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Natural learners must compute an estimate of future outcomes that fol-
low from a stimulus in continuous time. Widely used reinforcement
learning algorithms discretize continuous time and estimate either tran-
sition functions from one step to the next (model-based algorithms)
or a scalar value of exponentially discounted future reward using the
Bellman equation (model-free algorithms). An important drawback of
model-based algorithms is that computational cost grows linearly with
the amount of time to be simulated. An important drawback of model-
free algorithms is the need to select a timescale required for exponential
discounting. We present a computational mechanism, developed based
on work in psychology and neuroscience, for computing a scale-invariant
timeline of future outcomes. This mechanism efficiently computes an es-
timate of inputs as a function of future time on a logarithmically com-
pressed scale and can be used to generate a scale-invariant power-law-
discounted estimate of expected future reward. The representation of
future time retains information about what will happen when. The en-
tire timeline can be constructed in a single parallel operation that gen-
erates concrete behavioral and neural predictions. This computational
mechanism could be incorporated into future reinforcement learning
algorithms.
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1 Introduction

The ability to learn and operate in a continuously changing world with com-
plex temporal relationships is critical for survival. For example, rats have
to navigate around narrow holes and across wide fields; they have to learn
that some stimuli present imminent danger requiring quick action, while
others can serve as cues for events that will take place in a more distant
future. Understanding the neural mechanisms that govern such behavioral
flexibility and building artificial agents that have such capacity pose signif-
icant challenges for neuroscience and artificial intelligence.

In reinforcement learning (RL), an agent learns how to optimize its ac-
tions from interacting with the environment. The traditional approach to
RL is to consider each different configuration of the environment as a dif-
ferent state (Sutton & Barto, 1998). Temporal difference (TD) learning has
been employed to learn the scalar value of temporally discounted expected
future reward for each state. This approach has been tremendously useful
and has led to numerous practical applications (Mnih et al., 2015).

In this letter, we introduce a method for computing an estimate of future
events along a logarithmically compressed timeline—an estimate of what
will happen when in the future. This method addresses two major limita-
tions of mainstream RL algorithms. First, because TD learning attempts to
estimate an integral over a function of future time, it discards detailed infor-
mation about the time at which future events are expected to take place. Of
course, human decision makers can reason about the time at which future
events will occur, leading many authors to augment the fast value com-
putation supplied by TD learning with a model-based system (see Daw &
Dayan, 2014, for a review). The model-based system is typically assumed
to be slow; for some standard algorithms, the time taken to predict an out-
come n steps in the future requires n matrix operations. Second, because the
goal of TD learning is to estimate the exponentially discounted expected cu-
mulative future reward, the method necessarily introduces a characteristic
timescale (see Figure 1a). If the delay associated with the to-be-learned re-
lationship is small compared to this scale, the behavior of the model will
be dramatically different than if it is large compared to this scale.1 In this
letter, we present an alternative method for predicting future outcomes in
continuous time that addresses these limitations.

1.1 Fixing a Timescale Limits Flexibility. Consider the task of design-
ing an agent that will be deployed in a realistic environment without ad-
ditional intervention from the designer. Successful performance on many
tasks requires the ability to learn across a range of timescales. To make this
example more concrete, consider designing an agent that will be deployed

1
Similar arguments can be made when eligibility traces are considered.
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Estimating Scale-Invariant Future in Continuous Time 683

Figure 1: Exponential discounting introduces a scale; power law discounting is
scale free. (a) An exponential function has qualitatively different properties at
different scales. The function y = γ x is shown at three different scales for γ =
0.9. If x is on the order of the time constant (− log γ ) we obtain the familiar
exponential function with a clearly defined gradient for different values of x
(middle). If x is small with respect to the time constant, we find a linear function
with a shallow slope (left). If x is large relative to the time constant (right), the
function approximates a delta function with a peak around zero. (b) Power law
discounting (y = x−1). For all ranges of x values, the power law gives the same
relative gradient of values.

on the streets of Boston to learn to complete the everyday tasks of a post-
doc. In order to get from Boston University to Harvard, the agent must learn
that switching onto the Red Line leads to Harvard Square about 20 minutes
in the future. At Dunkin Donuts, the agent must learn that paying money
leads to a cup of coffee in about 1 minute. Grasping the cup and sipping the
coffee predicts the taste of coffee immediately but also predicts the stimu-
lating effect of caffeine several minutes in the future. In designing an agent
to learn all of these tasks in an unknown environment, the designer will not
necessarily know what temporal scales are important. We thus desire that
the learning algorithm be scale invariant.

Algorithms based on the Bellman equation, which includes TD learning,
estimate an exponentially discounted expected future return (value) by har-
nessing the recursive structure of the value function V (t),
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684 Z. Tiganj, S. Gershman, P. Sederberg, and M. Howard

V (t) = E[r(t) + γV (t + 1)], (2.1)

where r(t) denotes the reward at time t, the expectation represents an aver-
age over future events, and the exponential discount factor γ fixes a charac-
teristic timescale.2 The scaling results in very different policies at different
temporal scales (see Figure 1a). Consider a world in which two rewards, A
and B, follow a cue. The delay from the cue to B is twice the delay to A. Sup-
pose that we do not know the units of time in the world and pick γ = 0.9.
If the units of the world are such that the delay to A is 1 and the delay to
B is 2, then the agent would prefer B if the value of A was $1 and B was
$1.20. However, if the units of the world are very different such that the de-
lay to A was 100 and the delay to B was 200, then even if the reward at B
was $30,000, the agent would still prefer A. This example makes clear that
the success of a model that makes use of exponential discounting depends
critically on aligning the choice of γ to the relevant scale of the world. In
addition, animal literature suggests that hyperbolic discounting explains
the data better than exponential discounting (see, e.g., Green & Myerson,
1996), for instance, regarding preference reversal (Green & Myerson, 2004;
Hayden, 2016).

