
Contents lists available at ScienceDirect

Neuropsychologia

journal homepage: www.elsevier.com/locate/neuropsychologia

A single trial analysis of EEG in recognition memory: Tracking the neural
correlates of memory strength

Roger Ratcliff⁎, Per B. Sederberg, Troy A. Smith, Russ Childers

The Ohio State University, United States

A R T I C L E I N F O

Keywords:
Diffusion model
Recognition memory
EEG
Single-trial regressor
Reaction time

A B S T R A C T

Recent work in perceptual decision-making has shown that although two distinct neural components
differentiate experimental conditions (e.g., did you see a face or a car), only one tracked the evidence guiding
the decision process. In the memory literature, there is a distinction between a fronto-central evoked potential
measured with EEG beginning at 350 ms that seems to track familiarity and a late parietal evoked potential that
peaks at 600 ms that tracks recollection. Here, we applied single-trial regressor analysis (similar to multivariate
pattern analysis, MVPA) and diffusion decision modeling to EEG and behavioral data from two recognition
memory experiments to test whether these two components contribute to the recognition decision process. The
regressor analysis only involved whether an item was studied or not and did not involve any use of the
behavioral data. Only late EEG activity distinguishes studied from not studied items that peaks at about 600 ms
following each test item onset predicted the diffusion model drift rate derived from the behavioral choice and
reaction times (but only for studied items). When drift rate was made a linear function of the trial-level
regressor values, the estimate for studied items was different than zero. This showed that the later EEG activity
indexed the trial-to-trial variability in drift rate for studied items. Our results provide strong evidence that only a
single EEG component reflects evidence being used in the recegnition decision process.

1. Introduction

In studies examining the neural processes used in decision making,
it is often assumed that if a neural response varies as a function of some
perceptual or memory variable, it tracks the evidence being used to
make a decision. However, this view does not discriminate between
early representations of stimuli and evidence extracted from them that
is used in the decision process.

In previous work, single-trial analysis of EEG in concert with
diffusion decision modeling of choice and reaction time (RT) has been
applied to examine the neural components of perceptual decisions. In a
face/car discrimination task, Philiastides et al. (2006) used a single-
trial analysis, also known as multivariate pattern analysis (e.g.,
Blankertz et al., 2011; Pereira et al., 2009) that weighted signals from
an array of electrodes to produce a single component value that
represented how car-like or face-like was the EEG signal. Two
components were obtained that tracked stimulus quality, one at around
180 ms and one at around 380 ms (by component, it is meant a
significant single trial regressor signal as in Philiastides et al., 2006).
Ratcliff et al. (2009) sorted the behavioral data for each condition into
halves based solely on the EEG component value to which they fit the

diffusion model. Drift rate (quality of evidence used in the decision
process) differed for the two halves, but only for the late component.
This suggested that the later component tracks information being used
in the decision, but the earlier component represents the quality of the
stimulus encoding from which decision-relevant information is ex-
tracted.

In the behavioral memory literature, there is considerable debate
about whether one or two processes are involved in making recognition
decisions. The single-process view, reflected in most computational
modeling approaches, proposes that recognition decisions are made
based on either a single source of information or on information from
multiple sources that is combined into a single continuous measure of
memory strength (Cohen et al., 2008; Dennis and Humphreys, 2001;
Dunn, 2004; Gillund and Shiffrin, 1984; Hintzman, 1984; Shiffrin and
Steyvers, 1997; Starns and Ratcliff, 2008, Starns et al., 2012; Wixted,
2007). By contrast, the dual-process view proposes that there are two
distinct decision processes that are used in recognition– a sense of
familiarity that is a continuous variable and an all-or-none recollection
component based on details about the encoding event (Rotello et al.,
2004; Yonelinas, 1994, 1997; see also Buchler et al., 2008).

Key evidence for the dual process view comes from studies
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examining event-related potential (ERP) components when subjects
are making recognition decisions (Rugg, 1995; Rugg and Curran,
2007). Specifically, it has been argued that a frontal component
occurring in the range of 300–500 ms after onset of a test item can
be identified with familiarity while a parietal component occurring in
the range of 400–600 ms after onset can be identified with recollection
(see Eichenbaum et al., 2007; Rugg and Yonelinas, 2003; but see Paller
et al., 2007).

