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Abstract
The distinctiveness effect refers to the finding that items that stand out from other items in a learning set are more likely to be
remembered later. Traditionally, distinctiveness has been defined based on item features; specifically, an item is deemed to be
distinctive if its features are different from the features of other to-be-learned items. We propose that distinctiveness can be
redefined based on context change—distinctive items are those with features that deviate from the others in the current temporal
context, a recency-weighted running average of experience—and that this context change modulates learning. We test this
account with two novel experiments and introduce a formal mathematical model that instantiates our proposed theory. In the
experiments, participants studied lists of words, with each word appearing on one of two background colors. Within each list,
each color was used for 50% of the words, but the sequence of the colors was controlled so that runs of the same color for that list
were common in Experiment 1 and common, rare, or random in Experiment 2. In both experiments, participants’ source memory
for background color was enhanced for items where the color changed, especially if the change occurred after a stable run without
color changes. Conversely, source memory was not significantly better for nonchanges after runs of alternating colors with each
item. This pattern is inconsistent with theories of learning based on prediction error, but is consistent with our context-change
account.
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Distinctiveness is one of the most widely studied concepts in
episodic memory (Wallace, 1965; Hunt, 1995; Hunt, 2006;
Schmidt, 1991; Schmidt, 2008), yet the nature of
distinctiveness and the cognitive processes that underlie it
remain elusive. As both Hunt (1995, 2006) and Schmidt
(1991, 2008) point out, distinctiveness is a psychological con-
struct wherein some information stands out from other infor-
mation, typically due to differences in perceptual or semantic
features. The differences thereby render the distinctive infor-
mation more memorable than it would otherwise be. Many
distinctiveness effects have been reported in the literature,
ranging from the classic isolation effect (von Restorff, 1933)
to the recently discovered production effect (Icht, Mama, &
Algom, 2014; MacLeod, Gopie, Hourihan, Neary, & Ozubko,

2010). Although the nature of these effects and the theoretical
explanations for them have been reviewed extensively in other
work (Hunt, 2006; Schmidt, 2008), key questions remain un-
answered. In this paper, we examine two of these questions:
What makes an item distinctive? And why are distinctive
items remembered better?

Two main challenges have to be overcome to answer these
questions. First, a wide variety of manipulations have been
shown to lead to distinctiveness effects. These include varying
perceptual features such as font, color, or size (e.g., von
Restorff, 1933); varying semantic features and categories
(e.g., Geraci & Rajaram, 2004); using different orienting/
encoding tasks (e.g., difference judgment vs. similarity judg-
ment; Hunt & Smith, 1996); and even manipulating the affec-
tive valence of the stimuli (Schmidt & Saari, 2007). This chal-
lenge is compounded by the inherent difficulty of separating
the effects of encoding and retrieval processes (Schmidt,
1985, 2008). This difficulty arises because any behavioral test
of memory must include, by default, information from the
retrieval process. Distinctiveness effects have been measured
almost exclusively using explicit-memory tests such as free
recall or item recognition, where the influence of retrieval
processes could contaminate the measurement of encoding
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effects (Hunt, 2006). Although implicit memory tasks could
arguably provide a better measure of the effect of distinctive-
ness on encoding, the few studies that have examined distinc-
tiveness effects in implicit tasks have yielded mixed results
(Geraci & Rajaram, 2004; Oker & Versace, 2010; Smith &
Hunt, 2000).

These challenges becomemore obvious when we break the
big questions down. To determine what makes an item dis-
tinctive, it is necessary to first identify the characteristics of an
item that differentiate it from others and then to specify how
information is represented in memory such that an item can be
distinctive from other items. As we discuss below, most prior
attempts to understand distinctiveness effects suffer from ei-
ther a limited definition of distinctiveness or an underspecification
of how items are represented in memory. To determine why dis-
tinctive items are remembered better, it is necessary to separate the
effects of encoding and retrieval processes. This can be done by
specifying mechanisms for how the representation of the item is
encoded into memory and how items are retrieved, as is done in
many computational theories, or by careful selection of experi-
mental tasks to isolate the influence of one of the processes while
minimizing the influence of the other.

Current theoretical frameworks

Given the challenges to explaining distinctiveness effects, it is
not surprising that a number of theoretical approaches have
been advanced. These fall into three general categories, each
of which tend to focus on selected types of distinctiveness
effects, and each of which has limitations, as we outline
below.

Computational models have been used extensively to ex-
plain feature-based distinctiveness effects. These models in-
clude the SIMPLE model (Brown, Neath, & Chater, 2007),
the SAC model (Park, Arndt, & Reder, 2006), global-
matching models such as MINERVA II and CHARM
(Hintzman, 1984; Metcalfe, 1990; Oker & Versace, 2014),
and a modification of the activation-buffer model (Elhalal,
Davelaar, & Usher, 2014; Davelaar, 2013). The general ap-
proach in these models is to represent items as vectors of
features that may be abstract or may map directly to the per-
ceptual or semantic elements that differ between items, and
then to mathematically or algorithmically specify encoding
and retrieval processes. Critically, retrieval processes in these
models work by comparing the similarity of a retrieval cue
with other items in memory.

A major advantage of the computational approach is that it
allows the effects of encoding and retrieval processes to be
clearly separated; however, this has not always lead to clarity
when comparing different models. For example, the SIMPLE
model (Brown et al., 2007), the SACmodel (Park et al., 2006),
and MINERVA II (Hintzman, 1984) all explain feature-based

distinctiveness effects as being due to reductions in interfer-
ence during the retrieval process that are driven by the fact that
distinctive items are represented differently in memory than
are other items. Specifically, to capture distinctiveness arising
from the production effect, Jamieson, Mewhort, and Hockley
(2016) provided an implementation of MINERVA II that fa-
vored spoken word recognition by means of more encoded
features than nonspoken words in both mixed and pure lists.
By contrast, modifications of the activation-buffer model
(Elhalal et al., 2014; Davelaar, 2013) explain these effects as
being due to a boost in encoding for items whose features
(e.g., color, size, font, etc.) stand out from the other items on
the list.