1.2 Representing the Future with a Scalar Obscures Temporal Infor-
mation. One could implement scale-invariant power-law discounting3 by
choosing an appropriate spectrum of exponential discount rates (Kurth-
Nelson & Redish, 2009; Sutton, 1995). However it is computed, a discounted
value discards potentially important information about when an antici-
pated event will occur. For instance, consider the decision facing an agent
about whether to buy a cup of very hot coffee. Drinking the coffee immedi-
ately would burn one’s mouth. However, drinking the coffee after waiting
a few minutes for it to cool down will result in a delicious and stimulat-
ing beverage. Is the value of the coffee negative (burned mouth) or positive
(delicious beverage), or some weighted sum of the two? One way to answer
the question is to state that the value of the coffee is a function over future
time that is initially negative and then later positive. If the only informa-
tion about this function that can be brought to bear in deciding whether to
purchase the coffee is a single scalar value, then the decision maker may
choose an inappropriate action, either purchasing the coffee when she does
not have time to wait for it to cool or missing the opportunity to enjoy a
delicious beverage in the near future.

One could tackle this problem using model-free RL approaches by ex-
panding the state space to include relevant variables, such as the elapsed

2
More precisely, the inverse of the time constant goes like − log γ .

3
If f (t) = ta, then rescaling the time axis preserves the relative values at all time points,

f (αt) = C f (t).
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Estimating Scale-Invariant Future in Continuous Time 685

time that the cup has been held and the steam coming from the cup. How-
ever, when the elapsed time is one of the variables that the agent needs to
keep track of, this approach becomes computationally very expensive. This
is because the number of states rapidly increases. If time is discretized into
m bins and we need to keep track of n stimuli, then the number of states is
mn. This is especially costly when time is discretized in equal-sized bins as
in complete serial compound representation. Using microstates character-
ized with a set of compressed temporal basis functions as in Ludvig, Sutton,
and Kehoe (2008, 2012) reduces the number of states to some degree, but this
type of representation does not provide a future timeline.

Classical model-based RL enables decisions that take into account the
time at which future events will take place. However, the computational
cost of traditional model-based solutions grows linearly with the horizon
over which one needs to estimate the future. In this letter, we present a
method that constructs a function over future time for each stimulus (state).
This representation of the future is logarithmically compressed, and the es-
timate of the future at many different points in time can be computed in par-
allel. One could compute an integral over this representation to maintain a
cached value with power law discounting. But because the entire function
is available, an agent can also incorporate the time at which rewards will
become available into its decision making.

1.3 Scale-Invariant Temporal Representations in the Brain. The basic
computational strategy we pursue is to (1) compute a scale-invariant repre-
sentation of the temporal history leading up to the present and (2) at each
moment, associate the history with the stimulus observed in the present.
Step 1 assumes the existence of a scale-invariant compressed representation
of temporal history. Step 2 assumes the existence of an associative mecha-
nism. There is ample neural evidence for both of these assumptions. A large
body of literature from cellular neuroscience provides evidence for an as-
sociative mechanism implementing Hebbian plasticity at synapses (Bliss &
Collingridge, 1993; Lisman, Schulman, & Cline, 2002), which would be re-
quired for step 2.

There is also a growing body of evidence consistent with assumptions
necessary for step 1. Experiments from several species suggest that the brain
maintains a compressed representation of time in multiple brain regions.
“Time cells” fire during a circumscribed period of time within a delay inter-
val (Pastalkova, Itskov, Amarasingham, & Buzsaki, 2008; MacDonald, Lep-
age, Eden, & Eichenbaum, 2011); a reliable sequence of time cells tiles the
delay on each trial (see Figure 5a). Because the sequence is reliable, time cells
can be used to reconstruct how long in the past the delay began. In many ex-
periments, these sequences also carry information about what stimulus ini-
tiated the delay interval (Pastalkova et al., 2008; MacDonald, Carrow, Place,
& Eichenbaum, 2013; Tiganj, Cromer, Roy, Miller, & Howard, 2018; Terada,
Sakurai, Nakahara, & Fujisawa, 2017). Because there are fewer cells that
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686 Z. Tiganj, S. Gershman, P. Sederberg, and M. Howard

fire later in the sequence and those that fire later in the sequence fire for a
longer duration (Howard, Shankar, Aue, & Criss, 2015; Salz et al., 2016), the
ability to reconstruct time decreases as the start of the interval recedes into
the past. Time cells have been observed in several brain regions, including
hippocampus (MacDonald et al., 2011; Salz et al., 2016), prefrontal cortex
(Tiganj, Kim, Jung, & Howard, 2016; Bolkan et al., 2017; Tiganj et al., 2018),
and striatum (Mello, Soares, & Paton, 2015; Akhlaghpour et al., 2016), in
several species (Mau et al., 2018; Adler et al., 2012; Tiganj et al., 2018) and
in a wide variety of behavioral tasks.

Taken together, these data indicate that at each moment, the brain main-
tains a temporal record of what happened when leading up to the present.
The decrease in accuracy for events further in the past suggests that this
temporal record is compressed. As such, these neural data align with long-
standing predictions from cognitive models (Brown, Neath, & Chater, 2007;
Balsam & Gallistel, 2009; Howard et al., 2015). These models further pre-
dict that the form of compression should be logarithmic. Behavioral models
built from a logarithmically compressed representation readily account for
scale-invariant behavior (Howard et al., 2015).4

1.4 Overview of This Letter. In this letter, we use a logarithmically com-
pressed record of the past—a set of appropriate time cells—to construct
a scale-invariant estimate of the time of future events. A logarithmically
compressed record of the past can be efficiently computed using a method
we describe in detail below (Shankar & Howard, 2012, 2013). At each mo-
ment, this representation of the past is associated to the present. Neurally,
this association requires nothing more elaborate than Hebbian plasticity,
which can be implemented via long-term potentiation (Bliss & Collingridge,
1993). The past-to-present association can also be understood as a present-
to-future association. As such, multiplying this association with the present
stimulus vector enables us to identify the sequence of stimuli that will fol-
low the probe stimulus at different points in the future. Section 2 describes
this method more precisely.

This method yields an estimate of the future that has very different prop-
erties from traditional approaches used in RL. The properties of this rep-
resentation are described with illustrative examples in section 3. Because
the representation of the past is logarithmically compressed, so too is the
estimate of the future that it produces. A cached scalar value can be com-
puted from this timeline, yielding (scale-invariant) power law discounting
by summing over the predicted future. Notably, the compressed timeline
representation also provides a function over simulated time. The future

4
For much the same reason that, on a logarithmic scale, the difference between 1 and 2

is the same as the difference between 100 and 200, models built from a logarithmically
compressed temporal representation will be scale invariant.
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Estimating Scale-Invariant Future in Continuous Time 687

timeline can be computed in a single parallel operation and sums over po-
tential outcomes. Section 4 describes neural and behavioral predictions of
the model, reviewing recent empirical results that are consistent with the
proposed hypothesis that the brain constructs a logarithmically compressed
future.