In this article, we apply this single trial regressor and diffusion
modeling approach to data from a recognition memory task. This
allows us to determine whether these proposed neural correlates of the
memory processes guide the recognition decision.

2. Methods

We report the results of two recognition memory experiments, the
second experiment serving as an independent replication of the first
experiment, with a simplified design. The two experiments both used a
standard item recognition procedure in which a list of words is
presented followed by a test list. For every test word, subjects have to
decide whether it was studied or not. In many prior experiments,
response time and accuracy data are well-explained by the diffusion
decision model (Ratcliff et al., 2004, 2010, 2011). In Experiment 1 we
manipulated number of repetitions of study words and word frequency
of studied and new words and in Experiment 2 we manipulated
number of repetitions of study words. These manipulations were done
to provide constraints on modeling and to demonstrate that the
experiments provided standard results from this task.

2.1. Subjects

All subjects were recruited from the university community at The
Ohio State University and spoke and read English fluently. Subjects
provided written consent in accordance with requirements of the local
institutional review board and were paid $20 for their time.
Experiment 1 comprised twenty-five right-handed subjects (14 female)
between 18 and 38 years of age (M =21.6). Data from subjects for
whom there were excessive motion artifacts or recording noise (n =5)
or who failed to follow instructions (n =2) are not included in the
analyses. Experiment 2 comprised fourteen right-handed subjects,
however three were discarded due to experimental error, excessive
motion artifacts, and/or recording noise, leaving 11 subjects (3 female)
between 18 and 24 years of age (M =20.6).

2.2. Stimuli

Stimuli were drawn from the SUBTLEXUS database (Brysbaert and
New, 2009). A total of 549 high-frequency words (between 40 and 400
occurrences per million, M=122.31, SD=84.52) and 553 low-frequency
words (between 1 and 7 occurrences per million, M=1.44, SD =0.39)
formed the stimulus pool. All words in the pool had between 4 and 7
letters, and word length was equated across the frequencies (M=5.03
and 4.99, respectively).

2.3. Design

The first experiment used a 2 (Word Frequency: high vs. low) × 3
(Item Strength: strong vs. weak vs. new) factorial within-subject and
within-list design. Each subject studied and was tested on 13 lists of
words. Each study list was constructed by randomly selecting 9 words
of each frequency from the pool to be studied one time (the “weak”
condition) and 9 words of each frequency to be studied three times (the
“strong” condition). Thus, there were 36 unique words and 72 item
presentations in each study list, with the order of the presentations
pseudo-randomized such that there were no immediate repetitions of
the strong items. A matching test list consisting of all 36 studied words

along with a set of 36 matching lures was constructed for each study
list. The order of words on the test lists was randomized in 2 blocks
with the first 18 unique studied words tested in the first block and the
second 18 tested in the second block. This was done to ensure that the
end of list items were never tested immediately, thereby reducing the
probability of recency effects. After discounting the first list, which was
used for practice, this design yielded a total of 108 target trials and 108
lure trials for each experimental condition.

Experiment 2 had only the item strength manipulation, giving rise
to a 3 factorial (strong vs. weak vs. new), within-subject and within-list
design. Each study list was constructed from a pool excluding low-
frequency words, but without the word length restriction applied in
Experiment 1. Subjects studied and were tested on 11 lists, each
comprising 15 strong (presented three times), 15 weak (presented one
time), and two once-presented buffer words at the end of the list, giving
rise to 62 item presentations. Each study list had a matching test list,
where each of the 30 unique target words was presented in random
order along with 30 lure words. The two buffer target items, along with
two buffer lure items were tested at the start of the list to account for
recency effects. After discounting the first list, which was used for
practice, the design of Experiment 2 yielded 150 trials in each of the
strong, weak, and lure conditions.

