζ1, ζ2] such that ζ1 ∼ N (0, δ1) and ζ2 ∼ N (0, δ2).
Here, ζ1 and ζ2 are the error terms corresponding to each sufficient
statistic S1(y) and S2(y). For both likelihood-freemethods,we fixed
δ1 = 0.005 and δ2 = 0.01. To compare the simulated data X to the
observed data Y , we used the Euclidean distance between the ith
summary statistic, so that

ρi(X, Y) = Si(X)− Si(Y).

To implement the restricted ABCDE algorithm, we again set
α = β = 0.We used only 24 particles in a single group, to facilitate
comparison across sampling methods. For this simulation, we
did not use the burn-in mode (γ2 = 0) and ran the algorithm
in sampling mode for 10,000 iterations. We specified uniform
additive sampling error so that b ∼ CU[−0.001, 0.001], a uniform
distribution for γ1 ∼ CU[0.5, 1], and set κ = 1.

To implement the KABC algorithm (Wilkinson, submitted for
publication), we applied the same basic settings that were used for
ABCDE and ran 24 chains independently for 10,000 iterations. To
form our estimates, we discarded the first 100 iterations in both
samplers. To generate proposals, we used a Gaussian transition
kernel centered at the current state of a given chain with standard
deviation equal to 0.5.

Fig. 4 shows the estimated marginal posteriors for each of
the methods used. The top panels show the estimates obtained
using ABCDE whereas the bottom panels show the estimates
obtained using KABC. In each of these three panels, the true values
used to generate the data are shown by vertical lines and the
likelihood-informed estimates, which were obtained using DE-
MCMC, are represented as the black densities. Comparing the
top and bottom panels, we can see that both likelihood-free
methods provide reasonable approximations to the true posterior
distribution. However, there is evidence to suggest that the ABCDE
algorithm has achieved a better fit. In particular, the bottom panel
of Fig. 4 shows thatmore sampling error is present in the estimates
when using KABC. The estimates do not conform well to the true
posterior distributions and several outliers are present, despite
having been initialized at the same locations as in ABCDE and
discarding the same number of burn-in samples.

8 B.M. Turner, P.B. Sederberg / Journal of Mathematical Psychology () –

Fig. 4. The estimated marginal posterior distributions of α (left panels) and ν (right panels) using ABCDE (top panel histograms) and KABC (bottom panel histograms). The
likelihood-informed estimates using DE-MCMC are shown as the black densities in all panels and the vertical lines show the parameter values used to generate the data.

Fig. 5. The estimated joint posterior distributions of α and ν using likelihood-based DE-MCMC sampling (left panel) and likelihood-free ABCDE (middle panel) and KABC
(right panel). The vertical and horizontal lines represent the parameter values used to generate the data.

Fig. 5 shows the estimated joint posterior distributions using
DE-MCMC (left panel), ABCDE (middle panel), and KABC (right
panel) along with the parameter values used to generate the data
(red lines). The figure shows thatwhen the likelihood is known, the
sampler mixes very nicely, creating a smooth estimate. However,
the two likelihood-free methods show that the chains stick for
several iterations, creating black dots throughout the estimated
posterior. The problem of chain sticking is prevalent in the ABC
setting, especiallywhen δ (or ϵ) is small. However, the figure shows
that the estimates obtained using ABCDE fill a larger region (i.e., the
estimates are much smoother) than the estimates obtained using
KABC.

The performance of the two likelihood-free methods is
favorable, but is to be expected given that we were able to derive
sufficient statistics for the model parameters. However, showing
thatwe canmatch the true posteriorswhen a likelihood is available
is useful in illustrating that it is also possible to obtain the true
posterior estimates when the likelihood is intractable, such as in
the DDM. As is normal in the ABC setting, both algorithms suffered

from substantial rejection rates: the ABCDE algorithm accepted
1.31% of its proposals while the KABC algorithm accepted only
0.24% of its proposals, after the burn-in period. Taken together,
Figs. 4 and 5 show that this difference – a 454% improvement over
the KABC algorithm – has a drastic impact on the estimates we
obtain.

3.3. Bivariate normal example

As a final example, we consider the problem of scalability.
Currently, ABC algorithms become extremely inefficient in high-
dimensional parameter spaces, a direct result of the accept/reject
nature of these algorithms. In high-dimensional spaces, proposing
a successful candidate parameter vector using only a mutation
kernel becomes a very improbable event.