2 Constructing a Logarithmically Compressed Timeline of the Future

This approach requires two key components: a logarithmically compressed
memory representation and an associative memory between the com-
pressed representation and the present stimulus. Section 2.1 describes a
method for constructing a logarithmically compressed memory represen-
tation following Shankar and Howard (2013). Section 2.2 describes the as-
sociative memory. Section 2.3 describes the future timeline that results from
probing the associative memory with a stimulus representation.

2.1 Previous Work: Constructing a Compressed Memory Representa-
tion of the Past. Consider a case in which the network is presented with
a vector-valued input that changes over time f(t). This input reflects the
presence or absence of a set of discrete stimuli (states) that we denote as
I = α, β, γ . . . For simplicity, let us assume that the input uses a local-
ist (one-hot) representation; if stimulus α is present at time t, we write
fα (t) = 1. The goal of this method is to construct an estimate of the past
leading up to the present. We refer to this memory representation as f̃. A
temporal record of the past requires two types of information. In order to
estimate f(t′ < t), we need to maintain both what and when information.
Thus, we index each of the neurons in f̃ by two indices, f̃ ∗

τ ,i
(see Figure 2).

The second index i ∈ I corresponds to the what information. The other in-
dex,

∗
τ , refers to the time in the past that this neuron is attempting to rep-

resent. That is, the network includes a set of values of
∗
τ ∈ { ∗

τ1,
∗
τ2,

∗
τ3 . . .}.

Because the value of
∗
τ for the ith row of the network,

∗
τi, has physical mean-

ing, we refer to the neurons in f̃ by their value of
∗
τ rather than their row

number. Each entry f̃ ∗
τ ,α

(t) approximates fα (t + ∗
τ ). Here the values of

∗
τ

are negative as they refer to a temporal distance in the past relative to the
present.

Following prior work (Shankar & Howard, 2012, 2013), we will construct
the representation of the past f̃ by means of an intermediate representation
F. Each neuron in F aligns with a corresponding neuron in f̃ (see Figure 3a).
The neurons in F are indexed by the label of the stimulus in the world that
activates them (α, β, γ . . .) and a scalar value s. The values of s for each row
of F align with the corresponding values of

∗
τ in each row of f̃ (see Figure 3b):

Fs,α ↔ f̃ ∗
τ ,α

. (2.1)
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688 Z. Tiganj, S. Gershman, P. Sederberg, and M. Howard

Figure 2: Constructing a memory representation of the recent past. The
schematic shows the two-layer network for constructing a memory representa-
tion by implementing an approximation of the Laplace and the inverse Laplace
transform. The input f is a vector over states α, β, γ . . . This provides input to a
two-layer network where each layer is a 2D array (sheet) of neurons. Neurons
in the first layer F are leaky integrators indexed by the state they encode, α, β,
γ . . . and their rate constant s. We refer to the activation of a particular entry
as Fs,α . Neurons in the second layer f̃ activate sequentially following the input
stimulus. They are indexed by the state that provides their input and the time by
which the peak of their activation follows the input stimulus

∗
τ . The activation

of a particular unit is referred to as f̃ ∗
τ ,α

.

The mapping between s and
∗
τ is such that s = −k/

∗
τ , where k is an integer

with physical meaning that we will describe and i ∈ 1, 2, 3 . . . n, where n is
the number of rows in F and f̃. As with

∗
τ , there are a finite set of values of

s, s ∈ {s1, s2, s3. . .}. As with
∗
τ , there is a physical meaning to the ith value

of s so we refer to neurons in F by their value of si rather than their index i.
Values of s are defined to be positive. Following previous work (Shankar &
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Estimating Scale-Invariant Future in Continuous Time 689

Figure 3: Structure and dynamics of the memory representation. (a) The two-
layer network is organized such that each input state has its own set of units in
the F and f̃ layers (when constructing the memory representation, there is no
crosstalk between the neurons that correspond to different states). (b) The input
stimulus fα (t) feeds into a layer of leaky integrators Fs,α that implement a dis-
crete approximation of an integral transform. Each neuron in the first layer has
a characteristic rate constant si. Fs,α projects onto f̃ ∗

τ ,α
through a set of weights

defined with the operator L−1
k , which implements an approximation of the in-

verse of the Laplace transform. Notice that the L−1
k operator projects only to a

local neighborhood (k neurons). Each of the neurons in the second layer has its
characteristic peak time relative to the input onset

∗
τ i. The analytic relationship

between
∗
τ and s can be expressed as

∗
τ = −k/s. Thus, choosing

∗
τ and integer k

fully specifies s; similarly, choosing s and k fully specifies
∗
τ . We chose

∗
τ to be

logarithmically spaced (in order to have a logarithmically compressed memory
representation). (c) A response of the network to a delta function input. Activity
of only three neurons in each layer is shown. Neurons in f̃ ∗

τ ,α
activate sequen-

tially following the stimulus presentation. The width of the activation of each
neuron scales with the peak time determined by the corresponding

∗
τ , making

the memory scale-invariant.
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Howard, 2013; Howard & Shankar, 2018), we choose the values of
∗
τ and s

to be evenly spaced on a logarithmic scale.5

The dynamics of each unit in F obeys

dFs,α (t)
dt

= −sFs,α (t) + fα (t), (2.2)

where the value of s on the right-hand side refers to that particular neuron’s
value si. Here we can see that s describes each neuron’s rate constant; 1/s
describes each neuron’s time constant. Taking the network state across all
values of s, F(s) estimates the Laplace transform of f(t′ < t). To see that Fs,α

at time t is the Laplace transform of fα (t′ < t), solve equation 2.2:

Fs,α (t) =
∫ t

−∞
e−s(t−t′ ) fα (t′)dt′. (2.3)

