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Brain–computer interface (BCI) neurotechnology has the 
potential to reduce disability associated with paralysis by 
translating neural activity into control of assistive devices1–9. 
Surveys of potential end-users have identified key BCI sys-
tem features10–14, including high accuracy, minimal daily setup, 
rapid response times, and multifunctionality. These perfor-
mance characteristics are primarily influenced by the BCI’s 
neural decoding algorithm1,15, which is trained to associate 
neural activation patterns with intended user actions. Here, 
we introduce a new deep neural network16 decoding framework 
for BCI systems enabling discrete movements that addresses 
these four key performance characteristics. Using intracorti-
cal data from a participant with tetraplegia, we provide offline 
results demonstrating that our decoder is highly accurate, 
sustains this performance beyond a year without explicit daily 
retraining by combining it with an unsupervised updating pro-
cedure3,17–20, responds faster than competing methods8, and 
can increase functionality with minimal retraining by using 
a technique known as transfer learning21. We then show that 
our participant can use the decoder in real-time to reanimate 
his paralyzed forearm with functional electrical stimulation 
(FES), enabling accurate manipulation of three objects from 
the grasp and release test (GRT)22. These results demonstrate 
that deep neural network decoders can advance the clinical 
translation of BCI technology.

The study participant was a 27-year-old male with C5 AIS 
A tetraplegia due to spinal cord injury. He was implanted with a 
96-channel microelectrode array in the hand and arm area of his left 
primary motor cortex8,23,24. We trained and evaluated BCI decoders 
using 80 sessions of intracortical data collected from the participant 
over 865 d. During each session, the participant performed two 
104-s blocks of the four-movement task (Methods), in which he was 
cued to imagine a series of four distinct hand movements (index 
extension, index flexion, wrist extension, wrist flexion) in a random 
order (Fig. 1a,b).

We calibrated the initial neural network (NN) model using 40 
sessions (80 blocks) from the training period (Fig. 1c). As the model 
was not updated at all over the subsequent test period, we call it the 
fixed NN (fNN). Two additional NN models were created from the 
fNN using updating procedures that used the first block of each of 
the 40 sessions in the testing period in different ways (Fig. 1c): super-
vised updating (sNN) or unsupervised updating (uNN) (Fig. 1d  

and Methods). In this context, supervised refers to the algorithm 
using explicit training labels (i.e., known timing and type of intended 
action) as opposed to unsupervised, in which the timing and type 
of intended action were unknown, as occurs with general BCI use. 
For comparison, the first block of each of the 40 sessions in the 
testing period was also used to calibrate benchmark BCI decoders 
that were retrained daily: a support vector machine (SVM) decoder  
(Fig. 1d)8,23,25,26, a linear discriminant analysis (LDA) decoder17, and a 
naive Bayes decoder18. The SVM performed better than the LDA or 
naive Bayes decoder (Supplementary Fig. 1) and was thus used for fur-
ther comparisons with NN performance. Neural features used by all 
models were the mean wavelet power (MWP) values calculated from 
raw voltage for each of the 96 channels over 100-ms bins8,23,24 (Fig. 1e, 
Supplementary Fig. 2, and Methods). Performance for each of the 
NN and comparison models was initially evaluated using accuracy 
(percentage of correctly predicted time-bins) on the second block  
of data from each session during the testing period (Methods). 
Figure 1e shows data processing steps and NN model architecture.

To quantify improved BCI accuracy with the NN, we compared 
the performance of the supervised, daily-updated sNN against a 
daily-retrained SVM. Figure 2a,b shows that the sNN was more 
accurate than the daily-retrained SVM for all sessions, with a mean 
difference of 6.35 ±​ 2.47% (mean ±​ s.d.; P =​ 3.69 ×​ 20–8, V =​ 820, 
n =​ 40 paired two-sided Wilcoxon signed rank test; n is the sam-
ple size and V is the test statistic for the paired Wilcoxon test). In 
addition, for 37 out of 40 sessions, the sNN accuracy was >​90%, 
indicating consistently high performance in accordance with user 
expectations13. In contrast, the SVM accuracy was >​90% for only 
12 sessions.

To demonstrate that a BCI with a neural network decoder 
(NN-BCI) could sustain high accuracy for over a year without the 
need of supervised updating (thus reducing daily setup time), we 
evaluated performance of the fNN. Figure 2c shows that the fNN 
was more accurate than the daily-retrained SVM for 36 out of 40 test 
sessions, with a mean difference of 4.56. ±​ 3.06% (P =​ 1.90 ×​ 10–7, 
V =​ 798, n =​ 40; Fig. 2c, inset). In addition, the fNN accuracy was >​
90% for 32 sessions. Not only was the fNN able to sustain high accu-
racy-decoding performance for over a year (381 d) without being 
recalibrated, it significantly outperformed all fixed versions of the 
benchmark decoders we tested (Supplementary Fig. 1). However, 
the fNN accuracy was lower than that of the sNN (Fig. 2d), which 
received supervised updates throughout the testing period. In fact, 
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Fig. 1 | Experimental set-up, data processing steps, and NN architecture. a, The participant performing the four-movement task. The movement is displayed 
on the computer screen by a virtual hand and he imagines performing the movement, without receiving visual or movement feedback. b, Structure of one block 
of the four-movement task. Each of the four movements (index flexion and extension and wrist flexion and extension) are repeated four times for a duration 
of 2.5 s in a random order, with 4 s of rest following each cue. c, Layout of how the historical four-movement task data is used for the training and testing of the 
decoding methods. Each session consists of two blocks of the task, and the first 40 sessions (80 blocks, 2.31 h of data) are used to train the NN. The subsequent 
40 sessions are the testing period, during which the first block can be used for updating and retraining a decoding model, whereas the second block is always 
held out to test model accuracy. The training period spanned a total of 484 d, the testing period spanned 373 d, and the time from the last training day to the 
last testing day was 381 d. d, How each of the four decoding methods use the data for a given test session. The fNN is trained on the 80 blocks from the training 
period and not updated. The sNN and uNN both start as the fNN but are updated using the data from the first block of a test session in either a supervised 
or an unsupervised manner (Methods). The SVM decoder is retrained every test session using only the data from the first block of that session. e, Schematic 
of the data processing and NN model architecture. Raw voltage recordings from each of the 96 channels were first processed in 100-ms segments. Wavelet 
decomposition was applied to the data, and the coefficients from scales 3, 4, and 5 were averaged across time and then across scales in order to produce a 
single value, MWP, for each channel for each 100-ms time bin. The NN then takes as input a sliding 900-ms window of the MWP for each of the 96 channels  
(a 96 ×​ 9 array) in order to predict the intended movement for the current time point. The NN consists of a long short-term memory (LSTM) layer, a convolutional 
layer with twenty-five 80 ×​ 9 filters, a dense layer with 50 units, and an output layer that produces a vector of five probability values (four movements and rest). 
The movement with the highest probability value (i.e., the argmax of the predicted movement probabilities) is the predicted movement for that 100-ms time bin.
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the performance of all fixed decoders declined over time relative 
to their daily-retrained versions (Supplementary Fig. 3). This dif-
ference was likely due to the fixed decoders not being able to adapt 
to changes in the underlying neural data patterns across time17,19,27. 
This observation motivated the use of our unsupervised updat-
ing method, which allows the decoder to adapt without requiring  
the user to dedicate time for collection of additional supervised  
calibration data.

