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When performing a voluntary movement, motor com-
mands from the brain activate body effectors, which 
produce a cascade of reafferent sensory (propriocep-

tive, tactile and visual) cues. Motor commands are also associated 
with prediction signals about the sensory consequences of the 
movement. The congruency between motor commands, reaffer-
ent sensory feedback and sensory predictions lies at the basis of the 
sense of agency, our feeling of being in control of our actions1–3. In 
case of damage to the motor system, motor commands that would 
trigger actions do not reach body effectors, leading to different 
types of paralysis, depending on the location and severity of dam-
age. Intracortical brain–machine interfaces (BMIs) bypass such 
brain–body disconnection by decoding brain signals from different 
regions (that is, primary motor cortex (M1), parietal or premotor 
cortex) and translating them into motor commands for the control 
of robots, exoskeletons4,5, neuromuscular functional electrical stim-
ulation6,7 or other devices8, enabling different actions (BMI actions) 
for patients with severe neuromotor impairments9.

Here, we study how it feels to generate movements with an intra-
cortical BMI, that is, what is the sense of agency for BMI actions 
(see refs. 10,11 for recent studies with non-invasive brain–computer 
interfaces (BCIs)) and search for a potential neural mechanism. In 
particular, we ask whether motor neurons in human M1 encode 
not only motor commands but also sensory feedback, and whether 
these signals covary with agency for BMI actions. Finally we tested 
whether agency also affects the efficiency of the BMI system, that is, 
whether agency has a potential therapeutic benefit.

We applied classic approaches from psychophysics, neuro-
physiology, neuroengineering and virtual reality (VR) to ask these 
questions in a patient suffering from tetraplegia (caused by severe 
cervical spinal cord injury; C5/C6) who had been a BMI expert for 
2 years before the start of the present study6. The patient had no 
preserved motor function below the C5 level. His sensory func-
tions were extremely limited and only showed partially preserved 
function at the C6 level on the left side and at C5 on the right side 
(there was also residual sensation for pressure on his right thumb). 
Concerning proprioception, he had preserved perception for shoul-
der, elbow and wrist joint position, but no proprioception for joint 
position of digits (see Methods for more details).

The BMI consisted of a 96-channel array implanted in the hand 
area of left M1 and actuated a transcutaneous forearm neuromus-
cular electrical stimulation (NMES) system (see ref. 6 for a full 
description of the system) to translate decoded cortical signals into 
right forearm and hand movements. To study the sense of agency 
for BMI actions and evaluate its clinical impact, we experimentally 
manipulated the congruency between the decoded actions and the 
actions actuated by the BMI-NMES system. As illustrated in Fig. 1, 
the participant was instructed to realize a cued action with the BMI 
and was provided with movement-related sensory feedback using 
visual (via VR) and/or somatosensory (via NMES) stimulation. 
Critically, this feedback was either congruent or incongruent with 
respect to the motor commands decoded from M1: half of the tri-
als, in which the decoded action corresponded to the cued action 
(for example, open hand), were associated with congruent feedback  

Sense of agency for intracortical brain–machine 
interfaces
Andrea Serino   1,2,13 ✉, Marcia Bockbrader   3,8,13, Tommaso Bertoni   1, Sam Colachis IV3,9, 
Marco Solcà2, Collin Dunlap3,9, Kaitie Eipel3,10, Patrick Ganzer   9,11, Nick Annetta   9, Gaurav Sharma9,12, 
Pavo Orepic   2, David Friedenberg   9, Per Sederberg4, Nathan Faivre   2,5, Ali Rezai3,6,14 and 
Olaf Blanke   2,7,14 ✉

Intracortical brain–machine interfaces decode motor commands from neural signals and translate them into actions, enabling 
movement for paralysed individuals. The subjective sense of agency associated with actions generated via intracortical brain–
machine interfaces, the neural mechanisms involved and its clinical relevance are currently unknown. By experimentally 
manipulating the coherence between decoded motor commands and sensory feedback in a tetraplegic individual using a brain–
machine interface, we provide evidence that primary motor cortex processes sensory feedback, sensorimotor conflicts and sub-
jective states of actions generated via the brain–machine interface. Neural signals processing the sense of agency affected the 
proficiency of the brain–machine interface, underlining the clinical potential of the present approach. These findings show that 
primary motor cortex encodes information related to action and sensing, but also sensorimotor and subjective agency signals, 
which in turn are relevant for clinical applications of brain–machine interfaces.

NATuRE HuMAN BEHAVIOuR | VOL 6 | APRIL 2022 | 565–578 | www.nature.com/nathumbehav 565

mailto:andrea.serino@unil.ch
mailto:olaf.blanke@epfl.ch
http://orcid.org/0000-0001-7475-6095
http://orcid.org/0000-0001-6419-0630
http://orcid.org/0000-0002-4798-7733
http://orcid.org/0000-0003-4260-1624
http://orcid.org/0000-0002-4236-6356
http://orcid.org/0000-0001-6965-7578
http://orcid.org/0000-0002-4404-8941
http://orcid.org/0000-0001-6011-4921
http://orcid.org/0000-0002-9745-3983
http://crossmark.crossref.org/dialog/?doi=10.1038/s41562-021-01233-2&domain=pdf
http://www.nature.com/nathumbehav


Articles NaTure HumaN BeHavIour

(for example, open hand), while the other half were associated with 
incongruent feedback (for example, the opposite action: close hand). 
For each BMI action, we asked the participant whether he felt in 
control of that action and to rate his confidence about this judge-
ment, allowing us to (1) gauge the sense of agency for BMI actions 
and how this was modulated by the congruency between motor 
commands and sensory feedback. Next, neural data from the M1 
implant were analysed to measure how (2) the sense of agency and 
(3) sensory feedback were encoded in the activity of M1 neurons, 
quantified as multi-unit (MU) firing rates and local field potentials 
(LFP). Finally, we investigated (4) how visual and somatosensory 
feedback, and the associated sense of agency, affected the perfor-
mance of the BMI system by changing the pattern of response of 
M1 neurons. By investigating what it feels like to control actions 
mediated by an intracortical BMI, our data show neural patterns in 

M1 activity (MU and LFP) reflecting the processing of agency for 
BMI actions, as generated by the congruency between intention and 
sensory feedback. Importantly, we show that the nature of somato-
sensory feedback (and the related sense of agency) affected the effi-
ciency of the BMI system by modulating the response properties of 
M1 neurons, underlining the clinical relevance of sensory feedback 
and agency for the BMI field.

During the experiment, the participant was cued to execute one 
of four target actions (hand opening, hand closing, thumb extension 
or thumb flexion) using a validated BMI neuroprosthesis. Neural 
activity corresponding to each target movement was recorded via 
a 96-channel microelectrode array in M1, and a non-linear support 
vector machine classifier was applied to decode the participant’s 
chosen action from MU activity (see ref. 6 for a full description). 
On each trial, the classifier provided the likelihood of each target 
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Fig. 1 | Experimental setup. a, Events during trials. One (out of four possible movements) was cued, following a ‘Go’ signal to initiate the movement. The 
BMI classifier decoded the movement from M1 activity, and sensory feedback was given. The patient answered two questions: Q1. ‘Are you the one who 
generated the movement?’, by saying ‘Yes’ or ‘No’ and Q2. “How confident are you?”, by indicating a number ranging from 0 (absolutely unsure) to 100 
(absolutely sure). The location of the electrode array in the M1, with respect to the pattern of activity for upper limb attempted movement from functional 
magnetic resonance imaging, is also shown (from ref. 6). b, Example of sensory feedback for one type of movement. The chosen movement was realized 
as a visual feedback, via VT (experiment 1), as a somatosensory feedback via NEMS (experiment 2) or both (experiment 3). In different congruency 
conditions, either the cued and correctly decoded movement (congruent) or the opposite movement (incongruent) was realized for the different 
modalities.
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and confidence, respectively) (Fig. 2). Collectively, these data from 
experiments 1–3 show that the congruency between decoded actions 
and sensory feedback, especially for the somatosensory modality, 
alters the sense of agency and confidence for actions mediated by 
an intracortical BMI.