Knowing that F at time t holds the Laplace transform of f leading up
to the present suggests a strategy to construct an estimate of f. If we could
invert the transform and write the answer into another set of neurons f̃,
this would provide an estimate of f as a function of time leading up to the
present. The Post approximation (Post, 1930) provides a recipe for approx-
imating the inverse transform that can be computed with a set of feedfor-
ward weights, which we denote L−1

k :

f̃ ∗
τ ,α

(t) = L−1
k Fs,α (t). (2.4)

The integer k determines the precision of the approximation. Denoting the
kth derivative with respect to s as F(k)

s,α , we can rewrite equation 2.4 as

f̃ ∗
τ ,α

(t) = Cksk+1F(k)
s,α (t), (2.5)

where Ck is a constant that depends only on k.
To get an intuition into the properties of f̃ , we present a delta function

to fα at time zero and examine the activity of Fs,α (t) and f̃ ∗
τ ,α

(t). We find

immediately that Fs,α (t) = e−st . Moreover, the activity of the neurons in f̃
obeys

f̃ ∗
τ ,α

(t) = Ck
1
∗
τ

(
t
∗
τ

)k

e
−k t

∗
τ , (2.6)

5
For instance, one can choose

∗
τi = ∗

τmin(1 + c)i−1 for some minimum value of
∗
τ ,

∗
τmin

and a constant c that controls the spacing.
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Estimating Scale-Invariant Future in Continuous Time 691

Figure 4: Constructing an associative memory by building connections be-
tween present inputs and memory of the recent past. (a) Illustration of the com-
pressed memory representation f̃ as a function of time during presentation of
the sequence α, β, γ . Stimuli presented at different times (top) induce sequential
activation (bottom) in f̃. Activation corresponding to different stimuli is shown
with different colors. For clarity, only a handful of neurons are displayed. (b) A
graphical depiction of the state of the associative memory M after learning of
the sequence α, β, γ . Each of the three plots shows entries stored in M as a func-
tion of

∗
τ . M∗

τ ,q,r
is the synaptic weight from r to q at a particular

∗
τ . The different

stimuli are shown in different colors in each plot. Top: Associations stored in
M∗

τ ,γ ,α
, M∗

τ ,γ ,β
, and M∗

τ ,γ ,γ
as functions of log-spaced

∗
τ . Because γ was preceded

by both α and β, both M∗
τ ,γ ,α

and M∗
τ ,γ ,β

have peaks. Because β had been pre-
sented more recently when γ was presented, the curve for M∗

τ ,γ ,β
has a peak

closer to
∗
τ = 0. Because the representation of times in the more recent past is

more accurate than times further in the past, the peak for β is also sharper as a
function of

∗
τ . Middle: Associations stored in M∗

τ ,β,α
, M∗

τ ,β,β
, and M∗

τ ,β,γ
. Because

β was preceded by α at a short lag, M∗
τ ,β,α

differs from zero at low values of
∗
τ .

Since β was not preceded by itself or by γ , blue and green traces are zero. Bot-
tom: Associations stored in M∗

τ ,α,α
, M∗

τ ,α,β
, and M∗

τ ,α,γ
. Since α was not preceded

by any stimulus, corresponding entries in M are zero for all values of
∗
τ .

where Ck here is a different constant that depends only on k. The activity of
each node in f̃ ∗

τ ,α
is the product of an increasing power term

( t
∗
τ

)k
and a de-

creasing exponential term e
−k t

∗
τ . In the time following a delta function input,

the firing of each neuron in f̃ ∗
τ ,α

peaks at
∗
τ (see Figure 3c). Thus, following

a transient input of state α, neurons in f̃ ∗
τ ,α

activate sequentially.
Figure 4a shows the sequential, spreading activation with logarithmi-

cally spaced
∗
τ for three different transient stimuli. This mathematical model

for estimating the past has properties that resemble sequentially activated
time cells (compare to Figure 5; see also Howard et al., 2014; Tiganj et al.,
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692 Z. Tiganj, S. Gershman, P. Sederberg, and M. Howard

Figure 5: Recordings of sequentially activated time cells in different behavioral
tasks, different mammalian species, and different brain regions. (a) Sequences
of time cells in the brain contain information about the time of past events.
Each of the three plots shows the activity of many neurons during the delay
period of a behavioral task. In each plot, each row gives the average firing rate
as a function of time for one neuron. Red colors indicate a high firing rate. Be-
cause neurons fire for a circumscribed period of time during the delay, these
neurons could be used to decode the time at which the delay started. Put an-
other way, each neuron can be understood as coding for the presence of the
start of the delay at a lag

∗
τ in the past. The number of cells active at any one

time decreases as the delay unfolds (note the curvature) and the firing fields
spread (note the increasing width of the central ridge). This reflects a decrease
in accuracy for time as the start of the delay recedes further into the past. From
left to right: mouse mPFC during a spatial working memory task, after Bolkan
et al. (2017); rat hippocampus, during the delay period of a working memory
task, after MacDonald et al. (2011); rat mPFC during a delay period of temporal
discrimination task, after Tiganj et al. (2016). (b) Sequentially activated cells in
monkey lPFC encode time conjunctively with stimulus identity during delayed-
match-to-category task. Animals were presented with stimuli chosen from four
categories (dogs, cats, sports cars and sedan cars). Based on visual similarity
the stimuli belonged to two category sets (animals and cars). The time interval
shown on the plots includes a 0.6 s sample stimulus presentation and a 1 s delay
interval that followed the sample stimulus. Each of the three heatmaps shows
the response of every unit classified as a time cell. The units show distinct fir-
ing rate for different stimuli that started the delay interval, reflecting the visual
similarity (the magnitude of the response for related stimulus was larger than
for unrelated stimulus) and indicating stimulus selectivity of time cells. After
Tiganj et al. (2018).
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2018). Previous biophysical modeling has developed a neurally plausible
mechanism for implementing leaky integrators with a spectrum of time
constants (Tiganj, Hasselmo, & Howard, 2015) and for constructing a cir-
cuit implementing the inverse transform (Liu, Tiganj, Hasselmo, & Howard,
2018).

f̃ approximates f leading up to the present. However, the precision of
the approximation decreases for events further in the past. One way to see
this is that the duration over which f̃ ∗

τ ,α
is activated by a delta function in-

put increases as one chooses larger values of | ∗
τ |. However, this inaccuracy

is scale-invariant; the spread in time for a neuron with a particular
∗
τ is a

rescaled version of the firing of another neuron that received the same in-
put but has a different value of

∗
τ . Put another way, the activity of every

neuron receiving a delta function input obeys the same time dependence in
units of t/| ∗

τ |. This rescaling of the activity of neural response in time also
has a correspondence in the pattern of activity across neurons with different
values of

∗
τ as the stimulus recedes into the past. At any moment, when the

stimulus is to time in the past, there is a bump of activity centered around
the neurons with

∗
τ � to. However, the difference in the value of

∗
τ between

adjacent neurons is not constant (e.g., note the increasingly spread points
in Figure 4b). With logarithmic spacing of

∗
τ values, the shape of the bump

of activity across neuron number remains of constant width as the stimulus
recedes into the past (Howard et al., 2015).