The ABCDE algorithm, on the other hand, can be used to sample
efficiently from the posterior distributions of high-dimensional
models. Rather than regularly rejecting parameter vectors in low-
density regions, the ABCDE algorithm will simply assign a small

B.M. Turner, P.B. Sederberg / Journal of Mathematical Psychology () – 9

weight to the particle as measured by the kernel function. The
crossover process will then evolve the population towards higher-
density regions, narrowing in on the true posterior. For this next
example we illustrate how well this process scales to multiple
dimensions by applying the ABCDE algorithm to a set of 10
bivariate normal distributions – a 20-parameter problem – and
performing inference on the parameters jointly.

We denote the observed data from the jth source as Yj, each
of which are assumed to be independently distributed from a
bivariate normal distributionwith anunknownmeanvectorµj and
known variance matrixΣ , or

Yj ∼ N2

µj =

µj,1
µj,2

,Σ =

0.012 0
0 0.012

. (9)

To generate the observed data for testing the model, we
randomly sampled 10 points from the space µj ∼ CU[0, 10] × CU
[0, 10], and then treated the resultingµjs as the sole observation of
the data. These sampledµjs are shown in Fig. 6 by the ‘‘x’’ symbols.
When simulating data X , we generated n = 50 observations from
each bivariate normal distribution using Eq. (9) with the µjs
specified by the 20-dimensional parameter vector of the particle.

For the discriminant function, we calculated the root mean
squared difference (RMSD) between the average over these 50
simulated observations X̄j and the ‘‘true’’ observed data Ȳj, such
that

ρ(X, Y) =

 1
20

20
j=1

[(X̄j − Ȳj)2],

where in this case j is indexed over the 20 parameters of the
flattened 10×2matrix of bivariatemeans.We then used the RMSD
to compute a final weight of each proposal,

ψ(ρ(X, Y)|δ) = φ(ρ(X, Y)|0, δ),

where φ(a, b) is the normal density with mean a and standard
deviation b.

For eachµj, we specified a noninformative prior over the entire
space [0, 10] × [0, 10] so that

µj ∼ CU[0, 10] × CU[0, 10].

In this high-dimensional space, the specification of δ becomes a
difficult problem. At first, the values of ρ(X, Y) will all be large,
and so a small value for δ will result in the numerator of Eq. (3)
being equal to zero which will lead to the rejection of the proposal.
To work around this problem, we treated δ as a free parameter in
the model, and assigned it a strong prior so that

δ ∼ Exp(20).

This exponential prior thus favors particles in high-density regions
with small δs, but it allows for particles in the low-density regions
as well (i.e., they have nonzero weights).

We set the mutation probability to β = 0.0 (i.e., we used
crossover only) and crossover parameter update probability κ =

0.9 (allowing for more diversity in the crossover step). We used
only one group (G = 1) of size K = 50, for a total of 50 particles.
There was no need to run the migration step, so we set α = 0.0.
We again implemented burn-in and sampling periods. During the
burn-in period, we sampled γ2 ∼ CU[0.5, 1] for each update and
ran the algorithm for 200 iterations. During the sampling period,
we set γ2 = 0 and ran the algorithm for 300 iterations. For both
modes, we sampled γ1 ∼ CU[0.5, 1] and b ∼ CU[−0.001, 0.001].
To transition from the burn-in mode to the sampling mode, we
initialized the chains during the sampling mode to the final values
obtained during the burn-in mode. Finally, during the burn-in
mode, δ was treated as a free parameter, but, during the sampling

mode, δ was fixed to the minimum of the distribution obtained by
the end of the burn-in mode.

For such a high-dimensional problem, one could certainly
benefit from dividing the sampling procedure into blocks (Gelman,
Carlin, Stern, & Rubin, 2004). For example, one could determine
the conditional distributions of each µj parameter, which would
result in 10 blocks each consisting of a two-dimensional space.
To obtain samples from the joint posterior in this regime, one
would then cycle through each conditional distribution and sample
from this distribution using ABCDE. Because the ABCDE algorithm
employs a system of Markov chains, developing such a sampler
is straightforward, unlike other algorithms that rely on sequential
Monte Carlo techniques. However, to create a modeling challenge
for ABCDE, we instead used only a single block (a twenty-
dimensional space). In this regime, rejection rates will be very high
and efficiently sampling from the joint posterior distribution will
be difficult.