To show that a NN-BCI could maximize and maintain accuracy 
by leveraging data generated as the participant used the system, 
we evaluated uNN performance. In contrast to the sNN, in which 
explicit training with knowledge of the type and timing of the 

movement cues was required for updating, the uNN inferred these 
aspects of movements from the neural data (Methods). Thus, the 
unsupervised updating can be performed with data collected during 
general use, whereas the supervised updating requires collection of 
calibration data that contains the type and timing of intended move-
ments, requiring undesirable setup time. Figure 2d shows that unsu-
pervised updating boosted uNN accuracy above fNN accuracy, with 
a mean difference of 1.56 ±​ 1.36% (P =​ 9.76 ×​ 10–8, V =​ 807, n =​ 40) 
and a mean improvement in accuracy of 6.12 ±​ 2.68% over the daily-
retrained SVM (confusion matrices for the sNN, fNN, uNN, and 
SVM are shown in Supplementary Fig. 4). The Fig. 2d inset shows 
that the performance gap between the fNN and the uNN grew as 
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Fig. 2 | Year-long high-fidelity decoding of movement intentions with NNs. a, sNN accuracy for each of the 40 test sessions plotted as a function of the 
corresponding SVM accuracy. Marginal histograms of the model accuracies are shown in the upper and right-most portions of the plot. b, Histogram of 
the paired differences in accuracy (sNN – SVM) for each of the test sessions. The vertical dashed line denotes zero difference in accuracy. c, fNN (cyan 
circles) and SVM (dark blue triangles) accuracies are plotted as a function of the number of days since the end of the NN training period. The lines denote 
a LOESS smoothing curve to visualize the data trends. The inset shows a boxplot of the accuracies of the two models, where the thick horizontal line 
denotes the median, the lower and upper hinges correspond to the first and third quartiles, the whiskers extend from the hinge to the most extreme value 
no further than 1.5 ×​ interquartile range from the hinge, and the dots beyond the whiskers are outliers. The stars denote that the difference in accuracy is 
significant (P =​ 1.9 ×​ 10–7, paired Wilcoxon signed rank test; n =​ 40, V =​ 798). d, The accuracies of the NNs with either supervised (sNN, green diamonds) 
or unsupervised (uNN, orange squares) updating are plotted along with the fNN accuracy (cyan circles). The inset plots the paired differences in accuracy 
(uNN – fNN) for each session during the test period. All models had their worst performance on post-training period days 238 and 266; these dates 
corresponded to times when the participant had undiagnosed infections
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the testing period progressed. That is, the performance benefits of 
unsupervised updating increased over time.

To better understand how gains in NN accuracy relate to system 
usability, we determined how accuracy impacted NN-BCI failure rate 
and speed. Failure rate was defined as the percentage of cues for which 
the algorithm failed to predict and sustain the correct movement  

for at least 1 s. Figure 3a shows that the higher accuracy of the uNN 
translated to a lower failure rate (5.67%) than that of the daily-
retrained SVM (22.17%) across all movements (success rate =​ 100% 
– the failure rate; calculated for the uNN and SVM for each ses-
sion during the testing period and shown in Supplementary Fig. 5). 
BCI speed was determined by the response time, the lag between 

Model
Failure rate (missed cues)

Index extension Index flexion Wrist extension Wrist flexion All

SVM 25.66% (39) 31.61% (49) 14.97% (22) 15.75% (23) 22.17% (133)

uNN 6.58% (10) 6.45% (10) 6.12% (9) 3.42% (5) 5.67% (34)
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Fig. 3 | Translating gains in NN accuracy to system usability and increasing the number of available functions with transfer learning. a, The failure 
rate (percentage of cues for which the model failed to predict the correct cue and sustain it for at least 1 s) is shown for the individual movements for the 
SVM and uNN decoders. Note that there are 600 total cued movements, as the first cued movement is ignored in each session because the uNN starts 
predicting during the middle of cue because of the time-lagged input. Thus, the number of cues for each movement is: 152 for index extension, 155 for 
index flexion, 147 for wrist extension, and 146 for wrist flexion. b, Histogram of the time it takes for the model responses, measured as the time from 
cue onset to the decoder predicting the correct cue and sustaining it for at least 1 s (SVM: dark blue; uNN: orange). The hashed bars show the time it 
takes from cue onset for the virtual hand to complete the cued movement animation. Response times were constrained to be multiples of 0.1 s since the 
decoders were updated in 0.1 s segments. c, Histogram of the paired differences in response times (SVM – uNN) for those movements for which both 
models responded correctly (index extension: n =​ 112; index flexion: n =​ 104; wrist extension: n =​ 120; wrist flexion: n =​ 123). The red vertical line denotes 
zero difference in response time. d, Accuracy following an increased number of available movements using transfer learning and additional historical data. 
Data from the four- and two-movement tasks are combined to create a new six-movement task (Supplementary Fig. 6 and Methods). The accuracy of 
the utNN models trained using either one, three, or five sessions’ worth of data (orange squares n =​ 39, gray diamonds n =​ 37, and cyan circles n =​ 35) and 
SVM (dark blue triangles n =​ 40) are plotted as a function of the number of days since the end of the initial NN training period. The number of sessions 
translates to 6.7 min (one), 20.2 min (three), or 33.7 min (five) of total data collection time. The inset shows a boxplot of the accuracies of the four models, 
where the thick horizontal line denotes the median, the lower and upper hinges correspond to the first and third quartiles, the whiskers extend from the 
hinge to the most extreme value no further than 1.5 ×​ interquartile range from the hinge, and the dots beyond the whiskers are outliers
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cue onset and initiation of the correct decoder activation that is 
sustained for at least 1 s. Figure 3b shows that the median uNN 
response time (0.9 s) was faster than the median SVM response 
time (1.1 s) across all movements. By comparing paired differences 
between uNN and SVM response time for correctly decoded trials, 
we found (Fig. 3c) that the uNN responded significantly faster than 
the SVM for all movements, with a median improvement of 0.2 s 
(all P <​ 1 ×​ 10–10; index extension: n =​ 112, V =​ 4,138.5; index flex-
ion: n =​ 104, V =​ 3,683.5; wrist extension: n =​ 120, V =​ 5,313; wrist 
flexion: n =​ 123, V =​ 6,702.5). Note that the 0.9-s median response 
time for the uNN is not related to the size of the time-lagged input 
to the model (Supplementary Fig. 5). Therefore, the 6.12% increase 
in accuracy of the uNN relative to the SVM translated into a poten-
tially clinically significant 200-ms improvement in response time 
and a 16.5% improvement in failure rate.