The sense of agency has traditionally been studied by presenting 
participants with different visuo-motor couplings2,12–15. In compari-
son, the role of somatosensory signals remains poorly understood16, 
notably because it is normally impossible to decouple motor 
commands, somatosensory feedback and visual feedback, with 
extremely rare exceptions as in deafferented patients. Here, we were 
able to contrast feedback cues that were congruent in one modal-
ity (for example, visual) and incongruent in the other modality (for 
example, somatosensory; and vice versa) with respect to the motor 
command and demonstrate that somatosensory cues dominate 
the sense of agency and the associated confidence for BMI-NMES 
actions. Of note, this effect cannot be due to the presence of somato-
sensory cues alone, as BMI actions in the visual condition were 
always associated with non-informative NMES stimulation produc-
ing somatosensory sensations without generating any actions (that 
is, pseudo-random somatosensory feedback, see  Supplementary 
Information). Collectively, these psychophysical data from a BMI 
expert reveal that agency for BMI actions depends on visual and 
somatosensory feedback (tactile and proprioceptive input), with 
somatosensory cues being more relevant.

Cortical signatures of sensory feedback in M1. We next inves-
tigated how such sensory feedback, which modulated the sense 
of agency, was encoded in M1 activity. We first analysed the LFP 
amplitude in the different feedback conditions across the three 
experiments, using a regularized generalized linear model (ridge 
regression) and input signals from each individual channel at 
every time point (Supplementary Information). As shown in 
Fig. 3a (left), the analysis distinguished congruent versus incon-
gruent visual feedback (maximum Cohen’s κ = 0.40, t sum = 219.4, 
P < 0.001) within a single period of a positive potential that lasted 
from approximately 700 to 1200 ms after the BMI action classifica-
tion onset (experiment 1). We could also distinguish congruent 
versus incongruent somatosensory feedback (maximum Cohen’s 
κ = 0.64, t sum = 979.8, P < 0.001) during two time periods: an 
early period characterized by a negative potential (stronger for 
incongruent feedback), starting at ∼200 ms after BMI classifica-
tion onset, followed by a later persistent differentiation lasting 
until almost the end of the trial. These results were further cor-
roborated by data from experiment 3: congruent trials in both 
modalities were clearly distinguished from incongruent trials 
in both modalities, lasting from approximately 250 to 1,900 ms 
after BMI classification onset (maximum κ = 0.66, t sum = 958.8, 
P < 0.001). In addition, V+/S− trials were different from V−/S+ 
trials from approximately 300 to 1,400 ms from BMI classifica-
tion onset (maximum κ = 0.31, t sum = 256.7, P < 0.001) (Fig. 3b, 
left). These findings show that visual and somatosensory feedback 
were both encoded by LFPs in human M1 and that such M1-LFP  
coding started earlier and was more stable over time for somato-
sensory feedback.

Applying the same decoding algorithm as for LFPs, we next 
determined whether sensory feedback was also encoded by 
the spiking rate of MU in M1 (for methods see  Supplementary 
Information). As shown in Fig.  3a (right), in experiment 1, MU 
activity distinguished between congruent and incongruent visual 
feedback from approximately 400 to 900 ms from BMI classifica-
tion onset (maximum κ = 0.41, t sum = 56.2, P < 0.001). Extending 
LFP findings, earlier and more stable differentiation between con-
gruent and incongruent somatosensory feedback was found in MU 
activity in experiment 2, with an effect as early as ∼200 ms from  
the BMI classification onset (maximum κ = 0.66, t sum = 390.7, 

action (on a −1 to +1 range, in 100 ms bins), thus decoding one of 
the four target actions from the participant’s M1 activity. In three  
different experiments, visual, somatosensory or visual–somato-
sensory feedback about the BMI action was provided (Fig.  1). In 
experiment 1, VR was used to provide visual feedback, consisting 
of a life-size virtual arm on a monitor superimposed over the par-
ticipant’s right arm, matching the location and dimensions of the 
participant’s real arm, which was occluded from view. In experi-
ment 2, NMES was used to provide somatosensory feedback: the 
patient’s upper limb muscles were electrically stimulated so he could 
feel, but not see the selected movement. Experiment 3 combined VR 
and NMES to provide visual–somatosensory feedback (see below). 
In half of the trials, sensory feedback was congruent with the cued 
action, while in the other half it was incongruent (that is, the oppo-
site action was executed) (Fig.  1b). At the end of each trial, we 
gauged the participant’s sense of agency (0 or 1; Q1) and confidence 
(rating between 0 and 100; Q2). Importantly, the amount of sensory 
information was kept constant across experiments, by providing 
non-informative sensorimotor feedback in experiment 1 (that is, a 
pattern of NMES triggering no BMI action) and non-informative 
visual feedback in experiment 2 (that is, a static visual hand per-
forming no action).

Results
Sensory feedback determines agency and confidence. Agency rat-
ings were collected in a total of 844 trials (155, 243 and 448 trials 
for experiment 1, 2 and 3, respectively; for experiment 3 see below 
and Supplementary Information) and compared across feedback 
conditions using permutation tests. A null distribution of the mean 
agency rating was created by shuffling the condition labels over 
10,000 iterations. P values (two-sided) were estimated by counting 
the proportion of shuffled samples exceeding the observed average 
difference across conditions. As expected, and as shown in Fig. 2, 
we were able to manipulate agency and confidence for BMI actions. 
Thus, congruent visual (experiment 1: 93.8% (bootstrapped 95% CI 
93.4–94.2%) and 5.2% (4.8–5.6%) of positive responses to Q1 for 
congruent and incongruent trials, respectively, P < 0.0001) and con-
gruent somatosensory (experiment 2: 97.5% (97.3–97.6%) and 8.8% 
(8.4–9.1%) of positive responses for congruent and incongruent 
trials respectively, P < 0.0001) feedback resulted in more frequent 
agency responses versus incongruent conditions. Analysing the 
role of feedback for confidence ratings (irrespective of the agency 
ratings), we found that confidence was modulated by somatosen-
sory congruency (experiment 2: Q2 ratings higher for somatosen-
sory congruent [M = 74.0 (73.9–74.2)] than incongruent [M = 65.0 
(64.8–65.2)] feedback; P < 0.001). The effect of visual congruency 
on confidence ratings was not significant (experiment 1: mean Q2 
rating 70.9 (70.6–71.1) for congruent versus 73.4 (73.1–73.6) for 
incongruent trials; P = 0.28).

To disentangle the role of visual and somatosensory cues for 
agency and confidence, experiment 3 combined VR and NMES by 
including combinations of congruent and incongruent visual and 
somatosensory feedback (Fig. 1). Most relevant are the comparisons 
between feedback conditions in which visual (V) and somatosen-
sory (S) signals were both congruent (+) or both incongruent (−) 
(V+/S+, V−/S−) or when feedback was congruent in one modality 
and incongruent in the other modality (V+/S−, V−/S+). Results 
revealed that somatosensory congruency was more effective in 
driving the sense of agency and the associated confidence: ratings 
were higher not only when both feedback signals were congruent  
(Q1: 100% ‘Yes’; mean Q2: 83.98 [83.7–84.0]) as compared with 
both being incongruent (Q1: 7.6% ‘Yes’ [7.2–7.9%]; mean Q2: 
72.4 [72.2–72.6]; both P values < 0.001), but also in the V−/S+  
(Q1: 68.9% ‘Yes’ [68.4–69.4%]; mean Q2: 59.4 [59.3–59.6]) as com-
pared with the V+/S− condition (Q1: 52.2% ‘Yes’ [51.5–52.8%]; 
mean Q2: 54.6 [54.4–54.8]; P = 0.0035 and P = 0.036, for agency 
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P < 0.001) then persisted from 800 to 2,000 ms. Similar results were 
found in experiment 3 (Fig. 3b, right), where MU activity distin-
guished between trials congruent and incongruent in both modali-
ties (maximum κ = 0.68, t sum = 271.8, P < 0.001) and between 
V+/S− and V−/S+ trials from ∼160 ms from BMI classification 
onset (maximum κ = 0.55, t sum = 151.2, P < 0.001). These data 
show that LFP and MU activity reflect visual and somatosensory 
feedback during actions driven by a BMI neuroprosthesis, with M1 
activity early reflecting somatosensory feedback starting ∼200 ms 
after NMES activation (∼150 ms after BMI classification onset, 
∼200 ms before M1 activity encoding visual feedback) and persist-
ing for a longer period.