The second set of theoretical approaches focus on effects
that arise due to some particular task during learning and are
generally explained using verbal theories such as transfer ap-
propriate processing (Morris, Bransford, & Franks, 1977) or
the source monitoring framework (Johnson, Hashtroudi, &
Lindsay, 1993). According to these theories, distinctiveness
is defined based on different cognitive processes that partici-
pants might employ during the encoding task. Which cogni-
tive processes are used while encoding each specific item is
affected by orienting tasks as well as by differences in the
nature of the stimuli. The processing task used during learning
is encoded along with the item itself and can later be used as
part of the memory cue during retrieval. This allows distinc-
tiveness effects to arise during retrieval due to two mecha-
nisms. First, the specificity of the encoding task allows a cue
at retrieval to be more available to contact a target in memory.
Second, the distinctive trace provides a more effective cue–
target representation (Hunt & Mitchell, 1978).

In contrast to the feature-based computational models,
these process-based verbal theories may offer a more expan-
sive definition of distinctiveness that is more in line with the
principles laid out by Hunt (2006) and could potentially ex-
plain a wider range of distinctiveness effects; however, be-
cause they do not specify the actual processes that are used
during encoding or retrieval, they may not allow for a clear
picture of the loci of the effects (Schmidt, 1985). Specifically,
any given distinctiveness effect could arguably be due to dif-
ferences in encoding processes, enhanced retrieval processes,
or some combination of these. For example, it could be argued
that embedding a word in the middle of a list of digits would
lead to deeper processing of that word, thus making the
encoding process the locus of the effect. On the other hand,
these theories are also compatible with retrieval-based expla-
nations, which posit that items with distinctive representations
comprise a different, and much smaller, search set than the
common items. This gives the distinctive item two advantages
during a memory retrieval attempt. Because it is associated
with different features/processes than the common items, the
distinctive item can be accessed through different cue sets; and
because there are fewer competitors associated to the cues, the
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item will not be as subject to interference during retrieval
(Hunt & McDaniel, 1993; Capaldi & Neath, 1995;
Anderson & Neely, 1996).

The third theoretical framework for distinctiveness effects
builds on old ideas about the role of “surprise” during
encoding (Green, 1958a, 1958b), but adds a new twist based
on theories of the role of prediction in neurological and cog-
nitive processing. For convenience, we will refer to this as the
“prediction-error framework.” In this framework, the charac-
teristics (perceptual features, semantic features, type of pro-
cessing, or emotionality) that are shared by the common items
in a study list form a context for that list, and the cognitive
system learns to expect that those characteristics will be the
same for all the list items (Gati & Ben-Shakhar, 1990). Items
that do not match the context lead to “surprise” (Green, 1958a,
1958b) or an expectation violation (Donchin, 1981; Fabiani &
Donchin, 1995). Consequently, attention is focused on the
item that is different (Swartz, Pronko, & Engstrand, 1958),
sensory processing is enhanced (Rao & Ballard, 1999;
Friston, 2012), and the item’s memory strength is increased
relative to the common items, making it “distinct” (Karis,
Fabiani, & Donchin, 1984; Hirshman, Whelley, & Palij,
1989).

Predictive coding theory falls within this prediction-error
framework. In predictive coding, sensory input is sent through
a feedback loop that simultaneously monitors incoming infor-
mation and makes inferences about future events based on
past information (Friston & Kiebel, 2009; Mumford, 1992;
Rao & Ballard, 1999). Thus, the brain is seen as an
information-processing instrument that integrates top-down
expectations and bottom-up stimulus information occurring
across multiple sensory levels and pathways (Bubic, von
Cramon, & Schubotz, 2010). Under this predictive coding
account, any event or experience would be distinctive if it
was poorly predicted and hence gave rise to a large prediction
error, thus putting a large emphasis on a notion of expectation
that might be divorced from the features of the items
themselves.

A major advantage of the prediction-error framework is
that it makes unique testable predictions in situations that are
not covered by the existing feature-based computational
models or by the process-based verbal theories. Specifically,
because distinctiveness is based on the context of a list, not the
individual items or cognitive processes, the theory not only
predicts that distinctiveness effects should be seen whenever a
single item stands out from the context of the list (e.g., the
classic isolation effect of von Restorff, 1933), but it also pre-
dicts that any change from the list context or structure should
lead to enhanced encoding and thus a distinctiveness effect,
even if the items themselves are balanced throughout the list.

The balanced-features design used by Green (1958a) pro-
vides a way to test this hypothesis. Unlike in a standard iso-
lation paradigm, where there are frequent items with common

features and rare items with different features (von Restorff,
1933), in a balanced-features design, features are distributed
equally across the list items. For example, in contrast to von
Restorff’s classic isolation experiment, where a study list
consisted of one letter trigram in a list with nine number tri-
grams, Green (Experiment 2) created three different lists using
the same set of six letter bigrams and six two-digit numbers by
arranging the stimuli in specific temporal sequences. All the
lists used the same critical item—the bigram CZ—placed in
Serial Position 4, but the items that surrounded that item var-
ied according to the structure of the list. Because the features
are balanced across the list items, no items stand out on a list
level during encoding due to distinct features. Instead, the
temporal sequencing of the item features is used to create
“different” items (Green, 1958a).

In Green's (1958a) control condition, the stimuli alternated
systematically between letters and numbers for the entire list.
In the change condition, the first three and last three list items
were numbers, and the remaining items were letter bigrams.
Thus, there was a run of three numbers prior to the critical
item, and the critical item was the first item in a new run of
letter bigrams. In the isolation condition, the numbers were
placed in Serial Positions 1–3 and 5–7 so that the critical item
was by itself in what was otherwise a long run of numbers.
Each subject was presented a single list and given a 1-minute
free-recall test. An examination of the serial position curves
from Green shows precisely the pattern that would be predict-
ed by a prediction-error account: There was a boost in mem-
ory for the critical item at Serial Position 4 in both the change
and the isolation conditions but not in the control condition.