2.4. Equipment

For Experiment 1, a desktop computer with a 17″ LCD display was
used to present the stimuli and collect subject responses. A custom
program written using the Python experiment programming library
(PyEPL; Geller et al., 2007) was used to generate the study lists for each
subject, control the timing of the tasks, and record subject responses.
For Experiment 2, a desktop computer with a 24″ LCD display, running
at 120 Hz was used to present the stimuli and collect subject responses.
A custom Python program written using the State Machine Interface
Library for Experiments (SMILE; https://github.com/compmem/
smile) generated the study lists, controlled the timing of the tasks,
and recorded subject responses.

For both experiments, scalp EEG data were sampled and recorded
reference-free at 1000 Hz using a DC-powered actiCHamp amplifier/
analog-to-digital converter connected to a desktop PC equipped with
PyCorder software (BrainProducts GmbH, Munich, Germany). Prior to
receiving instructions, each subject was fitted with an elastic cap
containing 64 active electrodes arrayed in an extended 10-20 layout.
Electrode impedances were reduced to less than 25 K ohms in
accordance with operating instructions for the actiCAP system
(BrainProducts GmbH, Munich, Germany).

2.5. Procedure

After informed consent was obtained, subjects were fitted with the
EEG cap, seated in front of a computer, and given instructions by the
experimenter. Subjects were told that they would be studying lists of
words and would be given a recognition memory test after each study
list. They were informed that some of the study words would be
repeated, but were not told that this was an experimental manipula-
tion. Subjects were also instructed to try to avoid thinking back to
previous words on the list during the study session. Subjects were then
given the first study and test list as a practice list. The experimenter
answered any questions and then started the experiment proper.

The precise timing of study and test item presentations was similar,
but not identical for the two experiments. In Experiment 1, prior to
each study list, an orientation cross was displayed in the center of the
screen for 2600–3000 ms. Then the list of words were displayed, one at
a time, in the center of the screen for 1600 ms followed by a blank
screen for 300–700 ms. Following the study list, an orientation cross
was displayed for 1000–1200 ms to signify the test was about to begin.
On each test trial, the probe word was displayed at the center of the
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screen and a prompt “Old or New? ” was displayed below it. Subjects
made an old judgment by pressing the “J” key on a standard keyboard
with the index finger of their right hand or a new judgment by pressing
the “K” key with the middle finger of their right hand. Once the subject
made a response, the prompt was removed from the screen. Subjects
were allowed up to 1800 ms to make a response, then the stimulus was
removed from the screen. Test trials were separated by a jittered inter-
trial interval of 400–800 ms.

In Experiment 2, prior to each study list an orientation cross was

displayed in the center of the screen for 2000 ms, followed by a 1000–
1400 ms blank pause before the words. The list of study words was
presented one at a time in the center of the screen for 1600 ms,
followed by a blank screen for 300–700 ms before the next word.
Following the study list, an instruction reminder was provided for
4000 ms to refresh the subject of their Old/New response mapping,
which was counterbalanced across subjects and did not remain on the
screen during the memory test (see below). After the response-
mapping reminder an orienting stimulus was presented at the center

Fig. 1. Panel A shows an illustration of the diffusion model. Panels B and C show quantile probability plots for “old” and “new” responses for Experiments 1 and 2 respectively. The o's
represent the experimental data and the x's joined by lines are the model predictions. The conditions are shown on the x axis in terms of proportions of responses (the orders can be
derived from Tables 1 and 2). Proportions on the right are for correct responses and proportions on the left for error responses. The RT quantiles are, in order from bottom to top, the .1,
.3, .5, .7, and .9 quantiles. Predictions were generated for each subject and then averaged over subjects. The data were averaged over subjects in the same way.
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of the screen for 4000 ms, followed by a 1000–1400 ms blank pause
before the test words. For each test word, the subject had as much time
as they would like to make a response and once a response was made,
the word was removed from the screen 500 ms later, followed by a
300–700 ms blank inter-trial interval before the next test word.