To show that functionality of a NN-BCI could be extended with 
minimal impact on setup and training time, we used transfer learn-
ing21 to increase the number of movements decoded by the fNN 
from four to six. In transfer learning, the learned parameters of 
a NN model initially trained on one task are repurposed (trans-
ferred) to a new related task. By leveraging the parameters learned 
for the initial task, the transfer model can be calibrated using far 
less data than the initial model. The implication for a NN-based 
BCI system is the potential to increase the number of movements 
with minimal calibration required for the additional movements. 
Using this approach, new NN decoders were built for six move-
ments, adding hand open and hand close to the four movements 
in the original fNN. The new models used only one, three, or five 
blocks of supervised data for the new movements from the training 
period of the transfer model (Supplementary Fig. 6 and Methods). 
Unsupervised updating was also applied to these models during the 
transfer testing period, and we refer to them as utNNs. Adding one 
session (6.7 min of calibration data) to learn new movements using 
the transfer model yielded an average accuracy of 88.89 ±​ 4.18% 
(n =​ 39) across the transfer testing period. Using three or five train-
ing blocks resulted in average accuracy of 90.37 ±​ 4.32% (n =​ 37) or 
90.97 ±​ 4.27% (n =​ 35), respectively. In comparison, SVM accuracy 
was 85.44 ±​ 4.14% (n =​ 40). Across the 1-year testing period (Fig. 3d),  
accuracy of the utNN with only a single session of additional train-
ing data was significantly better than the SVM, with an average 
difference of 3.34 ±​ 2.70% (P =​ 1.01 ×​ 10–7, V =​ 601, n =​ 39) demon-
strating that transfer learning can be used to efficiently add addi-
tional functionality to existing NN decoders.

To demonstrate that offline uNN training could generalize to 
real-time control of functional hand grasps by a BCI user with 
paralysis, we performed an experiment in which the participant 
used a transferred version of the uNN decoder to control FES of his 
paralyzed forearm (Methods). That is, we used transfer learning on 
the uNN model previously trained on the offline four-movement 
task to create a new decoder that predicted hand open and the three 
grips (peg, fork, and can from the standardized GRT22) shown in 
Fig. 4a,b. Supervised updating (~ 7.27 min over three blocks) was 
used to transfer the uNN to these new movements. The GRT was 
then administered by a board-certified physiatrist for these three 
objects (Fig. 4c–e; Supplementary Videos 1 and 2 show the par-
ticipant manipulating GRT objects using this decoder to control 
FES of his paralyzed forearm, and Supplementary Video 3 shows a 
sample GRT run). Without the system, the participant was unable 
to manipulate the can or fork (median of zero transfers in 30 s 
for both) and transferred the peg using an adaptive grip (median 
of five transfers in 30 s). With the system, the participant consis-
tently performed four can transfers, five peg transfers, and six fork 
manipulations in each of three trials. He had no drops or failures 
in 45 attempts. Average times to transfer the can (which required 
sequential activation of hand open and grip) and depress the fork 
were: 6.39 ±​ 0.84 s (n =​ 12) and 3.62 ±​ 0.85 s (n =​ 18), respectively. 

Peg transfer times were not significantly different from his adaptive-
grip baseline (P =​ 0.29, W =​ 93, nSystem off =​ 16, nSystem on =​ 15; unpaired 
Wilcoxon test where W is the test statistic).

Optimization of BCI-enabled neuroprosthetics to reflect end-
user design priorities and performance expectations can expedite 
clinical translation of investigational systems, facilitate testing 
against clinically relevant design standards, and maximize the like-
lihood of acceptance and adoption by end-users. We focused on 
BCI system priorities identified by potential end-users with paraly-
sis, specifically accuracy, set-up time and sustainable performance, 
response time, and the number of available functions12–14, all of 
which pose considerable barriers to daily use of BCIs as assistive 
devices. As suggested by Ajiboye et al.9, Bouton et al.8, and others, 
we have shown that improving the neural decoder component of the 
BCI system is a critical step in meeting performance expectations of 
BCI users for home use.

The technical advances of our results include: (i) using deep 
NNs to create robust neural decoders that sustain high fidelity BCI 
control for more than a year without retraining; (ii) introducing a 
new updating procedure that can improve performance using data 
obtained through regular system use; (iii) extension of functional-
ity through transfer learning using minimal additional data; and 
(iv) introducing a decoding framework that simultaneously address 
these four competing aspects of BCI performance (accuracy, speed, 
longevity, and multifunctionality). In addition, we provide a clini-
cal demonstration that a decoder calibrated using historical data of 
imagined hand movements with no feedback can be successfully 
used in real-time to control FES-evoked grasp function for object 
manipulation.

The high degree of variability in neural activity both within and 
across recording days3,27–29 is a considerable barrier to creating accu-
rate and robust neural decoders for BCI systems. Failure to account 
for this variability causes a steady decline in decoder performance 
over time19,27,30. Mitigating this decline by recalibrating the decoder 
before every use8,19,27,30 leads to an undesirable increase in setup 
time. Several approaches have been proposed to avoid daily recali-
bration while also making neural decoders more robust to day-to-
day variability3,17,18,31–34. One set of approaches is aimed at using data 
collected during practical use in order to continuously adapt the 
parameters of the decoder to changing recording conditions3,17,18,32. 
Studies using these methods have shown sustained performance for 
at most a year3,7,17. However, these studies used linear decoding meth-
ods (for example, naive Bayes or LDA classifiers), which can be less 
accurate than more complex nonlinear methods25,35. Alternatively, 
Sussillo et al.33 demonstrated that recurrent NNs calibrated on a 
large amount of historical primate data (up to 50 sessions consisting 
of ~ 500 trials) outperformed a simpler daily recalibrated decoder 
for computer cursor control and sustained performance for up to 
59 d without recalibration. However, their decoder relied solely on 
historical data to learn a static mapping between neural activity and 
intended action, similar to our fNN. Like our fNN, their decoder 
appeared to decline in performance over time, albeit at a slow pace.