2.2 Constructing an Associative Memory. At each time t, an associative
memory tensor M is updated with the outer product of the current input
state f and f̃ (see Figure 4b). Hence, M is a three-tensor. At each moment, M
is updated with the simple Hebbian learning rule:

dM ∗
τ ,β,α

dt
= λ fβ (t) f̃ ∗

τ ,α
(t). (2.7)

Here λ is a learning rate that we choose to be 1. M can be implemented
as a set of synaptic weights learned through Hebbian plasticity. Because
f̃ ∗
τ ,α

stores a coarsely grained estimate of the past, its average over many
experiences, M, is a coarsely grained estimate of the lagged cooccurrence
of each pair of states,

M ∗
τ ,β,α

∝ P
[
f(t + | ∗

τ |) = β, f(t) = α
]
, (2.8)

where P denotes probability.
We can also construct an estimate of the conditional probability by nor-

malizing M as follows:
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M̄ ∗
τ ,β,α

≡
M ∗

τ ,β,α∑
i∈I M ∗

τ ,β,i

. (2.9)

One could imagine that this normalization is implemented online by a divi-
sive presynaptic normalization mechanism (Beck, Latham, & Pouget, 2011).
Now M̄ is an associative memory that provides a coarsely grained estimate
of the conditional probability of state β following state α at a lag of | ∗

τ |:

M̄ ∗
τ ,β,α

∝ P
[
f(t + | ∗

τ |) = β | f(t) = α
]
. (2.10)

As we will see in the section 2.3, by multiplying M̄ from the right with a
current state, we can generate the probability of all other states following at
each possible lag.

2.3 Estimating a Future Timeline. M stores the pairwise temporal re-
lationships between all stimuli subject to logarithmic compression. At the
moment a state is experienced, the history leading up to that state is stored
in M (see equation 2.7). After many presentations, M records the probabil-
ity that each state is preceded by every other state at each possible lag. This
record of the past can also be used to predict the future. By multiplying M̄
with the current state from the right, we can generate an estimate of the fu-
ture. In a general case, let us consider f(t), which can have multiple stimuli
presented at the same time. Stimuli that will follow the present input f(t) at
a time lag | ∗

τ | can be estimated from the information recorded in M̄:

p− ∗
τ

≡ M̄ ∗
τ
f, (2.11)

p− ∗
τ ,β

=
∑
i∈I

M̄ ∗
τ ,β,i

fi. (2.12)

Like F and f̃, p can be understood as a 2D array indexed by stimulus identity
and

∗
τ . However, whereas for f̃,

∗
τ is negative corresponding to estimates of

the past, for p the values of
∗
τ are positive, corresponding to estimates of the

future. The value of
∗
τ for the ith row of f̃ and the value of

∗
τ for the ith row of

p have the same magnitude but are opposite in sign. p− ∗
τ ,β

is a magnitude of
the prediction that state β will follow present input f at a time lag | ∗

τ |. When
the input is interpretable as a probability density function (when

∑ |f| = 1),
then p− ∗

τ
is also a probability density function. When f is not a probability

density function, p− ∗
τ

is not either.
In a more specific case, when f(t) can have only one stimulus presented

at the same time, the magnitude of the prediction that state β will follow
the present input, say, state α, at a time lag | ∗

τ | is a scalar stored in M̄ ∗
τ ,β,α

:
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pα

− ∗
τ ,β

= M̄ ∗
τ ,β,α

. (2.13)

Note that pα inherits the same compression present in f̃. The “blur” in
the estimate of the time of presentation of a past stimulus in f̃ with

∗
τ < 0

naturally leads to an analogous blur in pα as a function of future time
∗
τ > 0.

Expected future outcome at a lag
∗
τ can be estimated by examining the states

predicted at that lag and estimating the reward status of each. Properties of
this representation of future time are illustrated in more detail in section 3.

3 Illustrating the Properties of the Representation of Future Time

In this section we illustrate properties of the representation of future time
constructed by multiplying M̄ with a particular state vector (see equation
2.13). In section 3.1, we demonstrate that the representation that results is
scale-invariant. In section 3.2, we show that a cached value for each state
can be computed, resulting in a scale-invariant value that is discounted ac-
cording to a power law. In section 3.3, we illustrate the flexibility of this
method in generating nonmonotonic functions enabling the user to solve
problems such as the hot coffee problem described in section 1. In section
3.4, we demonstrate that future time gives an estimate summed over all
possible paths. Finally, in section 3.5, we demonstrate application of this
approach in decision making.

3.1 Scale Invariance of Future Time. If two environments differ only in
their temporal scale, an artificial agent based on a scale-invariant algorithm
will take the same actions in both environments. This property is illustrated
for this method through a simple toy example in Figure 6. In this example,
there are two states to choose from, α and β, and a third rewarding state
R that the agent is interested in predicting. The two environments shown
in Figure 6 differ only in the temporal spacing between different stimuli.
The bottom environment (marked as Scale 4 in Figure 6b) is a temporally
stretched version of the top environment (marked as Scale 1 in Figure 6a).
Stretching the time axis of the top environment by four times would give
exactly the bottom environment. At the decision point D at time t = 0, the
agent needs to choose either state α or state β (the example is designed as
a deterministic Markov decision process, so taking an action can be under-
stood as directly selecting a state).