The context-change account

Here, we propose an alternative to a prediction-error account
of distinctiveness, which is instead based on a computational
model of perception and memory, the temporal context model
(TCM; Howard & Kahana, 2002; Sederberg, Howard, &
Kahana, 2008; Polyn, Norman, & Kahana, 2009a). The
TCM is an association model that explicitly represents the
perceptual, semantic, affective, and mental features of items,
the context in which those items are experienced, and the
associations between items and context. As in previous con-
text models in the TCM framework, context is defined as a
recency-weighted running average of experience.

Based on the mechanisms in our proposed model, which
we define in detail below, an item can be considered to be
distinctive, and hence modulates the strength of learning, if
the item causes the prevailing internal representation of tem-
poral context to change. The context for each list item is
established by the items that precede it. A stable context can
be established by having a run of stimuli that share a critical
feature, and an item can be defined as “different” if it does not
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share this feature. Within the model, this deviation from a
stable temporal context gives rise to a larger change in the
context representation, and enhanced perceptual processing
of the item causing the change, which results in a temporary
increase in learning rate. Thus, an item becomes distinctive if
it causes a large change in the temporal context, regardless of
the relationship of that item to the list as a whole, sometimes
called the list context (Fabiani & Donchin, 1995; Geraci &
Manzano, 2010; Park et al., 2006; Rangel-Gomez & Meeter,
2013).

We explain the implications of our account inmore detail in
the General Discussion, but for the moment we note that our
context-change definition of distinctiveness has several major
advantages over the standard feature-based and process-based
definitions. First, it provides a clear theoretical statement
about what it means to say that an item is distinctive.
Second, because it is based in a computational model in which
the encoding and retrieval processes are specified mathemat-
ically, a context-change definition allows for a clearer theoret-
ical understanding of the roles these processes may play in the
distinctiveness effect. Finally, it allows for a more expansive
understanding of distinctiveness and the ways in which it may
influence perception and memory in various tasks in and out-
side the lab.

We highlight this expansiveness through two novel exper-
iments that show encoding-based distinctiveness effects using
an operational definition of “different” that is based on tem-
poral context rather than the features of the items and the list as
a whole. To focus on encoding-based processes that affect the
subsequent memorability of individual items in a study list,
these experiments employ a balanced-features design inspired
by early isolation experiments (Siegel, 1943; Green, 1958a),
with the addition of a source memory task (Johnson et al.,
1993), in which subjects were tested on their memory for the
background color of the studied words. The balanced-features
design allows us to address which mechanisms could give rise
to any observed item-based distinctiveness effects during the
initial processing of the list, even in the absence of a traditional
item-level isolation. The addition of a source monitoring task
to this design reduces the likelihood that any observed distinc-
tiveness effects are due to processes that operate during re-
trieval by ensuring that the search sets for the “different” items
and the control items are essentially equivalent. In contrast to
free-recall tests, there is a clearly defined search set that is the
same for both context-change and nonchange items.
Furthermore, because the source features were balanced dur-
ing study, there are no systematic differences in the fan size
between the item types, ruling out the most common retrieval-
based explanation for any observed distinctiveness effects
(Park et al., 2006).

The purpose of our inquiry was to examine item-level dis-
tinctiveness effects of context change within the balanced-
features design. Although the balanced-features design has

been used extensively in other domains (Icht et al., 2014), it
has only been used in a few studies of distinctiveness effects
(Siegel, 1943; Green, 1958a; Saltzman & Carterette, 1959;
Erickson, 1963; Deutsch & Sternlicht, 1967) and, to our
knowledge, has never before been used to examine item-
level effects or with a source monitoring task. Thus, we started
with a simplified conceptual replication of the second exper-
iment reported by Green for Experiment 1, and then expand
the experimental design for Experiment 2 to further test dif-
ferential predictions of the prediction-error and context-
change accounts of distinctiveness. Finally, we present a for-
mal mathematical model that instantiates our proposed
context-based distinctiveness theory, which we then fit to the
data from Experiment 2.

Experiment 1

The design for Experiment 1 is a conceptual replication of the
change condition from Green (1958a, Experiment 2). As
discussed above, Green used a set of six letter bigrams and
six two-digit numbers to create balanced lists in which a crit-
ical item—the bigram CZ, placed in Serial Position 4—could
be considered an ordinary item, a change item, or an isolate,
depending on the items that surrounded it. In Green’s change
condition, the first three and last three list items were numbers,
and the remaining items were letter bigrams. Thus, there was a
run of three numbers before the critical item, and the critical
item was the first item in a new run of letter bigrams. To
maximize the memorability of the stimuli, we used unrelated
words rather than letters and numbers as the to-be-learned
items and manipulated the color of the background on which
they were presented, with half of the words for any list being
presented with a green background and half with a blue back-
ground. Thus, the variable of interest is context change, oper-
ationally defined as the change in the sequence of background
colors (e.g., a switch from a run of items on a blue background
to a run of items on a green background, or vice versa). We
also use longer lists, examine memory for multiple change
items on each list, and present multiple lists to each subject
using a within-subjects design, all to gain more power to iden-
tify item-level distinctiveness effects. Finally, we use a source
memory test rather than a free-recall test to measure memory
for the change and nonchange items to reduce the effect of
retrieval dynamics on the observed encoding-related distinc-
tiveness effects. We hypothesize that source memory for a
color feature will be better for items that are presented when
a context change occurs.

Method

Participants Eighty-eight volunteers (ages 18–29 years), re-
cruited from introductory psychology classes at The Ohio

Mem Cogn (2019) 47:1158–1172 1161



State University, participated in Experiment 1. All participants
gave written informed consent and were given partial course
credit for participating. The experiment was approved by the
OSU Institutional Review Board.