Our innovative approach, which achieved 93.78 ±​ 4.39% accu-
racy and missed only 5.67% of cues across 381 d, combines aspects 
of these NN and adaptive updating methodologies. Importantly, 
our updating procedure requires no intervention from the user, and 
makes no assumptions about the task other than it can be formulated 
as a discrete classification problem. In contrast, a daily-recalibrated 
SVM decoder built from the same data8,23,24,26 had an average accu-
racy of 87.66 ±​ 3.85% and missed 22.17% of the total cues. Thus, 
the uNN simultaneously approached the 90% user benchmark for 
accuracy13, eliminated daily decoder setup12, and enabled naturalis-
tic control of objects during a standardized, functional transfer task 
(transfer time range: 3.62–6.39 s). Using a different BCI system with 
an implanted FES device, the participant from Ajiboye et al.9 had 
a 61% success rate with 3 movements and a mean movement time 
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of 8.6 s. However, the multiple methodological differences between 
our studies (for example, different levels of participant spinal cord 
injury, different FES solutions, different experimental conditions, a 
different number of recording electrodes, different decoder outputs, 
and different performance metrics; Methods) makes direct compar-
ison between our results difficult.

Although the median uNN response time (0.9 s) was faster 
than that of the SVM (1.1 s) for the same training set, it is not clear 
what response times are acceptable to users12. BCI experiments 
with able-bodied users suggest a goal of under 750 ms, as sense of 
agency—the feeling of being in control of the BCI system and an 
important factor in user acceptance—decreases as response time 
increases beyond that point36. Multifunctionality is also a priority of 
potential BCI users, though the optimal number of functions may 
be specific to the BCI application. In particular, BCI systems con-
trolling robotic arms may need to independently control 10 degrees 
of freedom37, whereas others require discrimination of two states, 

like ‘Yes–No’ communication devices for patients in a minimally 
conscious state38 or grip neuroprosthetics with only hand-open or 
hand-closed states39. We have demonstrated that decoders based on 
NNs may be superior to other implementations because new func-
tions can be easily added after the initial decoder calibration using 
transfer learning21. Crucially, we show that this secondary update to 
add more movements requires a minimal amount of additional data.

Finally, we demonstrated that insights gained from offline data 
and analyses can carry over to a realistic online BCI scenario with 
minimal additional data collection. Specifically, uNN parameters 
trained on imagined movements (without visual or movement feed-
back) were transferrable to real-time control of evoked movements 
with visual and movement feedback, to manipulate functional 
objects. It is important to note that the same transfer strategy can 
generalize beyond FES to control of a robotic arm, computer cur-
sors, and communication or other assistive devices by adjusting the 
architecture and optimization of the NN (see ref. 33 for an example).
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Fig. 4 | Real-time control of functional electrical stimulation. a, The output of the NN decoder (i.e., the movement with highest predicted probability) was 
used to control FES of the participant’s paralyzed forearm. The participant wore a flexible cuff consisting of 130 electrodes which can be seen in c. b, The 
can, fork, and peg objects from the GRT along with the associated grasps enabled by the FES system. The objects have dimensions 9.1 ×​ 5.4 (diameter) 
cm for can, 7.6 ×​ 0.6 (diameter) cm for peg, and 14.5 ×​ 1.2 (diameter) cm for fork. c, Example of the cued movement for can. Prior to the cue, the object is 
placed in front of the participant. He is then cued to grip the object and move it to an elevated platform. The object is then removed before the next object 
being place in front of him. d, Example cued block in which the participant was in control of the FES system. The figure shows the output of the NN decoder 
(bottom) along with the MWP features for each of the 96 channels. The cued movement times are shown as solid color blocks (top). MWP values were 
capped at 2.5 for better visualization. A video recording of this block is provided in Supplementary Video 1. e, The participant’s performance in terms of the 
number of successful transfers (left) and the transfer times for each object (transfers: n =​ 3 for all objects for both system on and off; transfer times: n =​ 16 
for peg, n =​ 0 for fork, and n =​ 1 for can with the system off and n =​ 15 for peg, n =​ 18 for fork, and n =​ 12 for can with the system on) over three runs of the 
GRT. During each run, he was required to grasp, transfer the object to an elevated platform, and release it as many times as possible in a 30 second test 
window. System off is the participant’s baseline performance without the use of the BCI-FES system. In the boxplots, the thick horizontal line denotes the 
median, the lower and upper hinges correspond to the first and third quartiles, the whiskers extend from the hinge to the most extreme value no further 
than 1.5 ×​ interquartile range from the hinge, and the dots beyond the whiskers are outliers
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Limitations of this report include: single-participant intracortical 
data, a training period of relatively long duration (40 sessions across 
484 d), the fact that data used for unsupervised updating were col-
lected under controlled lab conditions rather than during spontane-
ous use, and reliance on offline training and analysis for the base 
fNN. Supplementary Fig. 7 and Supplementary Tables 1 and 2 show 
that substantially fewer training sessions still yield viable decod-
ers, and Supplementary Fig. 8 indicates that training the uNN on 
an equivalent amount of data collected from fewer sessions (shorter 
timespan) is also possible. However, more work is needed to quan-
tify the minimum number and duration of training sessions needed 
for stable NN-BCIs. Similarly, because of the limited number of elec-
trodes and the small intracortical volume (16 mm3) being sampled 
by the implanted array, there is a practical limit to the number of 
new functions that can be added through transfer learning, but more 
work is needed to characterize the limits of this method. To facilitate 
translation for clinical usage, future work should explore the gen-
eralizability of results to other subjects, the practicality and success 
of performing unsupervised updating using data from unstructured 
tasks, and the relationship between movements added through 
transfer learning and accuracy as well as further demonstration of 
robust and accurate online decoding in the clinical setting.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of data availability and asso-
ciated accession codes are available at https://doi.org/10.1038/
s41591-018-0171-y
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Methods
Study design and participant details. This study (ClinicalTrials.gov: 
NCT01997125) was approved by the US Food and Drug Administration 
(Investigational Device Exemption) and the Ohio State University Wexner Medical 
Center Institutional Review Board (OSUWMC, Columbus, Ohio). The study 
conformed to institutional requirements for the conduct of human subjects. All 
experiments were performed in accordance with the relevant guidelines and 
regulations set by OSUWMC. The participant referenced in this work provided 
permission for photographs and videos and completed an informed consent 
process before commencement of the study.