The middle panel of Fig. 6 shows the estimated joint posterior
distribution for each of the 10 bivariate normal components during
the burn-in period. To illustrate the convergence of the algorithm
we color-coded the parameter estimates based on the current
iteration. Beginning with the uniform distribution, the particles
representing the 20 parameters quickly converged to cluster
around the 10 bivariate means. This is made possible because δ
starts high to provide a non-zero weight for the DE crossover
algorithm to converge to the high-density regions. The left panel
of Fig. 6 shows the convergence of δ across the iterations and is
color coded to match the posterior estimates in the middle panel.
The values of δ decrease with each iteration as ABCDE converges to
the high-density regions of the posterior. The right panel of Fig. 6
shows the final estimate of the joint posterior distribution of the
10 bivariate normal components obtained during the 300 sampling
mode iterations following the burn-in period.

This example has illustrated a number of important features
of the ABCDE algorithm. First, while the algorithm was able
to converge to the bivariate means, the algorithm was able
to recover the true posterior distribution and did not simply
converge to single points (i.e., themaximum a posteriori estimate).
Furthermore, this accuracy was obtained using only 25,000
model simulations with a total computation time of under one
minute. We speculate that obtaining such results would be nearly
impossible when using a standard ABC algorithm such as ABC SMC
due to the extremely high rejection rates. We also implemented a
KABC algorithm using the same number of particles and iterations,
and a normal transition kernel with standard deviation equal to
0.1. Although we do not report these results here, the algorithm
failed to convergewithin 500 iterations, leaving the final estimated
posterior spanning the entire space. This additional simulation
suggests that the crossover portion of the algorithm is essential
for efficiently scaling ABC to models with large numbers of
parameters.

4. General discussion

Typically, Monte Carlo methods such as Markov chain Monte
Carlo or sequential Monte Carlo rely on transition kernels to
move proposals around the region of interest. These transition
kernels generally are Gaussian in form and are centered at
the previous state of the chain. Thus, to fully specify the
kernel, one only needs to select the standard deviation of
the Gaussian as a tuning parameter. However, it can be very
difficult to specify the optimal transition kernel, especially in
the case of highly correlated parameters. For highly correlated
parameter spaces (e.g., correlations greater than 0.4), Turner
et al. (submitted for publication) have shown in a simulation
study that the DE proposal generation method is much more

10 B.M. Turner, P.B. Sederberg / Journal of Mathematical Psychology () –

Fig. 6. The marginal convergence of all δ values (left panel) and the estimated joint posterior distribution of (µ1, µ2) (middle panel) as a function of the iteration number
during the burn-in period. The grayscale color coding is equivalent for the left and middle panels to show the trade-off between the estimated posterior and the maximum
and minimum values of the error term. The right panel plots the final estimated joint posterior distribution using only the samples obtained during the sampling period.

efficient than conventional Markov chain Monte Carlo algorithms,
as measured by both the rejection rate and the Kullback–Leibler
distance. Furthermore, in the case of high-dimensional parameter
spaces, the cost of selecting sub-optimal transition kernels can
be incredibly high—many more samples may be required to
adequately sample from the posterior.

On the other hand, genetic algorithms such as DE relieve the
demands of selecting transition kernels because the perturbation
method is explicitly dependent on the current population of
particles. In addition to DE being convenient, it has been shown
that the basic DE algorithm can achieve the optimal acceptance
rate when

γ1 =
2.38
√
2d
,

where d is the number of dimensions in the parameter space
(ter Braak, 2006). The automatic specification of a transition
kernel used by ABCDE offers a compelling advantage over most
current algorithms in the ABC framework, where rejection rates
are exacerbated by the mandatory comparison of the distance
between simulated and observed data to some tolerance threshold.

The ABCDE algorithmhas another benefit thatwas not explored
in this article. Because the ABCDE algorithm consists of a system
of Markov chains, sets of parameters can be ‘‘blocked’’ and
estimated cyclically. For example,when estimating the parameters
of a hierarchical model, likelihood-informed methods can be
used for the hyperparameters whose conditional distributions
do not depend on the likelihood, and ABCDE can be used for
the lower-level parameters as shown in Turner and Van Zandt
(submitted for publication). This is an added benefit of ABCDE over
sequential Monte Carlo methods, which do not converge to the
true joint posterior distribution when used in a Gibbs sampling
framework unless proper precautions are taken.