The role of somatosensory and visual information is an 
important topic in motor control, with robust evidence show-
ing how perturbations of sensory feedback impact motor execu-
tion and adaptation17. The present data show that the congruency 
between an intended action and somatosensory/visual feedback 
is encoded by M1 neurons at different latencies. Previous stud-
ies in non-human primates described responses in M1 related to 
tactile and visual input18,19, during active and passive movements20 

and during visual feedback of a pre-recorded movement21,22. The 
present results are consistent with proposals suggesting that M1 
activity codes for both movement types and their sensory conse-
quences, in line with recent works describing how M1 neurons 
encode different movement parameters (see refs. 19,23,24 for reviews). 
Here, we report that, at the population level, human M1 activity 
in addition discriminates between arm movements that were con-
gruent or incongruent with the motor command, as defined by 
somatosensory and visual feedback, with higher-accuracy, earlier 
and more consistent processing for the former type of sensory 
information. Thus, neural coding in M1 contains, at the popula-
tion level, information about not only the movement itself but also 
sensory consequences of actions, involving somatosensory–motor 
and visuo-motor loops. These results are important to explain 
how sensory feedback affects the proficiency of the BMI system as  
described below.

Cortical signatures of the sense of agency in M1. It is known 
that sensory–motor congruency is a key mechanism of agency for 
able-bodied actions2,3. Here we show that this also applies to agency 
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and confidence for BMI-mediated actions and that LFPs and MU 
activity in human M1 distinguish congruent versus incongruent 
BMI actions. Next, we investigated the extent to which LFP and MU 

activity in M1 also discriminate actions with and without an accom-
panying sense of agency. For each trial, we sorted LFP responses as a 
function of whether the participant reported agency or not. As seen 
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in Fig. 4a (left), LFP activity starting ∼270 ms after BMI classification  
onset was found to code for agency and reached a maximum infor-
mation value (maximum κ = 0.41, t sum = 1,258.3, P < 0.001) at 
∼1,000 ms after BMI movement onset. Thus, BMI actions for which 
the participant felt he was the agent were characterized by a dif-
ferent LPF pattern compared with BMI actions for which he did 
not. This was corroborated by MU activity analysis (Fig. 4a, right). 
The MU firing rate was higher for trials with versus without agency. 
This discrimination started at ∼300 ms after BMI classification 
onset, until 500 ms, and peaked at ∼400 ms (maximum κ = 0.45, 
t sum = 232.5, P < 0.001). Later on, MU activity also differenti-
ated for agency, with higher firing rate for trials with no agency  
(800–1,600 ms after BMI classification). The same decoding was also 
able to discriminate trials with high versus low confidence, based on 
a median split of Q2, from LFPs (maximum κ = 0.296 at ∼1,200 ms,  

t sum = 8,449.3, P < 0.001) and MU (maximum κ = 0.225 at 
∼400 ms, t sum = 214.9, P < 0.001).

In the experimental design, sensory feedback congruency was 
used to modulate the sense of agency, and this may have influ-
enced these agency findings. Accordingly, we next tested whether 
LFP and MU contained information related to the sense of agency 
per se, after controlling for the effect of sensory feedback. For this, 
we built a continuous measure of sense of agency and confidence 
allowing us to regress out the effect of sensory feedback. This new 
index was computed by recoding confidence ratings (Q2) as −Q2 
for trails with no agency (as indicated in Q1) and +Q2 for trials with 
agency (from Q1). This index was then orthogonalized with respect 
to congruency to regress out this effect from the agency scores. As 
M1 signals also varied as a function of the different cued actions 
(Supplementary Information), the index was also orthogonalized 
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for the type of action. We then used the same decoder to predict 
orthogonalized agency scores from LFP and MU activity over time. 
This analysis shows that LFPs predicted the sense of agency start-
ing at ∼450 ms after BMI classification onset (maximum R2 = 0.03, 
t = 69.8, P = 0.017) (Fig.  4b, left). A similar pattern was found 
when considering MU activity, although the peak failed to reach 
significance after cluster-based correction for multiple compari-
sons (Fig. 4b, right). These data show that M1 activity encodes the 
sense of agency and associated confidence level and was modulated 
by the congruency between motor commands and sensory feed-
back. Thus, subjective mental states associated with BMI actions 
and control are encoded by M1 activity at the LFP level (and to a 
minor extent at MU), independent of the neural processing asso-
ciated with sensory feedback (see Supplementary Information for  
single-channel analyses).

Somatosensory feedback modulates BMI classifier accuracy. 
Given the strong role of sensory congruency in determining agency 
and its coding in M1, we finally asked whether sensory feedback 
has any impact on the BMI classifier. To this aim, we tested whether 
the congruency between the decoded motor commands and sen-
sory feedback (visual or somatosensory) affected the accuracy of 
the BMI classifier, defined as the summed suprathreshold activa-
tion values across a 4 s window. In experiments 1 and 2, we found 
that congruent somatosensory feedback improved classifier accu-
racy (t(241) = 9.29, Cohen’s d = 1.238, P < 0.001) (Fig.  5b, right). 
There was no effect due to visual feedback (t(153) = 1.523, Cohen’s 
d = −0.245, P = 0.14) (Fig. 5a). Moreover, incongruent somatosen-
sory feedback was associated with lower classifier accuracy for the 
cued movement (Fig. 5b, left), and even increased classifier accu-
racy for the opposite movement (Fig. 5b, left). Thus, only somato-
sensory feedback congruency affected BMI accuracy in the present 
participant. This was extended by the results of experiment 3, where 
we found a significant main effect of sensory feedback condition 
(F(3,444) = 15.83, η2 = 0.097, P < 0.001; Fig. 5c). Further post hoc 
corrected tests showed that the BMI classifier’s accuracy was higher 
when feedback was congruent than incongruent, in either modal-
ity (Tukey-corrected t = 4.966, Cohen’s d = 0.666, P < 0.001). More 
interestingly, when feedback was congruent for the somatosen-
sory modality and incongruent for the visual modality (V−/S+), 
BMI accuracy was higher than in the opposite feedback condition  
(S−/V+) (t = 4.558, Cohen’s d = 0.612, P < 0.001). Figure  5 also 
shows the modulation of the BMI decoder as a function of sensory 
feedback over time during the trial. Significant change of the decod-
er’s output is visible from 430 ms from somatosensory feedback.

These data from experiments 1–3 show that BMI performance is 
affected by the congruency between the decoded motor commands 
and the somatosensory feedback induced by the action actuated by 
NMES. This finding is also coherent with the more reliable (that 
is, earlier, more long-lasting and better-decoded) processing of 
somatosensory feedback from M1 activity (LFP and MU). The fact 
that the same action as actuated by NMES (for example, open hand) 
increased or decreased the BMI classifier performance, depending 
on whether somatosensory feedback was congruent (open hand) or 
incongruent (close hand) with the cued action, excludes that this 

effect was a generic artefact of NMES stimulation affecting the input 
to the BMI classifier independently from sensory information.

To better understand how somatosensory feedback affected the 
accuracy of the BMI classifier, we analysed time point by time point 
changes in MU activity for the whole array. We computed the aver-
age Euclidean distance between firing patterns of trials with a given 
cued movement and either congruent or incongruent somatosen-
sory feedback. For a given cued movement (for example, move-
ment hand open) at congruent feedback (hand open), we computed 
its distance either with the same movement (cued: hand open) at 
incongruent feedback (hand close) or with the opposite movement 
(hand close), at its relative incongruent feedback (hand open). This 
way, we compared cases with the same motor intention but opposite 
sensory feedback, and trials with the opposite motor intention but 
the same sensory feedback. As shown in Fig. 6, trials from experi-
ment 2 with opposite somatosensory feedback but the same motor 
intention diverge after sensory feedback, whereas trials with oppo-
site motor intention but the same sensory feedback seem to even 
converge slightly with respect to baseline. This shows that M1 activ-
ity after feedback reflects the movement implemented via NMES 
more than the intended movement, thus explaining the modula-
tion of somatosensory feedback in BMI proficiency (Fig. 6b). As a 
control, we also analysed trials with opposite motor intention and 
congruent somatosensory feedback. We found the activity patterns 
to differ only slightly with respect to trials with same somatosen-
sory feedback but opposite motor intention, further showing that 
somatosensory feedback prevails over motor intention after move-
ment onset. In the case of visual feedback (experiment 1), instead, 
there was no divergence of activity patterns after the feedback, while 
trails with different motor intention clearly diverged before the 
movement onset (Fig. 6a).