The study participant is a man with C5 AIS A tetraplegia from traumatic SCI 
due to a diving accident that occurred 4 years before his enrollment in this study. 
He has no motor function below the level of C6. A Utah microelectrode array 
(Blackrock Microsystems, Inc., Salt Lake, Utah) was implanted in the hand area of 
his left primary motor cortex on 22 April 2014, as previously described8.

In most of the experiments described in this manuscript, the participant 
viewed a computer monitor on which two animated hands were displayed  
(Fig. 1a). Cues to imagine specific movements were given by a small hand in the 
lower left corner of the screen. During rest periods, the cue hand remained in a 
neutral position. A larger hand centered on the screen provided real-time feedback 
from the BCI system during experiments in which the participant had volitional 
control and was given visual feedback. Otherwise, the feedback hand remained 
in a neutral resting position. The exceptions to this are when the participant was 
performing ‘free-time’ and GRT blocks described below. In these cases, the cue was 
provided by placing the object in front of the subject, and only the feedback hand 
driven by the participant using the decoder was displayed on the screen.

Datasets. The initial training dataset was based on a four-movement task in which 
the participant was cued to imagine either wrist flexion, wrist extension, index-
finger flexion, or index-finger extension on each trial. Movement cues (2.5 s each) 
were shuffled and interleaved with rest periods (4 s each), as in Fig. 1b. One block 
consisted of four repetitions of each movement, for a total of 16 movements and 16 
rest periods across 104 s. During each session, two consecutive blocks of data were 
collected with a brief rest period in between. In total, the participant performed 
this task 128 times from 18 July 18 2014 (60 d after he first used the BCI system) to 
9 June 2017. Analyses in this paper were restricted to datasets collected between  
26 January 2015 and 9 June 2017 in order to allow for participant recovery time 
from the surgery and adjustment to the overall BCI system set-up. This provided 
80 sessions of data, representing 640 repetitions of each of the four movements 
across 16,640 s (~ 4.62 h). The first 40-session ‘training period’ spanned 484 d 
between 26 January 2015 and 24 May 2016. The subsequent 40-session ‘testing 
period’ spanned 373 d between 1 June 2016 and 9 June 2017 (Fig. 1c). The time 
from the last training day to the last testing day was 381 d.

The additional dataset used to train and test for transfer learning was based 
on a two-movement task in which the participant was cued to imagine opening 
or closing his hand on each trial. Movement cues (2.5 s each) were shuffled and 
interleaved with rest cues (6.5 s each). One block consisted of five repetitions 
of each movement, for a total of ten movement cues and ten rest periods across 
90 s. Two blocks of data were collected at each session. In total, the participant 
performed this task 146 times from 19 May 2014 (the first day he used the BCI 
system) to 9 June 2017. Analyses in this paper were restricted to datasets collected 
between 1 June 2016 and 9 June 2017.

In both experiments, the participant received no feedback, limiting his ability 
to adapt to specific decoders and making these datasets ideal for testing different 
decoding algorithms.

Data acquisition and preprocessing. Data was collected at 30 kHz from the Utah 
microelectrode array with 1.5-mm electrodes using the Neuroport neural data 
acquisition (Blackrock Microsystems). A 0.3-Hz first-order high-pass and a 7.5 kHz 
third-order low-pass Butterworth analog hardware filters were applied to the data. 
The data were then transferred to a PC running Matlab R2014b and Python 2.7 for 
further processing.

The 30-kHz data were reduced using a wavelet decomposition with a ‘db4’ 
mother wavelet and 11 wavelet scales. Features for decoding were created by 
extracting the wavelet coefficients for scales 3, 4 and 5, spanning a frequency 
band from 234–1,875 Hz. Every 100 ms, the coefficients were averaged over 
time, providing 96 ×​ 3 =​ 288 features for each 100-ms time bin. Next, these 
averaged wavelet coefficients for each channel were individually standardized 
by subtracting out the mean and dividing by the s.d. of each feature over a single 
block of data. During the training period, each block of data was standardized 
to itself, while during the testing period, the mean and s.d. of the first block was 
used to standardize both the first and second blocks. Once the 288 features were 
standardized, the three averaged and standardized coefficients for each channel 
were then averaged together to create a single feature, MWP, for each channel, 
resulting in 96 features for each 100-ms time bin. We used MWP features here 
as previous work from our group has demonstrated the success of their use in 
decoding movement intent8,23,40,41. Lastly, the MWP features for each channel were 
smoothed by replacing the current time point with the average of the most recent 
10 time points (i.e., a 1-s boxcar filter). We have detailed the use of MWP in other 

work8,23,40,41 and believe them to be excellent features for classification, but the NN 
models we use here could also be fit using other common features like threshold 
crossings, spikes, or local field potential (LFP).

To account for reaction and system lag times, the timing of the cues was shifted 
by 800 ms when training and calculating model accuracy. The cues were left 
unshifted when calculating the model failure rates and response times.

Decoding methods and training procedures. The training period data  
(40 sessions over the first year) were used to calibrate the fNN decoder, which acts 
as the starting model for all of the NN models. For each session during the testing 
period (40 sessions over the second year), the first block of data was used for 
updating two variants of the fNN, as well as calibrating a support vector machine 
(SVM) decoder unique to that day (Fig. 1d). The two variants of the fNN differed 
in how they were updated using the testing period data: either in a supervised 
manner, sNN, or in an unsupervised manner, uNN (see next section for more 
details on these different updating procedures).