Under the assumption that the agent has explored the environment by
choosing each direction at least once, all needed temporal associations are
stored in M̄. The next time that the agent faces the decision point at time
t = 0, it can construct the future time as in equation 2.13. The predictions pα

and pβ constructed separately for α and β both give power law discounted
estimates of the expected future outcome that rescale with rescaling of the
environment.
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696 Z. Tiganj, S. Gershman, P. Sederberg, and M. Howard

Figure 6: The representation of future time is scale invariant. In this and subse-
quent figures, the agent evaluates the degree to which each of two states, α and
β, predicts a desired outcome R. The decision tree in the environment is shown
in the top panel. The estimate of the future cued by each of the two states α and
β as a function of future time

∗
τ is shown by the lines at the bottom. (a) A simple

decision tree in which α predicts reward after 10 units of time and β predicts re-
ward after 5 units of time. The dashed lines show that the cues predict reward at
different times. Note that the prediction of events further in the future is made
with less precision. (The reward predicted by β is twice the size of the reward
predicted by α to make the figure easier to read.) (b) The same decision tree,
but with the temporal intervals rescaled by a factor of 4. The solid lines show
the predictions from the environment in panel a rescaled by a factor of 4 (i.e.,
stretched by a factor of 4 and multiplied by 4). Note that the functions in the
two environments are precisely rescaled versions of one another.
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Estimating Scale-Invariant Future in Continuous Time 697

Figure 7: The value aggregated by integrating over future time obeys power
law discounting. (a) Constructing prediction of the future reward. An agent ob-
served a temporal sequence consisting of a state α, followed by a rewarding
state R at some delay. (b) The value of α computed according to equation 3.1
as a function of the delay between α and reward (expressed in the units of the
reward R). The values associated with the five evenly spaced delays in panel
a are shown as star symbols. The blue line is a power law with exponent −1.
(c) Same as panel b but on log-log axes.

3.2 Computing Cached Power-Law Discounted Stimulus Value by In-
tegrating over the Timeline. There are circumstances where a decision
maker does not have time to evaluate a compressed function over future
time and a cached value of each state would be sufficient. A cached value
can be computed by maintaining, for each state, an average value over fu-
ture time updated by taking an integral over the future,

Vα (t) =
∑
i∈I

ri

∫ ∞

0
pα

∗
τ ,i

g ∗
τ

d
∗
τ , (3.1)

where r is a column vector describing the value of each state and g ∗
τ

is the

number density of
∗
τ values dN

d
∗
τ

. The number density specifies how many

units are used to represent a particular spacing of
∗
τ . For instance, if spacing

between
∗
τ nodes would be linear, the number density g ∗

τ
would be 1. With

logarithmic spacing of
∗
τ , the number density goes down as 1/

∗
τ .

In order to ensure Weber-Fechner spacing, we set g ∗
τ

= 1/
∗
τ , but one

could in general augment this by including a function to differentially
weight the contribution of different values of

∗
τ . As long as that function

does not introduce a scale, the cached value computed in this way will re-
main scale invariant (power law). Figure 7 illustrates properties of value
computed from equation 3.1.

Applying equation 3.1 to the example shown in Figure 6 reveals that the
ratio of the values for states α and β is constant when time is rescaled. This
means that the relative values assigned to various choices do not depend
on the timescale of the environment, only on their relative magnitude and
timing.
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Figure 8: The estimate of a future timeline enables the decision maker to antic-
ipate different outcomes at different points in time. (Top) Choice α is neutral,
predicting neither reward nor punishment. Choice β results in a negative out-
come (e.g., a shock) after 10 units of time and then a large positive outcome
after 20 units of time. (Bottom) The representation of future time induced by
each choice varies as a function of the temporal horizon. α is preferable to β at
short delays, but β is preferable to α at longer delays. A decision maker could
incorporate this information about the future time course when the choices are
presented.

3.3 Nonmonotonic Functions over Future Time. In traditional RL, the
value of each state is a scalar. The approach introduced here provides a
recipe for simulating a function of a logarithmically compressed future. The
example in Figure 8 illustrates one case in which this type of representation
has an advantage over the scalar representation. In this example, state α is
neutral; no meaningful outcome follows it. However, state β is followed se-
quentially by a negative outcome (e.g., a burned mouth) and then later by
a positive outcome (e.g., delicious coffee). The ability to simulate outcomes
as a function of future time can enable the agent to make decisions in a
more flexible way (by dynamically altering the time horizon of planning)
than would be possible if all the available information about the future was
expressed as a scalar.
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Estimating Scale-Invariant Future in Continuous Time 699

Figure 9: The estimate of a future timeline sums over all possible future tra-
jectories. (Top) The decision tree for a complex choice. Both α and β lead to a
complex set of possible outcomes that occur at specific times with given proba-
bilities (shown as numbers near each branch of the tree). (Bottom) The estimate
of a future timeline averages over different possible paths with each outcome
weighted by its probability of occurrence given the choice stimulus (α or β).

Notice that the same amount of information is conveyed even when hav-
ing only the set of exponentially decaying neurons (F neurons). However,
applying the inverse Laplace transform and estimating the future as pro-
posed here allows the agent to examine the future directly in the units of
time, without need for an additional decoder. This type of representation
provides direct access to temporal order and distance.

3.4 Future Time Sums over Trajectories. Figure 9 illustrates an impor-
tant property of the proposed approach: simulated future time provides a
probability of each stimulus a time

∗
τ in the future summed across all pos-

sible future trajectories. Let us assume that the agent has sampled the envi-
ronment sufficiently many times to learn the transition probabilities and the
temporal dynamics of the environment, which are now stored in M̄. Now,
computing the prediction pα

∗
τ

provides an overall estimate of the reward
averaged across all the future trajectories. However, it retains information
about how far in the future those outcomes will be obtained. This property
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allows a rapid evaluation of different decision trees. Evaluating a partic-
ular sequence of outcomes that depend on sequential actions would still
require supplementing this representation with a more traditional model-
based approach. Moreover, correctly learning the outcomes requires sam-
pling the entire tree, which may be much slower than TD-based learning in
an environment with Markov statistics.

Notice that in many problems in RL, states that follow the present state
often change in response to the action taken by the agent. For simplicity we
are studying the Pavlovian case (similar to previous authors like Schultz,
Dayan, & Montague, 1997). In the control setting, we would need to simul-
taneously estimate M̄ and a policy, since these are coupled. We think the
interplay between prediction and control is important and leave that to fu-
ture work.