2.6. EEG data processing

All preprocessing was done using the Python Time Series Analysis
(ptsa) library (https:// github.com/compmem/ptsa). Voltage
measurements from each electrode were first re-referenced to the
average of the right and left mathematically-linked mastoid electrodes
at each time-point then high-pass filtered at 0.5 Hz. Eye-blinks and
minor motion artifacts were corrected using the wavelet-enhanced
independent components analysis algorithm (Castellanos and
Makarov, 2006). Following eye blink correction, the voltage data
from the test phase were segmented into events using a 1.25 s
window starting 0.25 s prior to the onset of each stimulus. Any epoch
that exhibited a kurtosis value greater than 5.0 or a voltage range
exceeding 100 micro volts was removed from the analysis. Event-
related potentials (ERPs) were calculated separately for each channel
and down-sampled to 100 Hz for subsequent analyses.

The eyeblink correction algorithm cleans eyeblinks from the EEG
signal quite well, but it does not remove artifacts due to horizontal eye-
movements. Given that we provided a response mapping cue to
participants throughout the testing period of Experiment 1, to ensure
that systematic eye-movements did not contaminate our old/new
classification we performed a within-subject counterbalancing.
Specifically, we doubled the number of trials used to train the logistic
regression classifier to discriminate old and new items, including first
the actual data and second the same event data with the neural activity
mirrored horizontally. Thus, the classifier would be unable to harness
any lateral differences in voltage to guide the old/new classification,
with the side-effect that only laterally symmetric signals will remain.
This side-effect is acceptable in the present application because the
standard evoked potentials of interest (the FN400 and late positive
component) fall primarily on the mid-line electrodes.

One of the primary motivations for Experiment 2 was to replicate
the results of the first experiment while significantly reducing the effect
of eye-movements. Here we did not provide a response-mapping
reminder during the test lists and we further counterbalanced the
response mapping across subjects. Thus, eye movements were mini-
mized and not systematic across participants and it was not necessary
to perform the within-subject counterbalancing we performed for the
first experiment.

3. Diffusion model

The diffusion model is a model of the decision process. The model is
fit to accuracy and response time (RT) distributions for correct and
error responses yielding measures of distinct components of processing
including estimates of the strength of evidence entering the decision
process, the amount of evidence necessary to make a decision, and the
duration of other components of processing (encoding, memory access,
and response output).

Fig. 1A illustrates the decision process: Evidence is accumulated
from a starting point z toward one of two criteria, or boundaries, a and
0. A response is initiated when a boundary is reached. RTs and
accuracy are naturally integrated by the model: RTs are determined
by the time it takes for accumulated evidence to reach one of the
boundaries plus nondecision time, and the choice is determined by
which boundary is reached..

The values of drift rate, the boundaries, and the nondecision
parameter are assumed to vary from trial to trial. This means that
subjects do not set identical parameter values from trial to trial, and the
assumption is required to fit the difference in RTs between correct and

error responses (e.g., Laming, 1968; Ratcliff, 1978). Across-trial
variability in drift rate is assumed to be normally distributed with
standard deviation η, across-trial variability in the starting point
(equivalent to across-trial variability in the boundary positions) is
assumed to be uniformly distributed with range sz, and across-trial
variability in the nondecision component is assumed to be uniformly
distributed with range st. These distributional assumptions are not
critical: if modestly different distributions are assumed, the predictions
of the model are similar (Ratcliff, 2013).

Across-trial variability in drift rate represents variability in stimulus
information across trials that come from the same condition. It is
exactly equivalent to variability in stimulus strength in signal detection
theory. In some diffusion-process models (Palmer et al., 2005; Shadlen
and Kiani, 2013; Usher and McClelland, 2001), it is argued that there is
no across trial variability in drift rate. Our analysis will test the
assumption that drift rate varies on a trial-by-trial basis and determine
whether the single-trial EEG component is related to trial-level changes
in drift rate.