Materials and design Stimuli consisted of a pool of 1,039
four-letter to seven-letter words selected from the
University of South Florida Free Association Norms
(Nelson, McEvoy, & Schreiber, 2004). For each subject,
384 words were randomly drawn from the pool and
randomly assigned to 12 study lists with 32 words on
each list. All tasks were performed on a computer key-
board, and all stimuli were presented on a 17-inch mon-
itor. Stimulus selection and presentation were controlled
using a custom script written using the PyEPL experi-
mental library (Geller, Schleifer, Sederberg, Jacobs, &
Kahana, 2007). During the study phase, each word
was displayed in black font over a filled rectangle.
Half of the words were presented with a blue back-
ground (RGB: 0, 170, 255) , and half over a green
background (RGB: 50, 205, 50). Luminance of the
background colors was equated using software settings.

The sequence of the colors was arranged to form runs of
words with the same background color (see Fig. 1). Run
length was determined by random sampling from a uniform
distribution of lengths of three to eight items. The independent
variable was the event type for each word. Words that were
presented on a different background color than the previous
word were identified as change events; words that were pre-
sented on the same background color as the previous word
were identified as nonchange events.

Procedure Each experimental session took approximately 50–
55 minutes. All tasks were completed in blocks, consisting of
a study phase, a distractor task, and a source memory test (see
Fig. 2). A practice block preceded the 12 self-initiated exper-
imental blocks. Each block began with a crosshair at the center
of a white screen indicating the beginning of a study phase.
Study items were then presented at a rate of 1,800 ms per item
and were separated by a blank white screen during a 600–900-
ms jittered interstimulus interval (ISI). During the study phase,
participants performed a simple color-detection task using key
presses to indicate the background color on which the study
words were displayed. Participants were instructed to respond
as quickly and as accurately as possible, to avoid thinking
about previous words on the list, and to study the word for a
later memory test.

The study phase was followed immediately by a 30-second
distractor phase. Simple equations were presented in the form
A ± B ± C = D, where A, B, and C were randomly chosen
positive integers from the set 1–9, and D was either a correct
or incorrect solution to the arithmetic problem. Participants
indicated whether each equation was correct via key press.

Participants had 4 seconds per equation to respond, with feed-
back, until time expired.

For the source memory test, the most recently presented
study list was randomized, and each of the words were pre-
sented in black font on a neutral white background for
1,800 ms with a 160 ms ISI. During this time period, partici-
pants indicated which background color they remembered for
that item by a key press.

Data quality control Before conducting our planned analyses,
we established a data control protocol to filter out participants
who failed to follow instructions and items that could

Fig. 1 Examples of the three list structures used in Experiments 1 (low
change only) and 2. All three structures used balanced lists, with the same
number of items on a blue background as on a green background. In the
low-change lists, study trials were ordered to form a series of long runs
with the same background color. In the high-change lists, background
colors usually alternated on each item presentation, but there were
occasional runs of two items with the same background color. In the
random-change lists, the background colors were in a true random
order. (Color figure online)
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introduce confounds. Participants who failed to follow in-
structions were identified using a binomial distribution test
to examine performance on the math distractor task. Data from
16 individuals whose performance was at or below chance
were removed before analyzing source memory. Memory per-
formance for the remaining 72 participants was evaluated
across subjects by means of a paired-samples t test to compare
source memory performance for the change versus the
nonchange events. To absorb the typical effects of primacy
and recency in memory for lists, two buffer items at the be-
ginning and ending of each list were excluded from analysis.

Results and discussion

Because our 12-block design differs from previous distinctive-
ness work (e.g., Green, 1958a), we performed a 2 × 12
repeated-measures ANOVA, using event type and block as
factors. There was neither a main effect of block, F(11,781)
= 2.30, MSE = 2.51, p = .134, nor was there an interaction
between event type and block, F(11,781) = 0.91, MSE =

0.018, p = .764. As shown in Fig. 3, there was a significant
effect of event type, t(71) = 4.76, p < .001, Cohen’s d = 0.27,
such that source memory was more accurate for the change
events (M = 0.67, SEM = 0.016) than for the nonchange
events (M = 0.63, SEM = 0.015). Because the change items
were at different serial positions in every list, we were not able
to examine the change items using a serial position analysis, as
in Green (1958a); however, we were able to perform a similar
analysis based on the relative serial position of each item to the
context-change event. As Fig. 3 shows, source memory was
more accurate for the items at the context-change event (Lag
0) than for the adjacent items where there was no context
change. Adjacent items prior to the change event appear to
form an approximate baseline, whereas items after the event
seem to decay down to baseline as a new run of similar fea-
tures unfolds. These results replicate Green’s (1958a) results
showing that distinctiveness effects can be based on the tem-
poral structure of a list, even when none of the stimuli have
distinct features on a list level, and extend this finding into the
domain of source memory. They are also consistent with

Fig. 2 Order of tasks in each experiment block. Study lists were all followed immediately by a 30-second math distractor task, which was then followed
immediately by the source memory test. (Color figure online)

Fig. 3 Mean proportion of correct sourcememory responses as a function
of event type and serial position relative to the change items in
Experiment 1. Change events are items with a background color
different from the previous item. Nonchange events are items with a
background color the same as the previous item. Lags −3 to −1 are the

last few items in a stable run with the same background color. The context
change item at Lag 0 starts a new run with a different background color,
and next three nonchange items within this run are at Lags 1–3. Error bars
indicate ±95% within-subjects confidence intervals (Loftus & Masson,
1994)
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predictions from both the prediction-error account and our
context-change account.