While the ABCDE algorithm is technically a system of Markov
chains, it can still be easily parallelized by distributing model
simulations in the ‘‘for’’ loop (Line 6 in Fig. 1). We simulated all
examples presented in this article in R on a standard desktop
computer with an Intel i7 processor (3.07 GHz) and distributed the
jobs across eight cores. We found that this was sufficient for our
needs, but we emphasize that more powerful computational tools
(e.g., compiler languages, graphics processor units, computing
clusters) could be used to amplify the algorithm’s efficiency well
beyond what we demonstrate in the present examples.

4.1. Guidelines

A difficulty of employing ABCDE is that, in its complete form
with crossover, migration, and mutation, it requires a number
of tuning parameters. While we have found that the selection
of these parameters does not critically alter the performance of
the algorithm, we now provide some basic guidelines for their
selection. First, the number of particles per group should be

about 5–10 times the number of modes in the posterior and/or
parameters in the model. Dividing up the pool of particles is really
just a matter of selecting the appropriate group size. We have
found that a group size of 20–50 particles works well to fit a wide
range of models.

Selecting the migration probability α and the mutation proba-
bility β is usually a matter of knowing something about the poste-
rior distribution.While these features were not used in this article,
we have found that α and β should usually be some small value
(e.g., α = β = 0.1). For multi-modal posteriors, it might be im-
portant to increase the α parameter to allow for a more thorough
exploration of the parameter space. Selecting β and κ is a matter
of convergence speed. We have found that small values such as
β = 0.1 or β = 0.2 work quite well. Increasing β will result in
more mutation steps, and the algorithm will be very similar to the
ABC SMC algorithm (Toni et al., 2009) or the Markov chain Monte
Carlo algorithm (Wilkinson, submitted for publication). Large val-
ues of the crossover parameter update probability (e.g., κ = 0.9)
will allow for fast convergence while maintaining some additional
diversity in the crossover proposals, which is ideal formostmodels
and especially when there is parameter dependence. Some prob-
lems, however,may benefit from slower convergencewith κ = 0.2
that fosters search along individual dimensions. Selecting the per-
turbation kernel in themutation step is similar to selecting the ker-
nel in the ABC SMC algorithm. However, for ABCDE,we do not need
these transition kernels to be highly variable and have found that
choosing a normal kernel with small variance works well.

Finally, the choice of the model error function ψ(·|δ) is an im-
portant one. While we have found the Gaussian and Epanechnikov
functions very useful, we also suggest using exponential functions.
As δ → 0, wewill obtain estimates closer to the true posterior dis-
tribution, and the importance of selecting the model error func-
tionψ(·|δ)will diminish. In the examples presented here, we have
shown that δ can be treated as a free parameter in themodel,which
automates the fitting procedure.

It is important to note thatwhile including crossover,migration,
and mutation provides for the most flexible algorithm, in many
cases ABCDE works extremely well with only a single group
of particles that update via the crossover step. This is because
the DE algorithm in combination with the Metropolis–Hastings
acceptance probability allows for efficient proposals that span
the entire range of high-density regions of the parameter space.
The bivariate normal simulation outlined above is an example of
estimating a complexmodelwith only the crossover component. In
such cases, you only need to decide on the number of particles and
an error function, making the simulation quite straightforward.

5. Conclusions

In this article, we have presented a new algorithm, ABCDE, that
attempts to solve the problem of scalability associated with ABC

B.M. Turner, P.B. Sederberg / Journal of Mathematical Psychology () – 11

methods. The algorithm relies on DE to drive the sampler to high-
density regions of the posterior distribution and automatically
optimize the proposal efficiency. This type of proposal generation
is very efficient, capturing bothmulti-modal and high-dimensional
posteriors both quickly and accurately. Although we have not
provided proofs of convergence for the ABCDE algorithm in this
article, we have demonstrated with many examples (only three of
which are reported here) that the ABCDE algorithm will converge
to the true posterior distribution.