4. Diffusion model fitting

For the chi-square method (Ratcliff and Childers, 2015; Ratcliff and
Tuerlinckx, 2002), the chi-square value is minimized using the
SIMPLEX minimization routine (Nelder and Mead, 1965), typically
with RTs divided into 5 quantiles. The data entered into the minimiza-
tion routine for each experimental condition are the .1, .3, .5, .7, .9
quantile RTs for correct and error responses and the corresponding
accuracy values. The quantile RTs and parameter values of the model
are used to generate the predicted cumulative probabilities of a
response by that quantile RT. Subtracting the cumulative probabilities
for each successive quantile from the next higher quantile gives the
proportion of responses between adjacent quantiles. For the chi-square
computation, these are the expected values, to be compared to the
observed proportions of responses between the quantiles (i.e., the
proportions between 0, .1, .3, .5, .7, .9, and 1.0 are .1, .2, .2, .2, .2, and
.1). These proportions are multiplied by the number of observations to
give the expected frequencies, and summing over (Observed-
Expected)2/Expected for all conditions gives a single chi-square value
to be minimized. The number of degrees of freedom are the number of
experimental conditions multiplied by 11 (12 bins between and outside
the quantiles for correct and error responses minus 1 because the total
probability sums to 1) minus the number of parameters.

For the maximum likelihood method (MLH method, Ratcliff and
Tuerlinckx, 2002), the predicted probability density, f(ti) for each RT,
ti, for each correct and error response is computed and the product
over all densities for all the RTs ti is the likelihood, L=Πf(ti). To obtain
the maximum likelihood parameter estimates, the value of the like-
lihood is maximized by adjusting parameter values using a function
minimization routine. However, because products of densities can
become very large or very small, numerical problems occur and so the
standard approach is to maximize the log likelihood, i.e., the sum of the
logs of the densities (summing logs of the values is the same as the log
of the product of the values, log(ab)=log(a)+log(b)). Summing the logs
of the predicted probability densities for all the RTs gives the log
likelihood and minimizing minus the log likelihood produces the same
parameter values as maximizing the likelihood.

Minus the log likelihood or chi-square can be minimized using a
variety of software routines and we use the robust SIMPLEX routine
(Nelder and Mead, 1965). This routine takes starting values for each
parameter, calculates the value of the function to be minimized, then
changes the values of the parameters (usually one at a time) to reduce
minus the log likelihood. This process is repeated until either the
parameters do not change from one iteration to the next by more than
some small amount or the value to be minimized does not change by
more than some small amount.
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5. Single trial regressor analysis

Philiastides et al. (2006) used a single-trial regressor analysis
applied to a face/car discrimination task with degraded, briefly
presented stimuli to examine the time course of perceptual processing.
They used the method to find an optimal weighting of signals from 60
electrodes for discriminating between the two conditions for signals
averaged over a small temporal window (Parra et al., 2002, 2005). They
performed this analysis over a series of 60 ms wide time windows
following a poststimulus onset time of 200 ms. The resulting EEG
component, y(t), provided a single value that represented how strongly
the stimulus represented a face or car.

A single trial regressor, y(t), computed at a time window, t, is:

∑w xy t t w x t( )= ( )= ( )T

i

D

i i
=1

where D=number of sensors. w=vector of weights for the sensors.
x=vector of sensor values.

The key is to learn the vector of weights that best discriminates the
two types of stimuli.

The method assumes that the data are distributed as a logistic
function:

p c old x
e

f y( = )= 1
1+

= ( )
w x− T

and p(c = new | x) =1 - f(y).
Then, the weight vector, w, is adjusted to minimize minus log

likelihood of the data:

∑ p c x− log ( ( | ))j

Philiastides et al. (2006) found different weightings of the electro-
des that significantly discriminated between face and car stimuli, one
that peaked at around 180 ms and another that peaked at around
380 ms. A critical feature of this analysis for all the later analyses and
conclusions is that the regressor is derived from the electrode voltages
as a function of the nature of the stimulus (i.e., whether the test item
was a car or a face) and is not based on behavioral data (i.e., the choice
made or response time). Below we present a similar analysis for our
memory data.

6. Results

We begin with presentation of behavioral results followed by the
results from the regressor analysis. Then we divide the behavioral data
in halves based on the size of the single-trial regressor and fit the
diffusion model as in Ratcliff et al. (2009). We then present a new
diffusion model analysis in which drift rate is assumed to be a linear
function of the single-trial regressor. In this analysis, we estimate how
much drift rate changes as a function of the EEG regressor value.
Finally, we present an analysis of the size of drift rates, regressor, and
memory strength derived from signal detection theory for hits (H),
false alarms (FA), misses (M), and correct rejections (CR).