3.5 Temporally Flexible Decision Making. The ability to construct a
timeline of the future events enables flexible decision making that incor-
porates the decision maker’s temporal constraints. For instance, consider
making a decision about what to get for lunch while waiting for a train.
The food option one pursues may be very different if one has 15 minutes
before the train arrives than if one has an hour before the train arrives. Be-
cause the model carries separate information about when outcomes will be
available, as well as their identity, it is possible to make decisions that dif-
ferentially weight outcomes at different points in the future. If the decision
maker has a temporal window over which outcomes are valuable, w ∗

τ
, then

one can readily compute value using a generalization of equation 3.1:

Vα (t) =
∑
i∈I

ri

∫ ∞

0
pα

∗
τ ,i

w ∗
τ

g ∗
τ

d
∗
τ . (3.2)

Figure 10 illustrates this capability. In this example, the model is presented
with two alternatives that predict a valuable outcome but with differ-
ent magnitudes and different time courses. When the decision maker ap-
proaches the choice with a narrow temporal window, as in the case where
the train will arrive in 15 minutes, choice A is more valuable. However,
when choosing using a broader temporal window, as in the case where the
train will arrive in one hour, choice B is more valuable.

Atemporal representation of the future enables not only decision making
with different temporal horizons, but also decision making based on rela-
tively complex temporal demands. Consider the case where an outcome is
not valuable in the immediate future, but becomes valuable after some time
has passed; for instance, perhaps one is not hungry now but will be hungry
in an hour. These capabilities are comparable to those offered by model-
based RL. However, as discussed above, the representation of the future is
scale invariant and can be computed rapidly.
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Estimating Scale-Invariant Future in Continuous Time 701

Figure 10: Temporally flexible decision making. Consider an agent faced with
two options, α and β, that differ in the time course over which they predict re-
ward (top). Note that β (magenta) predicts a larger reward, but further in the
future, than does α (cyan). Representing a function over future time enables the
agent to make decisions that incorporate information about the value of the out-
come to the agent as a function of time. For instance, under some circumstances,
an agent might have more or less time to exploit a food source before some other
pressing engagement. The bottom two panels illustrate the value computation
with each of two temporal windows. In the middle panel, the temporal window
over which the agent can exploit the reward is narrow, and the agent chooses α.
In the bottom panel, the temporal window extends further into the future, and
the agent chooses β.
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4 Behavioral and Neural Predictions

Previous sections presented a method for constructing a compressed esti-
mate of the future. Because this approach is novel, there are no empirical
data to definitively evaluate key predictions of this approach. In this sec-
tion, we describe neural and behavioral predictions and describe how those
could be tested experimentally. We also point to recent empirical results,
both behavioral and neural, that support the proposed hypothesis, albeit
obliquely.

4.1 Cognitive Scanning of the Future. This letter proposes a neural
mechanism for constructing a compressed representation of the future. In
the cognitive psychology of working memory, prior findings from the short-
term judgment of recency (JOR) task suggest that people can scan a com-
pressed representation of the past. For instance, Hacker (1980) presented
participants a series of letters rapidly and asked them to evaluate which
of two probes was experienced more recently. The critical finding was that
the time to choose a probe depended on how far in the past that probe was
presented and did not depend on the recency of the other probe. These find-
ings suggested that participants sequentially examine a temporally orga-
nized representation of the past and terminate the search when they find a
target (see also Muter, 1979; Hockley, 1984; McElree & Dosher, 1993). Fur-
thermore, the time to choose a probe grew sublinearly with how far in the
past the probe item was, suggesting that the temporally organized memory
representation is compressed (the results were consistent with the hypothe-
sis discussed here that the compression is logarithmic). These findings from
the memory literature suggest that an analogous procedure could be used
to query participants’ expectations about the future. By setting the temporal
windowing functions (see equation 3.2) to direct attention to sequentially
more distant points in the future, one could sequentially examine an or-
dered representation of the future.

In order to evaluate whether human participants can scan across a com-
pressed temporally ordered representation of the future, Singh and Howard
(2017) trained participants on a probabilistic sequence of letters. After
training, the sequence was occasionally interrupted with probes consist-
ing of two letters. Participants were instructed to select the probe that is
more likely to appear sooner. If the participants sequentially scan a log-
compressed timeline of future events, then this predicts a pattern of results
analogous to the findings from the JOR task. Specifically, evidence for se-
quential scanning would be that the response time in correct trials depends
only on the lag of the more imminent probe. Furthermore, in trials in which
participants make an error, the response time should depend on the lag
of the less imminent probe (this is because if participants have missed the
more imminent probe during the scanning process, they will continue scan-
ning until they reach the less imminent probe). Evidence for compression
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of the temporally ordered representation of the future would be a sublinear
growth of response time with the lag to the probe that is selected. These
predictions were confirmed (see Figure 2b; Singh & Howard, 2017).

4.2 Neural Signature of the Compressed Timeline of Future Events.
As discussed in section 1, there is ample evidence that neurons in the mam-
malian brain can be used to decode what happened when in the past (e.g.,
see Figure 5a; Bolkan et al., 2017; MacDonald et al., 2011; Tiganj et al., 2018;
Salz et al., 2016). By analogy, our model predicts that it should be possi-
ble to measure neurons that predict what will happen when in the future.
Because predictions of the future cannot be dissociated from the past, it is
possible to have the same future predicted by distinct past events. Consider
a situation in which participants are trained on two distinct sequences A,
B, C and X, Y, C, and we record after training from a region of the brain
representing the future as described by equation 2.13. The model predicts
that a common population of neurons (coding for C two steps in the future)
should activate when either A or X is presented. The response to the probe
stimuli prior to learning of the sequences serves as a control. Similarly, a
distinct population (coding for C one step in the future) will be activated
when either B or Y is presented. In analogy to sequences of firing triggered
by past events (Tiganj et al., 2018), this outcome would imply that similar
sequences of neural firing anticipate similar outcomes (see Figure 5b).

5 Discussion

In this letter, we show that given a compressed representation of the past,
a simple associative mechanism is sufficient to enable one to generate a
compressed representation of the future. A compressed representation of
the past has been extensively observed in the brain in many brain regions
(MacDonald et al., 2011; Jin, Fujii, & Graybiel, 2009; Tiganj et al., 2018). The
associative mechanism we use can be understood as simple Hebbian as-
sociation. The representation that is generated by this method has many
potentially desirable computational properties.