When developing a model in any field, one often investigates
many variants of a single base model. ABC algorithms, which
require only a simulation of the model, afford us the opportunity
to test many variants without having to develop full statistical
models for each variant. The posteriors that ABC provides can
give us clear information about the relationships between the
parameters—information that might otherwise be available only
through extensive experience with each variant. Equipped with
only a prior distribution and the ABCDE algorithm, estimation is
now feasible for virtually any posterior distribution.

References

Barthelmé, S., & Chopin, N. (2011). ABC-EP: expectation propagation for likelihood-
free Bayesian computation. In Proceedings of the 28th international conference on
machine learning. Bellevue, WA.

Beaumont, M. A. (2010). Approximate Bayesian computation in evolution and
ecology. Annual Review of Ecology, Evolution, and Systematics, 41, 379–406.

Beaumont, M. A., Cornuet, J.-M., Marin, J.-M., & Robert, C. P. (2009). Adaptive
approximate Bayesian computation. Biometrika, asp052, 1–8.

Beaumont, M. A., Zhang, W., & Balding, D. J. (2002). Approximate Bayesian
computation in population genetics. Genetics, 162, 2025–2035.

Blum, M. G. B., & François, O. (2010). Non-linear regression models for approximate
Bayesian computation. Statistics and Computing , 20, 63–73.

Chhikara, R. S., & Folks, L. (1989). The inverse Gaussian distribution: theory
methodology and applications. New York: Marcel Dekker, Inc.

Craigmile, P., Peruggia, M., & Van Zandt, T. (2010). Hierarchical Bayes models for
response time data. Psychometrika, 75, 613–632.

Del Moral, P., Doucet, A., & Jasra, A. (2008). An adaptive sequential Monte Carlo
method for approximate Bayesian computation Technical Report.

Feller,W. (1968). An introduction to probability theory and its applications, Vol. 1. New
York: John Wiley.

Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2004). Bayesian data analysis. New
York (NY): Chapman and Hall.

Havangi, R., Nekoui, M., & Teshnehlab, M. (2010). A multi swarm particle filter for
mobile robot localization. International Journal of Computer Science, (7), 15–22.

Heathcote, A. (2004). Fitting Wald and ex-Wald distributions to response time
data: an example using functions for the S-PLUS package. Behavioral Research
Methods, Instruments, & Computers, 36, 678–694.

Hu, B., & Tsui, K.-W. (2005). Distributed evolutionaryMonte Carlo with applications
to Bayesian analysis Technical Report Number 1112.

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of
IEEE international conference on neural networks. vol. 4 (pp. 1942–1948).

Lee,M. D., Fuss, I. G., &Navarro, D. J. (2006). A Bayesian approach to diffusionmodels
of decision-making and response time. In B. Scholkopf, J. Platt, & T. Hoffman
(Eds.), Advances in neural information processing (19th ed.) (pp. 809–815).
Cambridge, MA: MIT Press.

Lee, M.D., & Wagenmakers, E.-J. (2012). A course in Bayesian graphical modeling
for cognitive science, last downloaded January 1, 2012. Available from
http://www.ejwagenmakers.com/BayesCourse/BayesBookWeb.pdf.

Luce, R. D. (1986). Response times: their role in inferring elementary mental
organization. New York: Oxford University Press.

Marjoram, P., Molitor, J., Plagnol, V., & Tavare, S. (2003). Markov chain Monte Carlo
without likelihoods. Proceedings of the National Academy of Sciences of the United
States, 100, 324–328.

Matzke, D., & Wagenmakers, E.-J. (2009). Psychological interpretation of the ex-
Gaussian and shifted wald parameters: a diffusion model analysis. Psychonomic
Bulletin and Review, 16, 798–817.

Navarro, D. J., & Fuss, I. G. (2009). Fast and accurate calculations for first-passage
times in Wiener diffusion models. Journal of Mathematical Psychology, 53,
222–230.

Oravecz, Z., Tuerlinckx, F., & Vandekerckhove, J. (2009). A hierarchical Orn-
stein–Uhlenbeckmodel for continuous repeatedmeasurement data. Psychome-
trika, 74, 395–418.

Peruggia, M., Van Zandt, T., & Chen,M. (2002).Was it a car or a cat i saw? An analysis
of response times for word recognition. Case Studies in Bayesian Statistics, VI ,
319–334.