To better display the effect of somatosensory feedback on M1 
activity for each type of movement, we computed a 2D multidimen-
sional scaling of neural activity as a function of intended movement 
and congruency of somatosensory feedback. This technique aims 
to represent the high -imensional spatio-temporal pattern of neu-
ral activity in a 2D plane while maximising the fraction of retained 
variance. As shown in Fig. 6c, for both hand (opening/closing) and 
thumb (flexion/extension) movements, before sensory feedback (in 
the window between −650 and −150 ms before sensory feedback 
onset), M1 neural activity is clustered solely as a function of the 
intended movement. After somatosensory feedback (between 0 and 
600 ms from sensory feedback onset, Fig. 6d), trials with congru-
ent somatosensory feedback and a given intended movement are 
clustered more with trials coding for the opposite movement, but 
receiving the same sensory feedback rather than with trials coding 
for the same movement.

No prior study in humans and only a few studies in monkeys 
have directly tested the effects of sensory feedback on BMI perfor-
mance21,25. Here, we show for the first time an effect of feedback 
congruency on BMI performance and the underlying role of M1 
in this process. Our findings indicate that the recorded M1 units 
processed motor signals for the trained BMI actions, for sensory 
and sensory–motor signals reflecting the type and congruency 
of the sensory feedback. Importantly, these processes were found 

Fig. 5 | Performance of BMI classifier as a function of sensory feedback and sense of agency. a–c, BMI performance does vary not as a function of visual 
feedback (experiment 1, a) but is significantly better when somatosensory feedback is congruent in both experiment 2 (b) and experiment 3 (c). Left: 
modulation in time of the performance of the BMI classifier for the four types of movements indicated for the cued movement (filled line) and the opposite 
(dashed line), as a function of feedback, showing time points with significant difference after false discovery rate correction (black dots). Right: area under 
the curve (AUC) taken as an index of global performance of the BMI. Each dot represents a single trial. The lower and upper limit represent observations 
between the 25th and 75th percentile range, respectively. The horizontal line represents the median. d, BMI accuracy in time as a function of sense of 
agency, showing BMI classifier output (blue/red lines) for the cued movement as a function of agency judgements (Q1: 1, high agency; 0, low agency) in 
conditions of equal sensory feedback (black dots indicate significant differences after false discovery rate correction).
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to change across time, as a function of the sensory feedback pro-
vided. In particular, our results show that, after somatosensory 
feedback, the pattern of neural activity from M1 reflected more 
closely the type of movement realized by the NMES (that is, the 
pattern of somatosensory feedback) rather than the intended and 

decoded movement. This re-writing of the encoded M1 move-
ment as a function of the NMES-implemented movement directly 
relates to the improvement of BMI efficiency based on congruent 
somatosensory feedback that we observed and was absent in visual  
feedback trials.
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Fig. 6 | Somatosensory feedback changes firing rates of M1 neurons. a,b, Euclidean distance in time between trials with same motor intention and opposite 
feedback (red), same feedback and opposite intention (blue) or opposite congruent feedback and intention (green), for experiment 1 (a) and 2 (b). In 
experiment 1, neural activity diverged as a function of motor intention before the movement, as shown by the increase in Euclidean distances between the 
green and blue curves. In experiment 2, neural activity diverged as a function of sensory feedback after NMES activation. c,d, Multidimensional scaling of 
neural activity before (−650/150 ms; c) and after (0/500 ms; d) sensory feedback. The plots show a 2D dimensionality reduction of population activity in 
the target period, to represent it on a plane. As in principal component analysis, dimensions 1 and 2 can be seen as the two abstract coordinates explaining 
most variance in the data. Movements are separated by classes of hand (open/close; right) and thumb (extension/flexion; left) movements.

NATuRE HuMAN BEHAVIOuR | VOL 6 | APRIL 2022 | 565–578 | www.nature.com/nathumbehav 573

http://www.nature.com/nathumbehav


Articles NaTure HumaN BeHavIour

This effect might be mediated by mutual connections between 
the primary motor and the primary somatosensory cortices, which 
have been extensively documented in non-human primates26 and 
in humans27. In addition, this effect might also depend on direct 
somatosensory inputs reaching M1 neurons, probably from the 
dorsal columns via the ventrolateral thalamic nucleus28. This is 
an important finding, considering that original BMI approaches 
for severely motor-impaired patients generally provide visual 
feedback only5,29 or somatosensory feedback by directly stimulat-
ing primary somatosensory cortex30–32 (see ref. 31 for a review). 
Although from a single tetraplegic participant, the present data 
show that non-invasive somatosensory feedback via NMES not only 
enables higher subjective feeling of being in control (agency and 
confidence) but also leads to better actual control of the patient’s  
BMI actions.

Agency covaries with BMI classifier. We finally investigated 
whether agency has an impact on BMI efficiency and thus tested 
whether the sense of agency covaried with BMI classifier accu-
racy. We found that trials with agency versus trials without agency 
were associated with higher classifier accuracy when somato-
sensory feedback was modulated (experiment 2: t(241) = 8.91, 
Cohen’s d = 1.199, P < 0.001), as confirmed from analysis of data 
from experiment 3 (t(446) = 6.256, Cohen’s d = 0.601, P < 0.001). 
We found no statistically significant difference between trials with 
agency and trials without agency in classifier accuracy when visual 
feedback was modulated (experiment 1: t(153) = 0.690, Cohen’s 
d = 0.111, P = 0.49). In addition, there was a significant correla-
tion across all three experiments between BMI classifier accuracy 
and confidence (see Supplementary Table  1 for multiple regres-
sion analyses). Thus, agency and confidence were both directly 
related to the performance of the present BMI system, but only 
when somatosensory feedback was involved. To confirm the role 
of agency in BMI performance, while controlling for other poten-
tial factors, we compared the BMI performance between tri-
als in which the BMI user reported high and low agency, within 
conditions at equivalent sensory feedback, that is, V−/S+ and  
V+/S− from experiment 3 (which resulted in balanced and suf-
ficient numbers of trials with ‘Yes’ and ‘No’ responses to Q1). As 
shown in Fig. 5d, BMI accuracy varied as a function of subjective 
agency judgements, in conditions of equivalent sensory feedback. 
BMI accuracy was significantly higher in trials with high agency 
as compared with trials with low agency from 300 ms in the  
V−/S+ condition. The same pattern is visible in the V−/S+ condi-
tion, although the comparison was not significant (that is, did not 
survive to correction for multiple comparisons). The same analysis 
run on confidence ratings (by sorting high and low confidence rat-
ings by means of a median split) did not show any significant dif-
ference in BMI accuracy due to confidence at equivalent conditions 
of sensory feedback (Supplementary Fig. S6). These results suggest 
that the sense of agency, and not confidence (see Supplementary 
Table 1 for further analyses), has an effect on BMI accuracy beyond 
the prominent role of sensory feedback, and impacts BMI accu-
racy at a later time point. Since agency judgements and confidence 
ratings reflect two different processes of subjective experience, the 
present data suggest that pre-reflexive rather than post-decisional 
agency components more strongly affect the proficiency of a BMI 
decoder in M1.