The fNN was constructed and trained with Python 2.7 using the package Keras 
(https://github.com/keras-team/keras) with TensorFlow42 as the backend. The 
model architecture is shown in Fig. 1e. It takes as input a 96 ×​ 9-dimensional array 
corresponding to 900 ms of MWP data. That is, the model uses a sliding window 
of 900 ms to predict the imagined movement for the current time point. The first 
layer in the network is a long short-term memory (LSTM)43 layer containing 80 
hidden units. The LSTM is a variant of a recurrent NN which is widely used in the 
processing of temporal (or sequential) data16. The hidden units in the LSTM layer 
use the hard-sigmoid activation function whereas the output of the layer uses a 
hyperbolic tangent activation. The LSTM layer outputs an 80 ×​ 9-dimensional array 
that is passed to a 1-dimensional convolutional layer that contains 25 filters that 
are 80 ×​ 9-dimensional. The convolution is performed in the time domain only. 
The activation function for the output of the convolution layer is a leaky-rectified 
linear unit with an α​ parameter of 0.01. The output of this layer is then flattened to 
a 225-dimensional vector which is then passed to a fully connected (dense) layer 
with 50 units using the rectified linear unit activation function. The output from 
this layer is passed to a final dense layer containing five units corresponding to the 
four movements plus rest. The units in this final layer use the softmax activation 
function scaling the outputs to correspond to probabilities. The unit with  
highest probability is the predicted movement for that particular time-point, i.e., 
the argmax.

The fNN was trained using random batches of size 800 using the optimizer 
RMSprop44 and the categorical cross-entropy loss function. All network parameters 
were randomly initialized at the start of the training using the Keras defaults. 
During each training epoch, each layer in the model underwent a random 50% 
dropout of the connections weights in order to prevent overfitting to the training 
data45 (Fig. 1e). The training lasted for 100 epochs and took a total of 493.55 s 
to complete using an NVIDIA Quadro K5000 GPU on a Linux system running 
Centos 7.3. The two other NN models, sNN and uNN, both begin life as the fNN 
but differ in how they utilize data from the testing period for additional refinement.

The SVM classifier implementation closely follows that of refs. 8,23. Specifically, 
the SVM uses nonlinear Gaussian radial basis functions kernels with a γ​ parameter 
value of 0.005, was trained using the MWP features extracted from the first block 
of data for a given session, and uses the MWP features at the current time point 
only in order to predict the intended movement. The SVM was trained using the 
sci-kit learn toolbox (http://scikit-learn.org/stable/) in Python 2.7 using the default 
parameter values, except for the value of the γ​ that we based on our previous 
experience using the SVM.

Supervised and unsupervised updating of the neural network model. The sNN 
involves updating the original fNN model in a supervised manner using explicit 
knowledge of the type and timing of movement cues during the first block of data 
from each session during the testing period. Supervised updating of the NN model 
occurred as follows: on the first session of the testing period, the MWP features 
and cues were extracted from the first block of data. This data was combined with 
the training period data to create a larger training dataset for the model. Next, the 
weights of the NN model were initialized to the fNN described in the previous 
section. This new model was then updated by running the same fitting procedure 
on the new training dataset for 30 epochs. The performance of this model was 
assessed using the second block of data. This process was repeated for each session 
during the testing period, with new data added to the updated training dataset 
every session, and the same fitting procedure applied to models initialized with 
weights from the previous session. The supervised aspect of this procedure refers 
to the fact that the actual cues used in the experiment were used in updating the 
model. This daily update was done to control for any effects of time and focus 
solely on optimizing the accuracy component of decoder performance.

The unsupervised updating procedure differed from the supervised procedure 
in the manner in which labels of cues were obtained. In the supervised case, the 
known experimental cues were used to label the MWP data from the first block. 
In the unsupervised case, the current model was first used to predict the cues for 
the first block of data for each session. That is, as data passes through the fNN, 
the predicted movement from the fNN model can be used to provide tentative 
labels for the data, creating additional training data that can be combined with the 
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historical data and used to update the model. The MWP data and the predicted 
cues were then combined with the training period data as described above. In 
addition, the fitting procedure was slightly different for the two types of updating: 
in the unsupervised case, the loss function was changed to the ‘hard’ boot strapping 
modification of the cross-entropy function first introduced by Reed et al.46. Briefly, 
this loss function allowed for the explicit inclusion of ‘noisy’ labels by modifying 
the regression target in the cross-entropy function to include a convex combination 
of the noisy label and the model’s currently predicted label. Next, as in the previous 
paragraph, the fitting procedure with the new loss function was run for 30 epochs 
to update the model, and the process was repeated for each session during the 
testing period. Thus, the unsupervised aspect of this procedure refers to the fact 
that the labels for the data used in the updating were generated by the model itself 
and did not require the user to participate in a cued recalibration task.

This idea of unsupervised updating is related to the notion of semi-supervised 
self-training, which has been used to increase the accuracy of a naive Bayes 
object detection model20, and has been used by Jarosiewicz et al.17 for BCI using 
retrospectively supervised linear discriminant analysis (LDA) decoder calibration 
for point-and-click BCI systems. However, these models used the predicted labels 
as if they were the true label only if the prediction is made with sufficiently high 
confidence (to avoid contaminating the model with incorrectly labeled data). 
Additionally, a more recent updating method was proposed for cursor control in 
a BCI for virtual typing3 that relies on retrospectively inferring the user’s intended 
trajectory based on the character they selected on a virtual keyboard. In contrast, 
our unsupervised updating method leverages all of the tentatively labeled data 
directly in the updating procedure by weighting the influence of the tentatively 
labeled data proportional to the models’ confidence in the predicted label46 and is a 
general method that can be applied to any discrete classification decoding problem.

Performance measures. The primary metric we use to measure decoder 
performance is the percentage of 100-ms time bins in a test block in which the 
decoder correctly predicted the cued movement or rest. This metric is the standard 
accuracy metric for statistical classification algorithms. Note that the accuracy of the 
no-information decoder (the decoder that simply predicts rest since it is the most 
prevalent movement) is 61.54% on the four-movement task, as the rest cues appear 
in 640 time bins per block and the total number of bins in a block is 1,040. A locally 
weighted polynomial regression (LOESS) curve47 with a smoothing parameter 
equal to 0.9 were added to accuracy plots to help better visualize the trend. We 
additionally introduce a failure rate metric, which was computed by tallying the 
percentage of times the model failed to predict the correct cue and maintain it for 
at least 1 s (10 time bins). The model response times were estimated by finding 
the first time point after cue onset where the correct movement was predicted and 
also sustained for at least 10 consecutive time bins (1 s). Note that for both the 
response time and failure rate, the first cued movement is ignored for both models 
because the uNN starts predicting during the middle of cue due to the time lagged 
input. From the failure rate metric, we also calculate a success rate by subtracting 
the failure rate from 100%. The failure and success rate metrics are meant to 
approximate an observer scoring each movement cue as a binary success or failure.

Transfer learning and fine-tuning of the NN model to increase the number of 
movements. Transfer learning and fine-tuning are methods of taking information 
from previously trained NN models and applying it to a new or refined task21. To 
create the dataset for this demonstration, experimental blocks collected on the 
same day from the four-movement and two-movement tasks were concatenated 
and treated as a new six-movement task (Supplementary Fig. 6).