For Experiment 1, accuracy for studied old items was 0.72 and for
new items was 0.85 and for Experiment 2, accuracy for studied old
items was 0.78 and for new items was 0.84. For Experiment 1, mean
correct RT for old items was 811 ms and for new items was 852 ms and
for Experiment 2, mean correct RT for old items was 819 ms and for
new items was 902 ms. Full results are presented in Table 1. These are
typical of results in the memory literature. Fig. 1, Panels B and C, show
plots of RT quantiles against response proportions for the conditions of
the experiment averaged over subjects. The positions on the x-axis
represent the proportion of responses and the values on the y-axis
represent quantiles (the middle value of each column is the median
RT). The lines are fits of the diffusion model that we discuss later.

Figs. 2A and 3A show nine sample ERP plots for parietal, central,

and frontal electrodes for median activity averaged over subjects for the
two experiments. There are signals in the range from 350 to 400 ms
and up that discriminate between old and new test items, encompass-
ing both the traditional FN400 and late-positive components often
observed in EEG studies of recognition memory. Fig. 4A shows the
differences in voltages between “old” and “new” test items for frontal
electrodes (Fz, F1, F2, AFz, FCz) and parietal electrodes (Pz, P1, P2,
CPz, POz) as a function of time. The error bars are the same for frontal
and parietal values (1 SE values are 0.28 and 0.29 respectively). A
primary question is whether the frontal signal is significant at the
375 ms time point. A t-test on the data from both experiments
combined shows it is (t(27)=3.4, p < 0.05).

An analysis of variance on the data from both experiments
combined showed a significant difference between frontal and parietal
electrodes (F(1,27)=38.4, p < 0.05), and significant effect of time
(F(3,81)=6.2, p < 0.05), and a significant interaction (F(3,81)=9.6, p
< 0.05). The pattern showed little difference between frontal and
parietal electrodes at 375 ms (the range was 350–400 ms) with the
parietal difference increasing with time. This shows a robust frontal
voltage difference, which means that any lack of frontal effects in later
analyses is not due to lack of a frontal signal.

Figs. 2B and 3B show scalp maps of the average activity for old
items minus the activity for new items from 200 to 800 ms in steps of
100 ms following presentation of the test item (averaged over trials and
subjects). Both experiments show parietal activation most strongly in
the 500–600 ms range. Experiment 1 shows frontal suppression of old
relative to new items in the 500 ms window.

Note that the data are symmetric in both Fig. 2A and B in
Experiment 1 because of the within-subject counterbalancing we
performed to ensure no unwanted effects of horizontal eye-movements.
To verify that this within-subject counterbalancing did not greatly
affect the underlying signal used to classify old vs. new we compared
the ERPs with the symmetric data to data with horizontal eye-move-
ment removed via the Gratton et al. (1983) regression method. The
ERPs were nearly identical to the symmetric counterbalancing ap-
proach presented here and the classification and split-half model
results presented below were also the same. Experiment 2 did not
have the reminder on the screen and so there was no cue that might
have induced eye-movements, thus the counterbalancing was not
performed on Experiment 2.

In the next stage of the analyses, single-trial regressors are
computed and these are related to the diffusion model analysis as in
Ratcliff et al. (2009). The results of this analysis will, first, extend the
methodology into the memory domain. If by sorting data into halves
based on the old/ new regressor, it is found that drift rates differ across
the halves, then this is strong evidence that there is systematic
variation in drift rate across trials and strong evidence that this EEG
component represents evidence being used in the decision process. On
the other hand, if an EEG component does not sort data, then the
signal does not represent information used in the decision process.
This has serious implications for the interpretation of EEG results in

Table 1
Accuracy and mean RT

Word frequency Study Old Pr Old RT New RT

Experiment 1 Low frequency 3 presentations 0.836 778 928
1 presentation 0.670 825 886
New 0.108 921 830