Discussion
By combining techniques from neurophysiology, neuroengineer-
ing and VR with psychophysics of agency, we were able to study 
the sense of agency for actions enabled by a BMI-based intracor-
tical neuroprosthesis and found that congruent sensory feedback 
boosted agency and confidence when controlling BMI actions. 
Moreover, we showed that human M1 processes not only motor and 

sensory information but also different levels of congruency between 
sensory and motor signals and the resulting sense of agency. The 
present data are also of clinical relevance, because our NMES-based 
BMI approach, by providing congruent somatosensory feedback 
(without direct S1 stimulation) to a tetraplegic patient, improved 
the ability of the BMI classifier in decoding the patient’s motor com-
mands. Interestingly, such higher BMI proficiency was associated 
with a stronger sense of agency, suggesting that, beyond support-
ing close-loop systems and M1 feedback in general, somatosensory 
feedback and signals related to subjective aspects of motor control 
(that is, agency) are important input for improving BMI proficiency. 
Quantifying subjective action-related mental states and including 
controlled motor and sensory feedback may therefore provide new 
levels of comfort and personalization and should be considered for 
the design of future BMIs.

The present data demonstrate that M1 activity contains infor-
mation specifically linked to subjective aspects of motor control, in 
particular the sense of agency and confidence that our participant 
associated with his BMI actions. It is known that agency probably 
involves a network of multiple brain areas from which we did not 
record in the present study (for example, posterior parietal cortex33 
and angular gyrus, anterior insula,34,35 supplementary motor cortex36 
and premotor cortex;37 see refs. 3,38 for reviews). However, our find-
ings, even if coming from a single tetraplegic patient, directly dem-
onstrate that M1 activity contains sufficient information to decode 
actions for which a human participant feels to be in control. The 
present BMI findings extend previous research that investigated the 
sense of agency for non-invasive brain–computer interface (BCI), as 
based on scalp electroencephalography. They add important infor-
mation about the underlying neural underpinnings based on M1 MU 
activity of the sense of agency in humans. In keeping with a promi-
nent line of research on the role of visuo-motor (and visuo-tactile) 
cues in boosting or modulating body ownership for artificial and 
real limbs39–42, previous BCI studies also demonstrated that coherent 
visual feedback results in a higher sense of agency for BCI actions14. 
This effect is associated with stronger activations in a cortical–sub-
cortical network, recruited during motor imagery used to control 
the BCI, consisting of posterior parietal cortex, insula, lateral occipi-
tal cortex and basal ganglia13. Another study10 further demonstrated 
that a stronger sense of agency for BCI-mediated actions is asso-
ciated with stronger activity in sensorimotor areas during motor 
imagery-based BCI. The present data on the sense of agency when 
using an intracortical BMI, although from a single, highly proficient 
BMI user (see below), demonstrate that this relationship can be 
tracked down even at the level of MU activity from M1 neurons, and 
it is further associated with higher BMI proficiency.

Moreover, the present findings offer a mechanistic explanation 
for the relationship between sensorimotor activity, sensory feed-
back and the resulting sense of agency by showing that M1 activ-
ity before movement execution codes for the intended movement, 
while activity after movement execution encodes the sensory feed-
back associated with the implemented movement. By showing that 
somatosensory feedback in particular affects the performance of the 
BMI classifier, these analyses provide insights into the sensorimotor 
mechanisms of BMI proficiency. We note that this last finding was 
possible only due to the combination of a spinal cord injury lesion 
and the present intracortical BMI, which allowed us to decode 
efferent signals and manipulate afferent signals, not only as visual 
reproductions of body movements (via VR, as in previous stud-
ies) but also as physical movements of the real body (via NMES). 
To highlight the dynamic, multiscale brain mechanisms underly-
ing the sense of agency in humans, future studies should combine 
insights that can be gained from invasive BMI (with ultra-high  
spatial resolution but limited coverage in a handful of subjects) and 
non-invasive BCI (with limited resolution but recording from the 
entire brain in larger subject samples).
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Finally, our results can be of interest not only within the field 
of neuroscience and neuroprosthetics. Advances in neurotechnol-
ogy and BMI designed for human repair or enhancement also pose 
unprecedented ethical, legal and societal concerns43, for example on 
the human sense and right of agency38,44 as investigated here, but 
also on related issues of privacy, safety and human identity45,46.

Limitations of the study. Because of the uniqueness of the pres-
ent experimental setup, generalization of the present findings to 
the general population should be done carefully. First, we tested a 
single participant, who is an extremely trained BMI user, who could 
have developed an extraordinary capacity for controlling his BMI 
system. This could have in turn impacted the associated sense of 
agency and the discovered links with BMI proficiency. Second, to 
enable movements of his upper limb, we used an NMES system that 
provides a series of somatosensory cues, which are only partially 
comparable to those associated with natural movements. For exam-
ple, the intensity and temporal activation of somatosensory fibres 
as well as of the recruited motor fibres (antidromic) differs from 
sensorimotor activation during natural movements. We also note 
that, although our participant suffered severe somatosensory loss  
(following damage at the C5–C6 level), he may have ‘learned’ to 
associate some patterns of cutaneous sensations with the specific 
type of NMES stimulation used to enable specific movements. 
Indeed, outside of the experimental tasks described here, he was able 
to identify NMES-implemented movements even without seeing 
his arm. Finally, given the long-term spinal cord lesion suffered by 
this participant, we cannot exclude that some plastic changes have 
occurred in his motor representations in M1, his somatosensory 
representations in S1 or the connectivity between the two. There is 
still no consensus about plasticity following spinal cord injury, with 
some evidence of preserved network organization, some possible 
changes in grey matter density47,48 or activation in the sensorimotor 
cortices49,50. It is also not clear how these results at the population 
level of spinal cord injury patients are predictive of changes at the 
single patient level. Thus, at the moment, it is not possible to exclude 
that some of the present results are idiosyncratic to this particular  
clinical case.

Methods
Participant. The participant in this study was enroled in a pilot clinical trial 
(NCT01997125) of a custom neural bridging system (Battelle Memorial Institute) 
to reanimate paralysed upper limbs after C4–6 spinal cord injury. The system 
consisted of a Neuroport data acquisition system (Blackrock Micro), custom signal 
processing and decoding algorithms (Battelle) and a NeuroLife Neuromuscular 
Stimulation System (Battelle). The trial received investigational device exemption 
approval by the US Food and Drug Administration and Institutional Review Board 
approval through the Ohio State University. The study conformed to institutional 
research requirements for the conduct of studies on human subjects. The site of 
the experiments was the Ohio State University NeuroRehabLab, and data were 
analysed at Ohio State University and École polytechnique fédérale de Lausanne. 
The participant provided informed consent at time of enrolment and also provided 
written permission for photographs and videos.

The study participant was a 22-year-old male at the time of study enrolment. 
He had complete C5 American Spinal Injury Association Impairment Scale grade 
A, non-spastic tetraparesis from cervical spinal cord injury associated with a diving 
accident 3 years prior. On neurological examination, he had full motor function 
bilaterally for C5-level muscles (for example, biceps and shoulder girdle muscles), 
but no motor function below C6 level. He had grade 1 out of 5 strength on the 
right and grade 2 out of 5 strength on the left for wrist extension (C6 level) on 
manual muscle testing. His sensory level was C6 on the left and C5 on the right, 
although he had sensation for pressure on his right thumb. He had preserved 
proprioception for shoulder, elbow and wrist joint position, but was at chance level 
for distinguishing digit joint positions (flexion/neutral/extension) for thumb and 
fingers. He had mild finger flexor contractures bilaterally, limiting finger extension 
at the proximal and distal interphalangeal joints of digits 2–5.

He was implanted with a 4.4 × 4.2 mm2 intracortical silicon Neuroport 
microelectrode array (Blackrock Microsystems) in the dominant hand/arm area 
of his motor cortex on 22 April 2014, as previously described6. The implant site 
was determined by preoperative functional neuroimaging obtained while the 
participant visualized movements of his right hand and forearm. He began using 

cortically controlled transcutaneous NMES on his right forearm on 23 May 2014. 
Data for this study were collected over 13 sessions (45 h) from 16 November 2016 
to 20 February 2017, corresponding to post-implant days 939–1,035. One session 
with visual and NMES feedback was used for practice (five blocks of 32 trials on 
post-implant day 939). At the time of data collection, the participant was an expert 
BMI user with over 800 h of study participation.

The participant underwent cognitive testing approximately 1 year after Utah 
array implantation (January–July 2015). He scored with superior verbal abilities, 
attention and working memory (92nd to 99th percentile for his age).