Experiment 2

Having established that a context-change event gives rise to
enhanced source memory, we next modified the experimental
design to test competing predictions from the prediction-error
account and our context-change theory and to identify bound-
ary conditions for this distinctiveness effect. In Experiment 2,
we used the list structure from Experiment 1 and added two
new kinds of lists to create a list structure factor to explore the
extent to which the context-change distinctiveness effect de-
pends on the establishment of stable contexts (see Fig. 1). We
call the list structure from Experiment 1 a low-change list
because it has stable runs with only a few feature changes
during the course of the list. The high-change lists are on the
opposite side of the spectrum. In these lists, the background
colors routinely alternate, with a few exceptions. Thus, there
are stable runs of changing items giving rise to many feature
changes in the list sequence. Finally, the random-change lists
represent a middle ground where the sequence of background
colors is completely random. In this condition, stable runs of
nonchanging items can occur, but they may not be as common
as the low-change lists. Importantly, each of these list struc-
tures maintains the balanced design, so that the only difference
between the types of lists is in the sequence of the background
colors.

Based on the results from Experiment 1 and from Green
(1958a), we expected that source memory for the change
items in the low-change lists would be enhanced relative to
the nonchange items. This finding would further support our
context-change account but would not help differentiate it
from the prediction-error account because the rare changes
would induce both a large context change relative to the recent
past and also a large prediction error.

Predictions for the high-change condition provide a key
test case for the prediction-error account and our proposed
context-change theory. In our search of the literature, we were
not able to find any previous studies that have examined po-
tential item-based effects in lists where feature change is the
rule rather than the exception. Nevertheless, this is an impor-
tant case to consider. Whereas the results from the low-change
condition in Experiment 1 could be accounted for by either a
context change or a prediction-error mechanism, the two
mechanisms produce diverging predictions for the high-
change lists. Under a prediction-error framework, participants
are assumed to create a mental representation of the structure
of the high-change lists as consisting of a relatively regular
sequence of color changes using either an online process in
which a representation is actively built in working memory
(Gati &Ben-Shakhar, 1990; Schubotz, 2007) or by retrieval of

similar types of high-change scenarios from long-term mem-
ory (Bar, 2007). This mental representation leads to a predic-
tion on each trial that the background features will change.
Thus, the nonchange events would give rise to the largest
prediction errors that could, in turn, elicit a distinctiveness
effect. The context-change account, on the other hand, would
suggest that a nonchange event would give rise to minimal
context change relative to the recent past and would therefore
give rise to no item-level distinctiveness effect and potentially
a drop in subsequent source memory relative to the change
events.

Finally, although the random change condition serves pri-
marily as a control condition, it also provides an opportunity
to test theoretical predictions. Under the prediction-error ac-
count, because changes and nonchanges are randomly distrib-
uted through the list, there is no systematic basis for making
predictions about deviations from the list context. Thus, pre-
diction errors should be distributed randomly through the list.
By contrast, the context-change account predicts that local
changes in the temporal context (i.e., changes from randomly
generated stable runs) should lead to enhanced source memo-
ry for subsequent items after a large context change, regardless
of where it is in the sequence. These results would provide
additional support for our hypothesis that distinctiveness is
based on changes in temporal context rather than prediction
errors.

Method

Participants One hundred and three volunteers (ages 18–26
years), recruited from introductory psychology classes at The
Ohio State University, participated in Experiment 2. All par-
ticipants gave informed written consent and were given partial
course credit. The experiment was approved by the OSU
Institutional Review Board.

Materials and design Experiment 2 used the same stimuli and
design as in Experiment 1, with the following exceptions.
First, the lists were shortened to 30 words each. Second, the
design incorporated three list types instead of just one, thereby
creating a 3 (list structure: low change, high change, or ran-
dom change) × 2 (event type: change or nonchange) within-
subjects design. Examples of the list structures are shown in
Fig. 1. The low-change lists contained six runs of three to six
items with the same background color, with the first item in a
run serving as a change event and the other items in each run
being nonchange events. The high-change lists also contained
six runs of three to six items, but with alternating background
colors interrupted by five nonchange events. The random-
change lists contained an equal number of items for each
background color arranged in random order. Although each
random list contained both change and nonchange events,
there were varying numbers of these events in each list.
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Similarly, the random-change lists had varying numbers of
runs and run lengths of the same color. List types were pre-
sented in random order for each participant.

Procedure All procedures were the same as in Experiment 1,
except that we changed the duration of study and test trials to
2,300 ms each, with an ISI of 200 ms.

Data quality control We used an a priori data quality control
protocol similar to the one used in Experiment 1. Three buffer
items from the beginning and end of each list were removed
from analysis in order to avoid confounds from primacy and
recency effects. Participants who failed to follow instructions
were identified using a binomial distribution test for at-chance
or below-chance performance on the math distractor test (N =
13) and on the random-change lists (N = 13). We chose to be
conservative and only report results using data from the par-
ticipants (N = 73) whom we could be reasonably sure per-
formed the experimental tasks as instructed; however, supple-
mentary analyses including the participants who were identi-
fied by at-chance source memory performance on the random
lists showed the same overall pattern of results, including the
main effect of list structure, and the effect of change in the t
test for the low-change list (see below).

Power Statistical power analysis was performed for sample-
size estimation, based on data from Experiment 1 (N = 72),
comparing change with nonchange events. With an alpha of
0.05 and power = 0.80, the projected sample size needed for
an effect size of d = 0.27 is approximately N = 86 for a within-
groups comparison. Although our final sample sizewas slight-
ly less due to attrition, our final sample size ofN = 73 using an
effect size of d = 0.27 yields power = 0.739.