Experiment 1 High frequency 3 presentations 0.777 804 935
1 presentation 0.584 855 916
New 0.191 943 877

Experiment 2 3 presentations 0.872 781 1056
1 presentation 0.690 856 986
New 0.160 1018 902
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Fig. 2. Panel A shows sample ERP's for old (solid line) and new (dashed line) test items averaged over subjects for Experiment 1. Panel B shows ERP differences between old and new
test items, ERPs for old items, and ERPs for new items as a function of scalp location and as a function of time.
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Fig. 3. Panel A shows sample ERP's for old (solid line) and new (dashed line) test items averaged over subjects for Experiment 2. Panel B shows ERP differences between old and new
test items, ERPs for old items, and ERPs for new items as a function of scalp location and as a function of time.
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the memory domain because it means that an EEG signal may not
directly track information used in the decision process.

For both experiments we performed a single-trial analysis of the
EEG signal from all the electrodes to distinguish whether a test word
was old or new (studied or not studied). Logistic regression was used to
find an optimal weighting of signals from electrodes for a series of
training windows in 50 ms intervals with 50 ms widths following
stimulus onset time. Then for each trial, we constructed a histogram
of the regressor value for old and new items and used these to generate
a receiver operator characteristic (ROC) curve. The area under this
curve, Az, was used as a measure of “old”/”new” discriminability from
the EEG data as in Fig. 5A. Note that it is difficult to produce a scalp
map of the weighting on electrodes that discriminate between old and
new because the weighting is based on the size of the signal and the
reliability of the signal (including the variability)..

Plots of the Az value of the regressor for the experiment are shown
in Fig. 5B. The 95% significance level (the horizontal lines at Az=0.62
and Az=0.71 and the top dotted lines) were obtained by randomizing
the assignment of conditions to EEG activity then performing logistic
regression. This is necessary because the method will find some
weighting on electrodes to produce discrimination between old and
new test items because of random variability even if there is no
significant signal. The randomization allows estimation of the size of
this effect, for example, the bottom dotted lines are the median Az
values. The 5% significance levels for Az were the average values for
which 95% of the maximum values of Az were lower. The regressor
values are significant over the range 400–800 ms (e.g., the regressor at
375 ms was significant by t-test, for Experiment 1, t(16)=5.7 and for
Experiment 2, t(10)=9.7, both p < 0.05), but the more convincing result
is that the regressor is significant for Experiment 1 by the leave-one-out
analysis). The significant regressor, even at the earliest range, is further
indication that there is a significant difference in neural activity
between old and new items, but as we will see below, this difference

in neural activity does not impact the decision process.
For the first diffusion model analysis, we fit the model to each of the

six conditions for Experiment 1 (high and low frequency words studied
3 times, once, and not studied) and the three conditions for Experiment
2 (words studied 3 times, once, and not studied) for each subject using
the chi-square method (Ratcliff and Tuerlinckx, 2002). Mean para-
meter values are shown in Tables 2, 3. The model fit the data as well as
in most other applications (Ratcliff and Childers, 2015, p. 253) with the
mean value of chi-square a little larger than the critical value of 71.0
(df=53) for Experiment 1 (82.1) and a little smaller than the critical
value of 35.2 (df=23) for Experiment 2 (28.3).

For the second analysis, for each condition of the experiment and
each subject, the data were divided into halves based on the value of the
regressor at about 600 ms (at the time 10% of responses had
terminated – the window was from 575 to 625 ms). We took the
regressor values for each of the six conditions for Experiment 1 and
three conditions for Experiment 2 and divided the behavioral data for
each condition into a more “old” and a less “old” half.