Pritchard, J. K., Seielstad, M. T., Perez-Lezaun, A., & Feldman, M. W. (1999).
Population growth of human Y chromosomes: a study of Y chromosome
microsatellites.Molecular Biology and Evolution, 16, 1791–1798.

Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85, 59–108.
Rice, J. A. (2007). Mathematical statistics and data analysis. Belmont, CA: Duxbury

Press.
Robert, C. P., Cornuet, J.-M., Marin, J.-M., & Pillai, N. (2011). Lack of confidence in

approximate Bayesian computation model choice. Proceedings of the National
Academy of Sciences of the United States, 108, 15112–15117.

Rouder, J. N., Lu, J., Speckman, P., Sun, D., & Jiang, Y. (2005). A hierarchical model
for estimating response time distributions. Psychonomic Bulletin and Review, 12,
195–223.

Rouder, J., Sun, D., Speckman, P., Lu, J., & Zhou, D. (2003). A hierarchical
Bayesian statistical framework for response time distributions. Psychometrika,
68, 589–606.

Schwarz, W. (2001). The ex-Wald distribution as a descriptive model of response
times. Behavioral Research Methods, Instruments, & Computers, 33, 457–469.

Silverman, B. W. (1986). Density estimation for statistics and data analysis. London:
Chapman & Hall.

Sisson, S., Fan, Y., & Tanaka, M. M. (2007). Sequential Monte Carlo without
likelihoods. Proceedings of the National Academy of Sciences of the United States,
104, 1760–1765.

Storn, R., & Price, K. (1997). Differential evolution—a simple and efficient heuristic
for global optimization over continuous spaces. Journal of Global Optimization,
11, 341–359.

Tanese, R. (1989). Distributed genetic algorithms (pp. 434–439).
Tavaré, S., Balding, D. J., Griffiths, R. C., & Donnelly, P. (1997). Inferring coalescence

times from dna sequence data. Genetics, 145, 505–518.
ter Braak, C. J. F. (2006). AMarkov chainMonteCarlo version of the genetic algorithm

differential evolution: easy Bayesian computing for real parameter spaces.
Statistics and Computing , 16, 239–249.

Tong, G., Fang, Z., & Xu, X. (2006). A particle swarm optimized particle filter for
nonlinear system state estimation. Evolutionary Computation, 438–442.

Toni, T., Welch, D., Strelkowa, N., Ipsen, A., & Stumpf, M. P. (2009). Approximate
Bayesian computation scheme for parameter inference and model selection in
dynamical systems. Journal of the Royal Society Interface, 6, 187–202.

Turner, B.M., Sederberg, P.B., Brown, S.D., & Steyvers, M. (2012). A note on
efficiently sampling from distributionswith correlated dimensions, manuscript
(submitted for publication).

Turner, B.M., & Van Zandt, T. (2012). Hierarchical approximate Bayesian computa-
tion, manuscript (submitted for publication).

Turner, B. M., & Van Zandt, T. (2012). A tutorial on approximate Bayesian
computation. Journal of Mathematical Psychology, 56, 69–85.

Vandekerckhove, J., Tuerlinckx, F., & Lee,M. D. (2011). Hierarchical diffusionmodels
for two-choice response time. Psychological Methods, 16, 44–62.

Vrugt, J. A., ter Braak, C. J. F., Diks, C. G. H., Robinson, B. A., Hyman, J. M., & Higdon,
D. (2009). Accelerating Markov chain Monte Carlo simulation by differential
evolution with self-adaptive randomized subspace sampling. International
Journal of Nonlinear Sciences and Numerical Simulation, 10.

Wald, A. (1947). Sequential analysis. New York: Wiley.
Wilkinson, R.D. (2011). Approximate Bayesian computation (ABC) gives exact

results under the assumption of model error, manuscript (submitted for
publication).

http://www.ejwagenmakers.com/BayesCourse/BayesBookWeb.pdf

	Approximate Bayesian computation with differential evolution
	Introduction
	The algorithm
	Weighing particles
	Selecting δ

	Crossover
	The two modes of sampling
	Mutation
	Migration

	Simulations
	Mixture of normals
	The Wald distribution
	Bivariate normal example

	General discussion
	Guidelines

	Conclusions
	References