Cortical signal acquisition and classification. Neural data (96 channels) were 
acquired from the left motor cortex Utah array through the Neuroport data 
acquisition system (Blackrock Micro). Raw data were processed using analog 
hardware with 0.3 Hz first-order high-pass and 7.5 kHz third-order Butterworth 
low-pass filters, then digitized at 30,000 Hz. Data were divided into 100 ms bins and 
passed into MATLAB 2014b, where signal artefact was removed by blanking over 
3.5 ms around artefacts (defined as signal amplitude >500 μV at the same time on 
4 of 12 randomly selected channels). Signals were decomposed into mean wavelet 
power (MWP) using the ‘db4’ wavelet over 100 ms (ref. 51). Coefficients within 
the MU frequency bands (234–3,750 Hz, coefficients of scales 3, 4, 5 and 6) were 
averaged across the 100 ms window and normalized by channel (by subtracting 
the mean and dividing by the standard deviation of each channel and scale, 
respectively). Normalized coefficients for each channel were averaged across scales 
3–6, creating 96 MWP values (one for each channel) per each 100 ms. MWP values 
were fed as features into a real-time, non-linear support vector machine classifier52 
with five classes (hand open, hand closed, thumb extension, thumb flexion and 
rest). Classifier activation values were computed for each 100 ms bin and ranged 
from −1 to 1. Classifier output represented the movement pattern (hand open, 
hand closed, thumb extension and thumb flexion) with the highest activation 
greater than threshold (zero). If no movement classes had activation greater 
than zero, the classifier was in the ‘rest’ state. If multiple output classes exceeded 
threshold, only the one with the highest score was used to provide feedback.

Signal quality was stable53 during the interval of data collection but presented 
a decline of about 30% in MWP normalized to post-implant day 87 (ref. 54). (See 
below for single-unit statistics.) Average impedance was approximately 200 kΩ, a 
decline of 40% from its initial value. Average signal-to-noise was approximately 
17.5 dB, a decrease of about 10% from its initial value55. Most of the decline in 
signal quality occurred in the first 400 days post-implantation.

Classifier training and neurally controlled hand movements. Before each 
session, the support vector machine classifier was trained in an adaptive manner 
over five blocks. Each block consisted of three repetitions of four movements 
(hand open, hand closed, thumb extension and thumb flexion) presented in 
random order. Movements were cued for 3–4 s (4–5 s inter-cue interval) using a 
small animated hand in the corner of the video display. Feedback was given with 
both NMES and the feedback hand on the video screen. During the first training 
block, scripted feedback was provided simultaneously with the cued movements. 
In subsequent blocks, appropriate movements were activated when an output 
class for a given movement exceeded threshold (>0). Training took approximately 
10–15 min per session.

Neuromuscular electrical stimulation. The NMES system was used to evoke hand 
and finger movements by stimulating forearm muscles. The system consisted of 
a multi-channel stimulator and a flexible, 130-electrode, circumferential forearm 
cuff. Coated copper electrodes with hydrogel interfaces (Axelgaard) and diameter 
of 12 mm were spaced at regular intervals in an array (22 mm longitudinally × 
15 mm transversely) and delivered current in monophasic rectangular pulses at 
50 Hz (pulse width 500 μs, amplitude 0–20 mA). Desired hand/finger movements 
were calibrated at the beginning of each session by determining/confirming the 
intensity and pattern of electrodes required to stimulate intended movements.  
This took 5–10 min per session.

During the experiment, the participant’s view of NMES-evoked movements 
was obscured from view by the video display. During experiment 1, 
non-informative NMES feedback was given (current at an intensity equivalent 
to what was used for movement calibration patterns, but that did not evoke 
movement). During experiments 2 and 3, NMES feedback was provided that 
evoked hand and finger movements.

VR animation. A non-immersive VR system (that is, without a head-mounted 
display or head-tracking) was used to provide visual feedback. This was done 
to adapt a previous setup that the participant was already familiar with to the 
present experiments and also facilitated the calibration procedure to train the BMI 
classifier. A physics-based animated hand was used to provide visual feedback of 
classifier activation. During training, two animated hands were displayed: a small 
cue hand at the bottom left and a larger centrally placed feedback hand (Fig. 1). 
During the experiment, the display was oriented over the participant’s forearm 
and a single centrally placed feedback hand was displayed to match the size and 
location of the participant’s right hand (the cue hand was not displayed). During 
experiments 1 and 3, feedback was provided using the virtual hand. During 
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like to him. Congruency with respect to the cue was manipulated independently 
in the visual and somatosensory modalities such that 25% of the trials were each: 
congruent for both visual and NMES feedback, incongruent for both visual and 
NMES feedback, congruent for visual but incongruent for NMES feedback and 
congruent for NMES but incongruent for visual feedback. His subjective sense of 
agency and level of certainty were recorded for each trial.

A total of 520 trials were collected across five days. After removing trials  
where the participant did not respond correctly by activating the classifier 
associated with the cue, the number of trials that remained for behavioural and 
neural activity analysis was 117 congruent for both visual and NMES feedback,  
103 incongruent for both visual and NMES feedback, 101 congruent for visual  
but incongruent for NMES feedback and 127 congruent for NMES but incongruent 
for visual feedback.

Firing rate calculation and single-unit analyses. Single units were identified 
through offline data processing. For each block, raw voltage recordings at 
each channel were processed in a series of steps. First, the functional electrical 
stimulation artefact was removed using a 500 μV threshold and a 3.5 ms artefact 
removal time window. The removed window was replaced with an interpolated 
segment to retain temporal information. Then, the raw signal with the functional 
electrical stimulation artefact removed was processed with a 300–3,000 Hz 
bandpass filter. The filtered data were fed into an automated spike detection  
and sorting algorithm, wave_clus56, using the default optimization settings.  
A threshold was set to four times the standard deviation of the noise and used 
to detect spike locations. Wavelet decomposition was performed on the spikes 
to extract features, and a superparamagnetic clustering algorithm was used 
to cluster the spikes into groups representative of individual single units. The 
superparamagnetic clustering algorithm was used to eliminate spikes that were 
considered noise to ensure only single units were analysed. As spike sorting was 
not performed before data collection, there was no way to match single units 
across days. Additionally, the number of single units detected at a given channel 
fluctuated between days, possibly due to micro-movement of the array or brain 
state changes. For this reason, all single units detected at a given channel were 
considered the same and pooled at the single-channel level as MU activity in 
subsequent analysis.

Offline neural decoding. Sensory feedback congruency and subjective ratings 
(Q1 and Q2) were decoded offline both from LFPs and from MU activity. For 
LFP analysis, the signal amplitude for each channel was downsampled to 500 Hz, 
band-passed between 0.1 and 12 Hz with an infinite impulse response filter and 
smoothed using sliding averaging windows of 250 ms. Following calculation  
of MU spike times (see above), MU firing rate was estimated at 20 Hz over a  
250 ms sliding window.

We fed each channel’s signal amplitude (LFP) or firing rate (MU) as 
predictors to a penalized linear decoder based on ridge regressions57. A separate 
model was trained to decode congruency (Q1) or confidence (Q2) on  
each signal time point, with a sampling rate of 20 and 500 Hz for MU and LFPs, 
respectively. Decoding performance was evaluated by computing and averaging 
Cohen’s κ (logistic regression, Q1) or R2 (linear regression, Q2) values over 
ten independent tenfold cross-validation runs. The regression was performed 
through the ‘train’ function of the R ‘caret’ package58. To evaluate the statistical 
significance of the decoding, we generated a null decoding performance 
distribution by applying the same decoding methods on the data after randomly 
shuffling Q1 and Q2 values. A total of 1,000 permutations were generated, and 
the decoding performance was evaluated for each of them. Then, a t value was 
assigned to every time point in both real and permuted data by comparing its 
decoding performance with the null distribution of permuted data. Finally, 
the t values were used to define significant decoding time windows based on a 
cluster-based permutation test on each epoch’s largest cluster59. After checking 
that the t value threshold used to define clusters was not significantly affecting 
the results, its value was set at 2.