Results and discussion

Participants’ source memory performance is shown in Fig. 4.
Overall, participants’ source memory judgments were moder-
ately accurate (M = 0.69, SEM = 0.012). We again first calcu-
lated an ANOVA for the block factor, this time using event
type, list structure, and block as factors. There was no signif-
icant main effect of block, F(11,792) = 1.01,MSE = 0.58, p =
.318, nor did the block factor interact with event type,
F(11,792) = 2.29,MSE = 1.32, p = .135, or with list structure,
F(11,792) = 1.34, MSE = 0.77, p = .268. A 3 × 2 repeated-
measures ANOVA, using event type and list structure as fac-
tors, revealed a main effect of list structure, F(2, 144) = 5.33,
MSE = 2.18, p = .006, ηp

2 = 0.069, such that source memory
was more accurate for the low-change (M = 0.70, SEM =
0.013) and random-change (M= 0.70, SEM = 0.013) lists than
for the high-change lists (M= 0.68, SEM = 0.016). There was
no significant main effect of event type, F(1,72) = 1.43,MSE
= 0.47, p > .10, ηp

2 = 0.020, nor was the interaction between

list structure and event type significant, F(2, 144) = 1.96,MSE
= 0.40, p > .10, ηp

2 = 0.026. As predicted, results from a
planned comparison for the effect of event type within the
low-change lists showed the source memory was more accu-
rate for the change events (M = 0.73, SEM = 0.017) than for
the nonchange events (M = 0.69, SEM = 0.014), t(72) = 3.43, p
= .001, Cohen’s d = 0.31. This replicates the result from
Experiment 1, further demonstrating that context change can
give rise to a distinctiveness effect, even when none of the
stimuli can stand out due to unique features. The effect of
event type was not statistically significant in either the high-
change lists, t(72) = 1.86, p = .067, or in the random-change
lists, t(72) = 0.68, p = .499. As we discuss in more detail
below, although this is a null effect, the lack of a boost for
the nonchange items in the high-change lists, which actually
shows a trend where the source memory for change items is
more than for the nonchange items, provides some evidence
against a prediction-error account and for our context-change
theory of distinctiveness.

The effects of context change can be seen most clearly by
examining source memory as a function of the serial position
relative to a change item. If, as we suggest, the change item
induces a context change that then leads to more effective
memory encoding, then there should be a discontinuity be-
tween the last few items in a stable run and the first few items
in a new run. As Fig. 5 clearly shows, this is precisely the
pattern seen in the low-change lists when one run of the same
background color ends and another begins. Although this plot

Fig. 4 Source memory performance as a function of list structure and
event type for Experiment 2. Change events are items whose background
color was different from the previous item. Nonchange events are items
whose background color was the same as the previous item. Error bars
indicate ±95% within-subjects confidence intervals
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shows the same pattern of results that are consistently seen in
the isolation paradigm (von Restorff, 1933), note that the item
is not sandwiched between other items with different features,
as is typical in the isolation paradigm. Instead, it represents a
change from one context to another.

We can also examine this effect in the random change lists.
For these lists, the sequence of the background colors was
completely random, so runs might be as short as a single item
or as long as half the list. In our lists, the mean run length was
2.85 items, and run length varied from one item to a maximum
of 11 items in a row with the same background color. Across
all subjects, there were a total of 470 runs of four items or
greater. As can be seen in Fig. 5, source memory for change
events that follow a stable run (M = 0.75, SEM = 0.018) is
improved relative to the last few events from that run (M =
0.66, SEM = 0.021), t(68) = 4.67, p < .001, Cohen’s d = 0.51,
even though the change item might or might not start a new
run.

Finally, we conducted a paired-samples t test for the change
events in random lists that followed a stable run versus the
changes events that did not. The difference was significant,
t(72) = 3.88, p < .001, Cohen’s d = 0.14, with change events
following a stable run remembered better (M = 0.75, SEM =
0.018) than those not following a stable run (M = 0.69, SEM =
0.017). This result further supports our theory that distinctive-
ness results from change relative to the current temporal con-
text, which would be greater following a stable run of
nonchange events.

Model and simulations

To make explicit how our context change account fares in
light of the full Experiment 2 result, we implemented a

generative process model within the TCM framework
(Howard & Kahana, 2002; Sederberg et al., 2008; Polyn
et al., 2009a). In TCM, items are bound to temporal con-
text, which is a recency-weighted running average of ex-
perience. Items are represented as vectors of features, f, as
is the internal representation of context, t. To model this
task, we represent each word as an orthogonal unit vector,
with the additional activation of one of two features
representing the background color of the item presentation.
While modeling this task required the addition of features
for background color, our framework could flexibly in-
clude features for any aspect of experience, including task,
item type (e.g., modality), semantic associations, or other
experimental manipulations. Context updates with the fol-
lowing equation:

ti ¼ 1−ρrð Þti−1 þ ρr f i; ð1Þ
where ρ is the drift rate governing the rate of change due to
each item presentation, r is a scalar measure of context
change, ti − 1 is the state of context prior to the item presen-
tation, and ti is the state of context after presentation of
item fi. The context vector is initialized with a single active
orthogonal feature prior to each study list and is normal-
ized to unit length following each item presentation. Larger
values of ρ give rise to faster changes in context, such that
the old context decays away quickly and is replaced with
the features of the new item fi, whereas smaller values near
zero give rise to small changes in context due to each item
presentation. The measure of context change is captured by
the scaler r, which is calculated based on the overlap be-
tween an item and the previous state of context:

r ¼ e−ti−1⋅ f i : ð2Þ

Fig. 5 Mean correct source memory in the low-change and random-
change lists as a function of serial position relative to the change item
in Experiment 2. Lags −3 to −1 are the last few items in a stable run of
items with the same background color. The context change item at Lag 0

starts a new run with a different background color, and next three items
within this run are at Lags 1–3. The context change item at Lag 0 has a
different background color and starts a new run. Error bars indicate ±95%
confidence intervals
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As the overlap between the new item and context goes to
zero, the measure of context change goes to one. Thus, if an
item overlaps with the current context (i.e., the item’s back-
ground color matches the active colors in context vector), the
context change scaler will be small and context will drift less,
whereas if the overlap between the new item and the context is
small, it will cause the context to change more, up to the full
value of ρ.

Learning involves binding the internal context representa-
tion to the presented item via a standard Hebbian outer prod-
uct stored in the matrix M, which is initialized to all zeros at
the start of each list:

ΔM ¼ αr f iti
T ; ð3Þ

where α is the learning rate, T is the transpose operator, and r
is the same measure of context change from above. Therefore,
the less an item overlaps with the current context, the more
context updates to be like that item, and the more that item is
bound to the newly updated context.