Next, we initialized the transferred NN (tNN), a new NN model with 
analogous structure to the fNN except for the output layer, which had seven units 
(the previously used four movements, rest, and two new movements: hand open 
and hand close) instead of the previous five. The tNN was initialized using weights 
from the fNN for all layers except the output layer; weights for the tNN’s output 
layer were initialized randomly. In the first stage of training, all the weights were 
held fixed, except the output layer weights that were calibrated using the categorical 
cross-entropy loss function with a batch size of 400 and were run for 30 epochs. 
This repurposing of the output layer of a NN model is referred to as transfer 
learning21. Once transfer learning was complete, we performed additional fine-
tuning of the tNN: weights for the entire model were updated for an additional 20 
epochs, resulting in a fully trained model for the combined six-movement task. 
Three separate versions of the utNN were trained by using both blocks of data of 
the combined six-movement task from either one, three, or five sessions (6.7 min, 
20.2 min, or 33.7 min of total data, respectively).

During the transfer model testing period, the models were updated using 
the unsupervised procedure previously described, combining the six-movement 
training data with the predictions on the first block of the testing period 
(Supplementary Fig. 6). Each of the updated models was tested on the second block 
of data for the given session. For each subsequent session in the testing period, the 
predictions on the first block were added to the training set for the remainder of 
the testing period.

Real-time control of functional electrical stimulation experiment: grasp and 
release test. In these experiments, the decoder controlled FES of the participant’s 

paralyzed forearm. The FES system consists of a multichannel stimulator and 
a flexible cuff consisting of up to 130 electrodes that is wrapped around the 
participant’s arm. Offline, electrode stimulation patterns corresponding to the four 
movements in this task were calibrated using knowledge of forearm physiology and 
trial and error. The participant used the system to perform four movements (three 
functional grips and hand open) to manipulate three different objects (peg, fork, 
and can) from the standardized grasp and release test (GRT)22, as shown in Fig. 4b.  
The decoder was used to predict the participant’s intended movement every 
100 ms, and the predictions were used to select the appropriate stimulation pattern, 
which was then actuated by the FES system to carry out the desired movement 
(Fig. 4a). The stimulation pulse rate was 50 Hz and the pulse width was 500 µ​s.  
Artifacts induced by the electrical stimulation were detected in the raw data by 
using threshold crossings of 500 µ​V occurring simultaneously on at least 4 of 
12 randomly selected channels8. A 2.5-ms window of data around each detected 
artifact was then removed, and adjacent data segments were rejoined. For further 
details, please see refs 8,23,24.

In the first five blocks of the GRT experiment, the participant was cued to 
manipulate each of the three objects (can, fork, and peg). Prior to each cue, 
the object was placed in front of the participant. During the cue duration, the 
participant would grasp the cued object in the starting area and transfer it to an 
elevated platform using a combination of the system and his residual shoulder/
elbow movement. In the case of the fork grip, the participant would grip the 
custom fork and apply downward pressure to cause cylindrical displacement. 
Additionally, during cued hand open, the participant would open his hand, which 
was necessary to position his hand to grip the can. Each movement cue had a 
random duration between 3 and 4 s and was bounded by rest cues with random 
durations between 5 and 6 s. The cues were presented in a random order, and each 
movement was repeated four times for a total of 128–160 s per block.

In the first block of the experiment, the subject received scripted stimulation 
corresponding to the cued movement. The data from this block was used to 
transfer and fine-tune the uNN model that had been updated up until 9 June 2017 
in order to allow it to predict the new movements for this task (the three functional 
grips and hand open). That is, we initialized a new NN model with analogous 
structure to the uNN except for the output layer, whose units now corresponds to 
the three functional grips, hand extension, and rest. The new NN was initialized 
using weights from all layers of the uNN except the output layer; weights for the 
new NN’s output layer were initialized randomly. In the first stage of training, all 
the weights were held fixed, except the output layer weights, which were calibrated 
using the categorical cross-entropy loss function with a batch size of 400 and run 
for 15 epochs. Once transfer learning was complete, we performed additional fine-
tuning of the NN: weights for the entire model were updated for an additional 10 
epochs. The transferred uNN model was then used to predict the cues and control 
the stimulation on the subsequent blocks.

The NN model was then used to control the FES system for the subsequent 
experimental blocks. For each block, the participant was instructed to grasp, 
transfer, and release the object as quickly as possible as soon as the cue began. 
After both of blocks 2 and 3, each model was updated in a supervised manner for 
30 epochs. Thus, the model was calibrated using a total of three supervised blocks 
(147.5 s, 142.7 s, and 146.1 s; ~ 7.27 min total). Supervised updating was used, 
as this was a completely new task to which the model had not been previously 
exposed. Unsupervised updating was then performed after additional cued blocks 
4 and 5 using the hard boot strapping modification of the cross-entropy function 
from Reed et al.46 described in the Methods; this occurred for 15 epochs for each 
model. The output from block 5 is shown in Fig. 4d.

Next, the participant performed two ‘free-time’ blocks (blocks 6 and 7), in 
which he had to manipulate objects that were randomly placed in front of him. He 
was not cued on the computer screen during these blocks. The model was updated 
in an unsupervised manner following each of these blocks. The MWP data in the 
first block was standardized to itself, whereas the MWP data for all subsequent 
blocks were standardized using the data from the previous block.

The last three blocks of the experiment were the three trials of the GRT. Each 
block consisted of three runs (one for each object). A board-certified physiatrist 
administered the GRT in order to assess the functional grasps. For each object, 
the participant was required to grasp, transfer the object to an elevated platform, 
and release it as many times as possible in a 30-s test period. The participant was 
given 30 s of rest between each test period. Dropping the object (or insufficient 
cylinder displacement for the fork) was counted as a failure. For the fork, successful 
‘transfers’ were counted if the spring-loaded piston was sufficiently displaced, 
indicated by a line on the piston. Two separate movements were required for the 
can transfer. The participant had to perform a hand open to position his hand in 
an optimal location around the can and then initiate the can grasp. The GRT was 
performed three times for each object. The NN model decoder and standardization 
were held fixed (not updated) across all three replicates. The participant’s baseline 
performance on the GRT without using the BCI-FES system was collected on 24 
March 2016 and 25 March 2016.