Computation of distance between neural activity patterns. Since the neural 
activity recorded by the microelectrode array can change significantly between 
experimental sessions (that is, days of recording) spanned by our analysis, 
Euclidean distances per each pair of conditions were computed separately within 
each day of recording and then averaged to obtain the final results. Confidence 
intervals were obtained through a bootstrapping technique, again applied within 
sessions. For each session and condition, we extracted n random trials with 
replacement, where n is the number of trials for that condition/session, and the 
final Euclidean distance was obtained by averaging across sessions as described 
above. The procedure was repeated 100 times, and 95% confidence intervals 
were obtained as 1.96 times the standard deviation of the surrogated distribution 
obtained as explained here.

Multidimensional scaling. To graphically represent the spatio-temporal patterns 
of neural activity, we performed a multidimensional scaling (MATLAB function 
‘mds’) on correlation distances computed between spatio-temporal patterns of 
neural activity. Also, in this case, to avoid including sources of variances due to 

experiment 2, non-informative visual feedback was given (the feedback hand 
remained in a neutral, rest position).

Feedback congruency. In half of the trials across experiments, the visual and/or  
somatosensory feedback was covertly manipulated to be incongruent with the 
cue. In incongruent trials, when the participant correctly activated the classifier 
associated with the cue, he received feedback opposite to the cue (that is, hand 
closed for ‘hand open’, thumb extension for ‘thumb flex’, etc.). In congruent trials, 
he received feedback consistent with the cue (that is, hand open for ‘hand open’, 
thumb flexion for ‘thumb flex’, etc.).

Agency assessment. All experimental trials began with a verbal cue (‘hand 
open’, ‘hand closed’, ‘thumb extend’ or ‘thumb flex’), followed by a 2 s delay, then 
a verbal cue (‘go’). During the next 4 s, the participant was given feedback based 
on classifier activation levels, and then was told to ‘stop’. Over the next 5–5.5 s, 
the participant reported whether he felt in control of the movement (‘yes’ or ‘no’) 
and his degree of certainty (0–100). The next trial began at the end of this 5–5.5 s 
interval. There were 32 trials per block in experiments 1 and 2 and 26 trials per 
block in experiment 3.

Trial selection and time-locking. To ensure that the participant was successfully 
activating the classifier for the cued movement and that the signal could be 
meaningfully time-locked to movement onset, we applied the following selection 
criteria on the trials: We considered it as a correct imagined movement when the 
participant was able to maintain the classifier of the cued movement above the 
threshold for at least 600 ms (six classifier output bins). We retained trials in which 
at least one correct movement happened between the ‘go’ cue and 1.5 s before the 
‘stop’ cue. Epochs were then constructed by time-locking every trial with respect 
to the onset of such imagined movements. In case several correct movements 
occurred during the same trial, the time-locking was relative to the first movement. 
Furthermore, we excluded 128 trials from the session in which the participant 
systematically reported problems with controlling the BMI system and absent 
subjective agency. Globally, we retained 846 out of 1,408 trials (60%).

Note that, since we define the onset as the beginning of the 100 ms bin of 
neural activity that is fed to the classifier and around 50 ms are required to compute 
the output, the corresponding feedback is received about 150 ms after the onset  
of the imagined movement.

Experiment 1: agency assessment with virtual hand feedback and 
non-informative NMES. Twelve blocks of 32 trials were collected on post-implant 
days 953 (four blocks), 988 (four blocks), and 1,035 (four blocks). In each trial, 
the participant received a verbal cue to perform a movement (‘hand open’, ‘hand 
closed’, ‘thumb extend’ or ‘thumb flex’). When a classifier crossed threshold 
during the 4 s feedback window, feedback was given by showing movement of 
the virtual hand and by activating non-informative NMES (radial wrist electrode 
activation that did not elicit movement, did not vary from trial to trial, and that the 
participant could feel and distinguish from real NMES feedback). Feedback on half 
of the trials was randomly selected to be incongruent with the cue. His subjective 
sense of agency and level of certainty were recorded for each trial.

A total of 384 trials were collected across three days. After removing trials 
where the cued action could not be correctly decoded and the session on 
post-implant day 1,035 (Trial selection and time-locking), 83 congruent and 72 
incongruent trials remained for behavioural and neural activity analysis.

Experiment 2: agency assessment with NMES feedback and non-informative 
virtual hand. Twelve blocks of 32 trials were collected on post-implant days 941 
(five blocks), 960 (three blocks) and 967 (four blocks). In each trial, the participant 
received a verbal cue to perform a movement (‘hand open’, ‘hand closed’, ‘thumb 
extend’ or ‘thumb flex’). When a classifier crossed threshold during the 4 s feedback 
window, feedback was given by activating movement of the participant’s hand and 
wrist through NMES and showing non-informative visual feedback (non-moving 
hand). The participant could not see his own hand/wrist, but could distinguish his 
hand state based on what the stimulation patterns felt like to him. Feedback on half 
of the trials was randomly selected to be incongruent with the cue. His subjective 
sense of agency and level of certainty were recorded for each trial.

A total of 384 trials were collected across three days. After removing trials 
where the participant did not respond correctly by activating the classifier 
associated with the cue, 154 congruent and 89 incongruent trials remained for 
behavioural and neural activity analysis.

Experiment 3: agency assessment with virtual hand and NMES feedback. 
Twenty blocks of 32 trials were collected on post-implant days 993 (three blocks), 
990 (five blocks), 1,007 (four blocks), 1,014 (three blocks) and 1,021 (five blocks). 
In each trial, the participant received a verbal cue to perform a movement (‘hand 
open’, ‘hand closed’, ‘thumb extend’ or ‘thumb flex’). When a classifier crossed 
threshold during the 4 s feedback window, feedback was given by activating 
movement of the participant’s hand and wrist through NMES and showing 
movement of the virtual hand. The participant could not see his own hand/wrist, 
but could distinguish his hand state based on what the stimulation patterns felt 

NATuRE HuMAN BEHAVIOuR | VOL 6 | APRIL 2022 | 565–578 | www.nature.com/nathumbehav576

http://www.nature.com/nathumbehav


ArticlesNaTure HumaN BeHavIour

 19. Hatsopoulos, N. G. & Suminski, A. J. Sensing with the motor cortex. Neuron 
72, 477–487 (2011).

 20. Hatsopoulos, N. G., Xu, Q. & Amit, Y. Encoding of movement fragments in 
the motor cortex. J. Neurosci. 27, 5105–5114 (2007).

 21. Suminski, A. J., Tkach, D. C., Fagg, A. H. & Hatsopoulos, N. G. Incorporating 
feedback from multiple sensory modalities enhances brain–machine interface 
control. J. Neurosci. 30, 16777–16787 (2010).

 22. Tkach, D., Reimer, J. & Hatsopoulos, N. G. Congruent activity during action 
and action observation in motor cortex. J. Neurosci. 27, 13241–13250 (2007).

 23. Churchland, M. M. & Shenoy, K. V. Temporal complexity and heterogeneity 
of single-neuron activity in premotor and motor cortex. J. Neurophysiol. 97, 
4235–4257 (2007).

 24. Schwartz, A. B. Movement: how the brain communicates with the world. Cell 
164, 1122–1135 (2016).

 25. O’Doherty, J. E. et al. Active tactile exploration using a brain–machine–brain 
interface. Nature 479, 228–231 (2011).

 26. Stepniewska, I., Preuss, T. M. & Kaas, J. H. Architectionis, somatotopic 
organization, and ipsilateral cortical connections of the primary motor area 
(M1) of owl monkeys. J. Comp. Neurol. 330, 238–271 (1993).

 27. Eickhoff, S. B. et al. Anatomical and functional connectivity of 
cytoarchitectonic areas within the human parietal operculum. J. Neurosci. 30, 
6409–6421 (2010).

 28. Fetz, E. E., Finocchio, D. V., Baker, M. A. & Soso, M. J. Sensory and motor 
responses of precentral cortex cells during comparable passive and active 
joint movements. J. Neurophysiol. 43, 1070–1089 (1980).

 29. Hochberg, L. R. et al. Neuronal ensemble control of prosthetic devices by a 
human with tetraplegia. Nature 442, 164–171 (2006).

 30. Tabot, G. A. et al. Restoring the sense of touch with a prosthetic hand through 
a brain interface. Proc. Natl Acad. Sci. USA 110, 18279–18284 (2013).