After the presentation of an entire list to the model, source
memory is tested by probing the memory matrix with an item
vector with only a word active (i.e., without the color it was
paired with at encoding) to reinstate the context bound to that
item:

tw
0 ¼ f w

TM ; ð4Þ
where fw is the word vector without the color, and tw

' is the
reinstated context. This reinstated context is then used to re-
trieve the strengths of the color associated with the probe
word:

f w
0 ¼ Mtw

0
; ð5Þ

where fw
' is the retrieved item vector, which contains both

word and color feature activations, into which we index to
pull out the strength of the retrieved color features, sblue and
sgreen. To make the the source memory decision, we put these
strengths into a standard softmax decision rule, with the
strength for the correct color in the numerator and the
strengths for both colors in the denominator:

pcorrect ¼
eτscorrect

eτsblue þ eτsgreen
; ð6Þ

where τ is a temperature parameter governing how the
strengths of other items affect source memory performance.

In all, the model has three parameters—ρ, α, and τ—which
govern the three main processes in the model: contextual drift,
learning, and retrieval, respectively. The key feature
distinguishing the present model from prior work is that the
contextual-drift and learning processes are modulated by the
context change scaler r, which is calculated based on the over-
lap between the presented item and the prevailing context

when that item is presented. If a new item does not match
the current context, it causes a larger contextual drift (pushing
the prior context out and taking its place) and a boost in learn-
ing rate.

To fit the model to the data from Experiment 2, we
employed a Bayesian approach with differential evolution
Markov chain Monte Carlo (DE-MCMC; Ter Braak, 2006;
Turner, Sederberg, Brown, & Steyvers, 2013) with 50 chains
fit to each participant separately. We used uninformative uni-
form priors for the three parameters: ρ =U(0, 1), α =U(0, 10),
and τ =U(0, 10). For each parameter proposal, we calculate its
likelihood that it generated the data by simulating the model
for each list and multiplying the probabilities of each observed
actual response (excluding the buffer items, as in the behav-
ioral analyses) generated via the source memory decision
equation provided above. After 250 burn-in iterations, we
ran 750 additional iterations in sample mode to ensure that
stable parameter posteriors were obtained for each participant.
Across all subjects, the mean and standard deviation maxi-
mum a posterior (MAP) estimates from the final 500 iterations
were ρ = 0.79 ± 0.17, α = 0.42 ± 0.53, and τ = 4.06 ± 2.38.
Figure 6 illustrates the mean best-fitting model performance
overlaid on the actual behavioral data. Note that our three-
parameter model provides solid qualitative and quantitative
fits to all measures, including the overall change versus
nonchange source memory performance in each condition,
as well as the lag plots conditional on color changes.
Interestingly, a similar model where the trial-level measure
of context change only modulated the learning rate, and not
the contextual-drift rate, provided a significantly worse fit to
the data as determined by pairwise comparison of Bayesian
predictive information criterion (BPIC; Ando, 2007) values
across participants (a Bayesian paired t test resulted in a
Bayes factor value of 77.5, indicating that it is more than 77
times more likely that the full model produced better/lower
BPIC values than the alternative, where context change does
not modulate contextual drift rate.) Although this could be due
to constraints from building a model within the TCM frame-
work, which prescribes binding items to context, it is none-
theless a potentially important finding that speaks to the inter-
action of perceptual processing and memory formation. If the
features of experience do not match the current context, we
push out the current context, replace that context with the new
features of experience, and bind the new item to this new
context. This process could generate distinctive event bound-
aries that act as anchor points in our experience (Reynolds,
Zacks, & Braver, 2007; Swallow, Zacks, & Abrams, 2009).

General discussion

This study explored what makes items distinctive and,
consequently, better remembered. We employed a
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balanced-features design in combination with a source
memory test to isolate encoding-related memory effects.
The primary finding, replicated across two experiments,
was a boost in source memory performance for items
presented with a feature change relative to a stable pre-
vailing context (i.e., items that cause a context change
are distinctive). Importantly, in the high-change lists
with frequently occurring changes, we did not observe
a memory boost for the rare nonchange events. We ar-
gue that this finding provides evidence that conflicts
with a strict prediction-error account of item-level dis-
tinctiveness. Such a strict prediction-error account posits
that memory should be improved for these poorly pre-
dicted nonchange events because they violate the pre-
diction of change (e.g., Marvin & Shohamy, 2016; den

Ouden, Kok, & De Lange, 2012; Frank, Woroch, &
Curran, 2005). In fact, while not significant, we ob-
served a trend of better source memory for change
events for the high-change condition, which is in the
opposite direction of an effect that would be generated
by a prediction violation process. One limitation of our
study is that we do not have additional empirical evi-
dence to demonstrate that participants were predicting
an alternating pattern of color changes in the high-
change lists; thus, we lack explicit proof that nonchange
events would elicit a prediction error. Nevertheless, we
interpret our combined results to support the hypothesis
that distinctiveness is due to relative context change in
the features of experience and not merely due to errors
in predicting those features. In support of our theory,

Fig. 6 Model estimates with behavioral data for Experiment 2. Red
circles indicate best fits generated from the maximum a posteriori
(MAP) estimates from the model for each participant. Lags −3 to −1 are
the average of the sequence of items before context change items. Lag 0
represents the context change items for a particular list type. Lags 1–3 are
the items immediately following the context change items. a Source
memory performance as a function of list structure and event type for
Experiment 2. bMean correct source memory in the random-change lists

as a function of serial position relative to the change items following runs
of at least three nonchange items. c Mean correct source memory for
change items following runs of at least three nonchange items in the
low-change lists as a function of serial position relative to the change
items. d Mean correct source memory in the high-change lists as a
function of serial position relative to the change item. (Color figure
online)
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we provided an explicit computational model that was
able to capture the full pattern of results with only three
parameters.