Because the representations of the past and the future are both scale-
invariant, it is not necessary to have a strong prior belief about the relevant
timescale of the problem one is trying to solve. A scale-invariant learning
agent ought to be able to solve problems in a wide range of learning en-
vironments. While it remains to be shown that the form of compression
of temporal sequences in the brain is quantitatively scale invariant (rather
than merely compressed), scale invariance is a design goal that can be im-
plemented in artificial systems.

Because the method directly estimates a function over future states,
rather than an integral over future states, decision makers can make adap-
tive decisions that take into account the time of future outcomes. The
future timeline constructed using this method differs from traditional
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model-based approaches. After the association matrix M has been learned,
the computation of the future trajectory is computationally efficient and can
be accomplished in one parallel operation. M can be learned rapidly, al-
lowing even one-shot learning, unlike, for instance, approaches based on
backpropagation. In addition, the logarithmic form for the future means
that even if the decision maker queries the representation sequentially, the
amount of time to access a future event goes up sublinearly. Recent behav-
ioral evidence from human subjects shows just this result (Singh & Howard,
2017).

Because the method treats time as a continuous variable, there is no need
to discretize time. That is, the “distance” between two states need not be
filled with other states. In TD learning, error propogates backward from
one state to a preceding state via a gradient along intervening states. Using
the method in this letter, one can learn that A predicts B separated by, say,
17.4 s without having to define a set of discrete states that intervene. The
number of presentations necessary to establish a relationship between two
stimuli in M depends only on their number of pairings but does not depend
on the temporal lag.

5.1 Relationship to the Successor Representation. The idea of effi-
ciently computing compressed summaries of the future arises in another
approach to RL, based on the successor representation (SR; Dayan, 1993).
Instead of estimating cached values (as in model-free approaches) or tran-
sition functions (as in model-based approaches), the SR estimates the dis-
counted expected future occupancy of each state from every other state.
The SR can then be combined with an estimated reward function to pro-
duce value estimates. Thus, this approach permits the computation of val-
ues without expensive tree search or dynamic programming, but retains
some of the flexibility of model-based approaches by factoring the value
function into predictive and reward components. From a neurobiological
and psychological point of view, several lines of evidence have suggested
that the brain might use such a representation to solve RL problems (Mo-
mennejad et al., 2017; Stachenfeld, Botvinick, & Gershman, 2016).

The SR has many interesting computational properties, but it still runs
afoul of the issues raised in this letter. In particular, the SR assumes ex-
ponential discounting and consequently imposes a timescale. If the world
obeys a Markov process at the assumed timescale, then the SR will be able
to efficiently solve RL problems. However, as we pointed out, realistic en-
vironments consist of problems occurring at many different scales. More-
over, effective decision making requires explicit information about the time
at which stimuli are expected to occur. Thus, effective RL in the real world
may require more temporal flexibility than what the SR can provide.

5.2 Relationship to Models of Episodic Memory and Planning. RL
models have long utilized a rich interplay between planning, action
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selection, and prediction of future outcomes (e.g., Sutton & Barto, 1998).
Gershman and Daw (2017), building on an earlier proposal by Lengyel and
Dayan (2008), proposed that retrieval of specific instances from memory
could enhance RL-based decision making. In psychology, the ability to con-
sciously retrieve specific instances from one’s life is referred to as episodic
memory (Tulving, 1983). Episodic memory could enhance the capabilities of
RL-based models by enabling single-trial learning and bridging across mul-
tiple experiences with the same stimulus to discover relationships among
temporally remote stimuli (Bunsey & Eichenbaum, 1996; Cole, Barnet, &
Miller, 1995; Wimmer & Shohamy, 2012).

Episodic memory has also been proposed to share a neural substrate
with what is referred to as episodic future thinking (Tulving, 1985; Schacter,
Addis, & Buckner, 2007). Recovery of an episodic memory results in vivid
recall of one’s past self in a particular spatiotemporal context different from
one’s present circumstances. Episodic future thinking is defined as imag-
ination of one’s future self in a circumstances different from the present.
Notably, behavioral and neuroimaging work shows that amnesia patients
who are impaired at episodic memory also show deficits in episodic future
thinking and that the brain regions engaged by episodic memory perfor-
mance overlap with the regions engaged by episodic future thinking (Ad-
dis, Wong, & Schacter, 2007; Hassabis, Kumaran, Vann, & Maguire, 2007;
Palombo, Keane, & Verfaellie, 2015).

Our approach suggests the first steps toward a computational bridge be-
tween episodic memory for the past and planning based on future time.
In this letter, we showed that a temporal history f̃ can be used to gen-
erate a prediction of the future via an associative memory. The sequen-
tially activated neurons predicted by f̃ strongly resemble sequentially ac-
tivated “time cells” measured in the hippocampus (MacDonald et al., 2011;
Pastalkova et al., 2008), a brain region implicated in episodic memory. More-
over, the present approach is closely related to the temporal context model,
a computational approach that has been applied to behavioral results in
a range of episodic memory paradigms (TCM; Howard & Kahana, 2002;
Sederberg, Howard, & Kahana, 2008; Polyn, Norman, & Kahana, 2009;
Gershman, Moore, Todd, Norman, & Sederberg, 2012). In TCM, items are
bound to the prevailing temporal context present when the item appeared
via an associative context-to-item matrix. The temporal history f̃ plays
a role very similar to temporal context in TCM, although in TCM, tem-
poral context is an exponentially weighted sum over recent experience
that introduces a scale rather than the scale-invariant representation of the
past f̃.

The major departure of our model from TCM is that we have not enabled
recovery of a previous history by an item and used to cue future outcomes.
That is, one might imagine a model in which, rather than cueing M with a
particular state α, one enables state α to recover a previous state of f̃ that
preceded α and then use that recovered temporal history to predict future
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outcomes. This kind of mechanism not only enables TCM to account for the
contiguity effect in episodic memory but also allows flexible learning across
similar events (Howard, Fotedar, Datey, & Hasselmo, 2005). Future work
should explore to what extent a similar contextual reinstatement process,
instead in this case reinstating the compressed scale-free representation of
the past (Howard et al., 2015), would help speed up learning or transfer of
knowledge and predictions as an agent explores a novel world in similar,
but not identical, trajectories (Gershman, 2017).
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