 31. Flesher, S. N. et al. Intracortical microstimulation of human somatosensory 
cortex. Sci. Transl. Med. 8, 361ra141 (2016).

 32. Bensmaia, S. J. & Miller, L. E. Restoring sensorimotor function through 
intracortical interfaces: progress and looming challenges. Nat. Rev. Neurosci. 
15, 313–325 (2014).

 33. Desmurget, M. et al. Movement intention after parietal cortex stimulation in 
humans. Science 324, 811–813 (2009).

 34. Farrer, C. & Frith, C. D. Experiencing oneself vs another person as being the 
cause of an action: the neural correlates of the experience of agency. 
Neuroimage 15, 596–603 (2002).

 35. Chambon, V., Wenke, D., Fleming, S. M., Prinz, W. & Haggard, P.  
An online neural substrate for sense of agency. Cereb. Cortex 23,  
1031–1037 (2013).

 36. Fried, I., Mukamel, R. & Kreiman, G. Internally generated preactivation of 
single neurons in human medial frontal cortex predicts volition. Neuron 69, 
548–562 (2011).

 37. Fornia, L. et al. Direct electrical stimulation of the premotor  
cortex shuts down awareness of voluntary actions. Nat. Commun. 11,  
1–11 (2020).

 38. Sperduti, M., Delaveau, P., Fossati, P. & Nadel, J. Different brain structures 
related to self- and external-agency attribution: a brief review and 
meta-analysis. Brain Struct. Funct. 216, 151–157 (2011).

 39. Blanke, O., Slater, M. & Serino, A. Behavioral, neural, and computational 
principles of bodily self-consciousness. Neuron 88, 145–166 (2015).

 40. Makin, T. R., Holmes, N. P. & Ehrsson, H. H. On the other hand: dummy 
hands and peripersonal space. Behav. Brain Res. 191, 1–10 (2008).

 41. Rognini, G. et al. Multisensory bionic limb to achieve prosthesis embodiment 
and reduce distorted phantom limb perceptions. J. Neurol. Neurosurg. 
Psychiatry 90, 833–836 (2019).

 42. Sanchez-Vives, M. V., Spanlang, B., Frisoli, A., Bergamasco, M. & Slater, M. 
Virtual hand illusion induced by visuomotor correlations. PLoS ONE 5, 
e10381 (2010).

 43. Yuste, R. et al. Four ethical priorities for neurotechnologies and AI. Nature 
551, 159–163 (2017).

 44. Fried, I., Haggard, P., He, B. J. & Schurger, A. Volition and action in the 
human brain: processes, pathologies, and reasons. J. Neurosci. 37, 
10842–10847 (2017).

 45. Goering, S. et al. Recommendations for responsible development and 
application of neurotechnologies. Neuroethics 29, 1–22 (2021).

 46. Blanke, O. & Aspell, J. E. Brain technologies raise unprecedented ethical 
challenges. Nature 458, 703 (2009).

 47. Wang, W. et al. Specific brain morphometric changes in spinal cord injury: a 
voxel-based meta-analysis of white and gray matter volume. J. Neurotrauma 
36, 2348–2357 (2019).

 48. Melo, M. C., Macedo, D. R. & Soares, A. B. Divergent findings in brain 
reorganization after spinal cord injury: a review. J. Neuroimag. 30,  
410–427 (2020).

 49. Freund, P. et al. MRI investigation of the sensorimotor cortex and the 
corticospinal tract after acute spinal cord injury: a prospective longitudinal 
study. Lancet Neurol. 12, 873–881 (2013).

the change in signal between experimental sessions, the procedure was run within 
experimental sessions. To obtain correlation distances between trials, we started 
by concatenating, for each trial, data from all channels and time points within 
the selected temporal window. Then, we computed the correlation coefficient 
of the resulting vector with the equivalent vector from all other trials within the 
same session and subtracted the obtained values from 1 to obtain values of the 
correlation distance. The first two dimensions of the multidimensional scaling 
were then aligned across sessions via the Procrustes analysis (MATLAB function 
‘Procrustes’), using the means by conditions (combinations of movement/
somatosensory feedback) in the first session as a reference.

Reporting summary. Further information on research design is available in 
the Nature Research Reporting Summary linked to this article.
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For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection  
The BMI system consisted of a Neuroport data acquisition system (Blackrock Micro, Salt Lake, Utah), custom signal processing and decoding 
algorithms (Battelle), and a NeuroLife Neuromuscular Stimulation System (Battelle).  
 
A custom code written in Matlab (version 2012a) was used to record the data during the experiments. 

Data analysis Spike extraction, sorting, and data preprocessing were performed in Matlab (version 2014b). R version 3.3.2 was used for offline decoding of 
neural data, permutation analyses of behavioral data and multiple regressions. Other behavioral analyses were performed in JASP (0.14.1).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Behavioral data and processed data necessary to reproduce the figures in the main text can be found in the OSF repository accessible at:  
https://osf.io/7rma5/?view_only=9928bd8e32a748828f7ecfdbeb1f8baa. 
Neural data and code used in this study can be made available to qualified individuals for collaboration provided that a written agreement is executed in advance 
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between Battelle Memorial Institute and the requester’s affiliated institution. Such inquiries or requests should be directed to the Lead Contact: 
ganzer@battelle.org. 

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size It is a single-subject study. 

Data exclusions Trial Selection and Time-locking 
To ensure that the participant is succesfully activating the classifier for the cued movement, and the signal can be meaningfully time-locked to 
movement onset, we applied the following selection criteria on the trials. We consider it as a correct imagined movement when the 
participant is able to maintain the classifier of the cued movement above the threshold for at least 600 ms (6 classifier output bins). We retain 
trials in which at least one correct movement happens between the GO cue and 1.5 seconds before the STOP cue. Epochs are then 
constructed by time-locking every trial with respect to the onset of such imagined movements. In case several correct movements occurred 
during the same trial, the time-locking is relative to the first movement. Furthermore, we excluded 128 trials from the session on which the 
participant systematically reported problems with controlling the BMI system and absent subjective agency. Globally, we retained 846 out of 
1408 trials (60%). 

Replication Validated statistical tests were used to assure data replicability. No direct replication attempt was made.

Randomization NA

Blinding The participant was either completely blinded to the experimental conditions or given brief instructions to complete the necessary actions.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics It is a single-subject study.

Recruitment The participant was recruited because he is the unique individual using this kind of brain machine interface

Ethics oversight Approval for this study was obtained from the US Food and Drug Administration (Investigational Device Exemption) and The 
Ohio State University Medical Center Institutional Review Board (Columbus, Ohio). The study met institutional requirements 
for the conduct of human subjects and was registered on the http://www.ClinicalTrials.gov website (identifier: 
NCT01997125). The participant referenced in this work completed an informed consent process before commencement of 
the study. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.


	Sense of agency for intracortical brain–machine interfaces
	Results
	Sensory feedback determines agency and confidence. 
	Cortical signatures of sensory feedback in M1. 
	Cortical signatures of the sense of agency in M1. 
	Somatosensory feedback modulates BMI classifier accuracy. 
	Agency covaries with BMI classifier. 

	Discussion
	Limitations of the study. 

	Methods
	Participant
	Cortical signal acquisition and classification
	Classifier training and neurally controlled hand movements
	Neuromuscular electrical stimulation
	VR animation
	Feedback congruency
	Agency assessment
	Trial selection and time-locking
	Experiment 1: agency assessment with virtual hand feedback and non-informative NMES
	Experiment 2: agency assessment with NMES feedback and non-informative virtual hand
	Experiment 3: agency assessment with virtual hand and NMES feedback
	Firing rate calculation and single-unit analyses
	Offline neural decoding
	Computation of distance between neural activity patterns
	Multidimensional scaling
	Reporting summary

	Acknowledgements
	Fig. 1 Experimental setup.
	Fig. 2 Agency judgements and confidence depends on sensory feedback.
	Fig. 3 M1 activity depends on sensory feedback.
	Fig. 4 Sense of agency in M1.
	Fig. 5 Performance of BMI classifier as a function of sensory feedback and sense of agency.
	Fig. 6 Somatosensory feedback changes firing rates of M1 neurons.