We do not dispute that distinctiveness can arise from
changes in a global list structure, as has been long established
by Green (1958a). However, we extend the explanation of
distinctiveness by showing that the effect is not driven simply
by deviations in global list structure, but by deviations from
the item-level sequence of the past few events leading up to a
context change. Context-change-based modulation of subse-
quent memory has been observed in other paradigms, as well.
In a task with a similar study structure to our low-change
condition, with sequences of objects encoded on colored
backgrounds that change after a random run of the same color,
Davachi and colleagues have demonstrated modulations in
temporal order memory, judgements of recency, and memory
for when an item occurred (DuBrow & Davachi, 2013;
Heusser, Poeppel, Ezzyat, & Davachi, 2016; Sols, DuBrow,
Davachi, & Fuentemilla, 2017). Other studies have demon-
strated item-specific memory improvements. For example,
Polyn, Norman, and Kahana (2009b) found a transient mem-
ory boost (in this case, a midlist primacy effect in free recall)
when the encoding task changed from a pleasantness judg-
ment to a size judgment during the study list. Similarly,
Davelaar (2013) showed that primacy and midlist primacy
effects in free recall can be captured by a model of distinctive-
ness based on a novelty signal that increases context change
before binding novel items to that context representation.
Although this model does not provide a mechanism for gen-
erating a novelty signal, in a follow-up study, they added a
novelty-detection mechanism based on prediction error, pro-
viding simulations of the von Restorff effect (Elhalal et al.,
2014). Our proposed model shares some similarities to those
of Davelaar and colleagues with regard to the enhanced con-
text update and binding processes; however, we differ on
whether modulation of these processes that give rise to dis-
tinctiveness arise from prediction error or context change.

Thus, our work extends previous experimental findings
into the source memory domain and provides a context-
change, as opposed to prediction-error, account of distinctive-
ness. To our knowledge, the change-based distinctiveness ef-
fect observed in our study cannot be captured by any of the
canonical context-based memory models on which our model
is based (e.g., Anderson & Bower, 1972; Mensink &
Raaijmakers, 1989; Howard & Kahana, 2002; Sederberg
et al., 2008; Polyn et al., 2009a) without some additional
mechanism to modulate learning rate based on context
change. However, item-level modulation of learning rate does
have precedence in other domains. For example, Nassar et al.
(2012) have demonstrated how a participant’s learning rate
can transiently increase when a new input induces a signifi-
cant update in their underlying beliefs about the likelihood a
change just occurred—in this case, that a target number they

would have to predict would now be drawn from a new dis-
tribution (see also Nassar, Wilson, Heasly, & Gold, 2010;
McGuire, Nassar, Gold, & Kable, 2014). Although this
change in belief state is driven by prediction error in their
model, the subsequent change in learning rate could provide
the mechanism underlying the change-based memory boost
observed in our data. This situation is demonstrated nicely in
our low-change lists, in which relatively consistent features
and the low likelihood of a change point renders the actual
change points more salient and distinctive. Conversely, mul-
tiple change points in a sequence of events reflect instability,
and will generate greater relative uncertainty about the under-
lying structure of the environment. Greater uncertainty in the
context of frequent change points drives down overall learning
rate during those sequences (Nassar et al., 2010). This reduc-
tion in learning rate could provide an alternate explanation for
the overall lower performance and lack of distinctiveness ef-
fect in our high-change lists.

One question that remains is what mechanism underlies the
relative increase in learning rate for items inducing a large
context change. One strong candidate is an attention-based
mechanism. For example, the effect we generate is very sim-
ilar to an attentional boost effect (ABE) shown by Swallow
and Jiang (2010, 2013). Using scene stimuli embedded with
rare target response cues (white squares) to which participants
were instructed to respond, and more frequent distractor cues
(black squares) to which participants were instructed not to
respond, Swallow and Jiang found that scenes paired with
target cues were better recognized later relative to scenes
paired with the common distractor cues. This main ABE has
been demonstrated to arise for perceptually and semantically
isolated stimuli (Smith & Mulligan, 2018), though it was not
found to transfer to irrelevant background features of the ex-
perience, such as the font or color of words (Mulligan, Smith,
& Spataro, 2015). The overlap with these studies suggest that
the item presentations inducing a large relative context change
engage attention, thereby increasing item processing and sub-
sequent memory.

Another question is whether the observed pattern of results
would be different if our participants had been explicitly
instructed to form an association between each word and its
background color, as in a deeper levels-of-processing or
transfer-appropriate-processing task (Craik & Lockhart,
1972; Morris et al., 1977). It is possible that a levels-of-
processing task manipulation could affect the encoding or
context update processes, and, thus, modulate the magnitude
of the distinctiveness effects. Although an interaction between
different encoding tasks and the distinctiveness effect would
certainly be interesting, given that we employed a source
memory task, we believe there would be little effect of pro-
viding an alternative encoding instruction because participants
already know that they will be tested on the association be-
tween the color and the word. However, it remains critical that
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we still understand what features of experience are salient
enough to cause a context-based distinctiveness effect.

Importantly, we were able to uncover an item-level distinc-
tiveness effect based on memory for changing contextual fea-
tures without the need to embed unique response targets into
the stimuli and without explicit encoding instructions other
than to remember the stimuli presented for a subsequent mem-
ory test. This memory boost is accomplished in our model by
a combination of a transient increase in contextual drift rate,
which serves to push out the previous context and replace it
with the new item information, and a corresponding increase
in item-to-context binding.

Conclusion

The purpose of this study was to identify cognitive processes
that contribute to what makes an experience distinctive and,
hence, better remembered. Our results provide new insight
into how distinctiveness is driven by feature-level context
change relative to recent experience, as opposed to a
prediction-error-based mechanism. Future work will include
a formal comparison of computational theories of the distinc-
tiveness effects driven by context change presented in this
study, as well as exploring their psychophysiological and neu-
ral substrates.
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