Comparison to existing FES solutions. As pointed out in Ajemian et al.48, the 
invasiveness of collecting intracortical data necessitates justification that the 
invasive solution is better than noninvasive alternatives. The most comparable 
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system that does not require an invasive neurosurgery is the FreeHand system49,50. 
There are at least three relevant differences between the current system and the 
myoelectrically controlled FreeHand system. First, as members of the FreeHand 
team point out9, the implanted microelectrode array BCI approach evokes FES-
enabled movements more directly and intuitively than switches or myoelectric 
control. This decreases cognitive load and facilitates a more natural integration of 
the neuroprosthetic with end-user’s body mechanics—he or she focuses directly 
on the grasp they want to make, rather than timing the surrogate movement (for 
example, shoulder shrug) with an evoked grasp. This is likely why members of the 
FreeHand team have recently been exploring BCI control of FES using multiple 
invasive Utah arrays9.

A second difference between the FreeHand system and the one described here 
is the manner in which BCIs have been integrated with the FES component. Early 
integration of the FreeHand system under BCI, rather than myoelectric, control 
used either EEG or EcoG. The EEG solution (see ref. 51 for an example) linked 
movement-related brain potentials (event-related desynchronization or event-
related synchronization) at Cz and C4 through an LDA classifier with phases of 
a single type of grip (lateral key). In this way, the authors demonstrated a limited 
ability to manipulate one of six objects (paperweight) in the GRT task. In our 
work, in large part because of the richer signal from the implanted array, we have 
demonstrated simultaneous control of a large number of varied movements8,23,26,40,52 
as well as continuous graded control of muscle contractions24.

The third difference between our approach and the FreeHand approach is 
type of FES used. The FreeHand system is implanted in muscle, whereas ours is 
transcutaneous and applied via wearable sleeve. These are different FES solutions 
that differentially address competing expectations and needs of end-users. We 
believe the decoding paradigm we propose here could be adapted to control the 
FreeHand FES system.

Statistical tests. Two-tailed paired Wilcoxon signed rank tests were performed for 
all between-model comparisons of accuracy and response times. An unpaired two-
tailed Wilcoxon signed rank test was used to compare the transfer times for peg in 
the GRT experiment. All tests were performed in the R programming language.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary.

Code availability. Code used in this study can be made available to qualified 
individuals for collaboration provided that a written agreement is executed 
in advance between Battelle Memorial Institute and the requester’s affiliated 
institution. Such inquiries or requests should be directed to D.A.F.

Data availability
Data used in this study can be made available to qualified individuals for collaboration 
provided that a written agreement is executed in advance between Battelle Memorial 
Institute and the requester’s affiliated institution. Such inquiries or requests should be 
directed to G.S.
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Life Sciences Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form is intended for publication with all accepted life 
science papers and provides structure for consistency and transparency in reporting. Every life science submission will use this form; some list 
items might not apply to an individual manuscript, but all fields must be completed for clarity. 

For further information on the points included in this form, see Reporting Life Sciences Research. For further information on Nature Research 
policies, including our data availability policy, see Authors & Referees and the Editorial Policy Checklist.

Please do not complete any field with "not applicable" or n/a.  Refer to the help text for what text to use if an item is not relevant to your study. 
For final submission: please carefully check your responses for accuracy; you will not be able to make changes later.

    Experimental design
1.   Sample size

Describe how sample size was determined. We have a single participant enrolled in our clinical study who has undergone the surgical 
procedure to have a microelectrode array implanted in his motor cortex.

2.   Data exclusions

Describe any data exclusions. No data were excluded in the analyses presented in this paper.  The analyses included all 
experimental datasets collected between January 26, 2015 and June 9, 2017.  Data collection 
details are described in depth in the Methods section of the manuscript.

3.   Replication

Describe the measures taken to verify the reproducibility 
of the experimental findings.

Data is collected from the participant in a standardized format every session.  Additionally, 
the parameters of the trained fixed neural network and support vector machine models were 
saved so that their outputs can be exactly reproduced.  The output of the neural network 
models that use supervised or unsupervised updating might vary slightly owing to 
stochasticity in the updating procedures (i.e., we do not save the updated models for each 
individual session).  However, given the parameters of the fixed neural network as the 
starting point, the outputs of the updated models will be similar to the results we show in the 
manuscript.  

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

A single participant is enrolled in this clinical study, thus preventing the ability to randomize.

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

Blinding was not used in this study due to the single participant and single treatment design. 
Given the invasive nature of the system, the participant is usually well aware of small changes 
to the system, preventing us from making changes without his knowledge. In all of the 
experiments demonstrating the performance of the neural network, the validity of the results 
are not biased by the participants knowledge of the decoder type.

Note: all in vivo studies must report how sample size was determined and whether blinding and randomization were used.
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6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

Test values indicating whether an effect is present 
Provide confidence intervals or give results of significance tests (e.g. P values) as exact values whenever appropriate and with effect sizes noted.

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars in all relevant figure captions (with explicit mention of central tendency and variation)

See the web collection on statistics for biologists for further resources and guidance.

   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

A PC running MatlabR2014b was used for data collection and custom scripts were used to 
convert the raw voltage recordings from the microelectrode array into the mean wavelet 
power features described in out Methods section.  Analysis and model fitting were done on a 
PC using Python 2.7.  All neural network models were trained and tested within python using 
the Keras package (v1.2.2) with Tensorflow (v1.0.1) as the backend.  The support vector 
machine classifier was also constructed in python using the sci-kit learn package (v0.17). 
Python scripts were created to load the data, construct and train the classifier models (using 
Keras), and test the output.  Scripts in R using the ggplot package were used to plot the 
results used in the figures.  

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a third party.

Materials used in this study (data and/or code) can be made available to qualified individuals 
for collaboration provided that a written agreement is executed in advance between Battelle 
Memorial Institute and the requester’s affiliated institution. Such inquiries or requests should 
be directed to G.S.

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

No antibodies were used in this study.

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. No eukaryotic cell lines were used.

b.  Describe the method of cell line authentication used. No eukaryotic cell lines were used.

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

No eukaryotic cell lines were used.

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

No eukaryotic cell lines were used.
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    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide all relevant details on animals and/or 
animal-derived materials used in the study.

No animals were used in this study.

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

The participant is a 27-year-old male with stable, non-spastic tetraplegia from a cervical 
spinal cord injury that he suffered at the age of 19. His injury was complete, with an overall 
neurologic level of C5 AIS A with zone of partial preservation to C6. A Utah microelectrode 
array (Blackrock Microsystems, Inc., Salt Lake, Utah) was implanted in the hand area of his 
left primary motor cortex on April 22, 2014.
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