We first fit the diffusion model to each condition for the more “old”
half of the data and to each condition for the less “old” half of the data
with separate parameters for each half of the data. The only parameters
that were significantly different were drift rates shown in Table 3. For
the next analysis, we fit the model to the data from each half
simultaneously with only drift rates allowed to differ between halves.
Tables 2, 3 show the parameter values and Fig. 5C shows plots of the
drift rates for 17 individual subjects for the 6 conditions for the old-half
versus the new-half of the data for Experiment 1 and the 11 individual
subjects for the 3 conditions for the old-half versus the new-half of the
data for Experiment 2. Results for both experiments show most of the
drift rates for the old-half are more positive than the drift rates for the
new-half so that the points lie above the diagonal line. For Experiment
1, an ANOVA showed that drift rates were significantly different across
the six conditions (F(5,80)=69.7, p < 0.05), drift rates for the old-half
were significantly different from those for the new-half (F(1,16)=22.1,
p < 0.05), and the interaction was significant (F(5,80)=4.0, p < 0.05).
For Experiment 2, an ANOVA showed that drift rates were significantly
different across the three conditions (F(2,20)=61.7, p < 0.05), drift
rates for the old-half were significantly different from those for the
new-half (F(1,10)=25.8, p < 0.05), and the interaction was significant
(F(2,20)=34.0, p < 0.05). The interactions show that the difference
between the old- and new-half were different across the different
conditions (reflecting a smaller difference for new items than old items
as shown in Fig. 5C) and post hoc tests showed that the differences
between drift rates for the new items were not significant (values of
0.015 and −0.025 with t(80)=0.07 and t(20)=0.03 for Experiments 1
and 2 respectively). Also, the differences in drift rates for old items
across halves was quite large (0.115 and 0.138 for Experiments 1 and 2
respectively) relative to the absolute values of the drift rates in Table 3.

For comparison, we performed a similar analysis for the component
at 375 ms. Figs. 2 and 3 show that there was separation of the ERPs for
old versus new items at this time for the electrodes shown. Fitting the
data to the two halves separated on the basis of the regressor value
produced no difference in drift rates. Fig. 5C (right panels) shows that
the drift rates for the old-half versus the new-half of the data lie close to
the diagonal. In an ANOVA for Experiment 1, drift rates were
significantly different across the three conditions (F(5,80)=70.0, p <
0.05), but the drift rates for the old-half and the new-half were not
significantly different (F(1,16)=0.6) and neither was the interaction
(F(5,80)=1.0). In an ANOVA for Experiment 2, drift rates were
significantly different across the three conditions (F(2,20)=45.4, p <
0.05), but the drift rates for the old-half and the new-half were not
significantly different (F(1,10)=0.2) and neither was the interaction
(F(2,20)=0.5). Because there were no significant effects at 375 ms, this
analysis provides a control for the analysis at the 600 ms time point
and shows it is not spurious.

For completeness, we also performed these analyses at two more

Fig. 4. Panel A shows differences in voltage between “old” and “new” test words for
frontal electrodes and for parietal electrodes as a function of time from stimulus onset.
Panel B shows a plot of the difference in drift rates for data sorted by the regressor value
as a function of time from the stimulus onset.

R. Ratcliff et al. Neuropsychologia 93 (2016) 128–141

135



Fig. 5. Panel A shows the regressor values for old and new test items used to generate the area under the ROC curve, Az. Panel B shows plots of the single trial regressor Az values for
Experiments 1 and 2. The solid line is the regressor, the bottom dotted line is median regressor value obtained from scrambling the trial labels and reassigning them to the EEG signals,
and the top dotted line is the highest 5% of the regressors obtained from scrambling the trial labels. This latter value represents the 95% confidence limit on the regressor. The top left of
Panel C shows plots of the drift rates for 17 individual subjects for each of the 6 conditions for the old-half versus the new-half of the data with the data divided into halves based on the
regressor value at 600 ms for Experiment 1. L=low frequency words, H=high frequency words, 3=three times presented, 1=one time presented, and N=new items. The top right of Panel
C shows plots of the drift rates for 11 individual subjects for each of the 3 conditions for the old-half versus the new-half of the data with the data divided into halves based on the
regressor value at 600 ms for Experiment 2. The bottom plots of Panel C show the drift rates as in top panels but divided into halves based on a regressor at 375 ms.
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intermediate points, at 450 ms and 525 ms. Fig. 4B shows plots of the
difference in drift rates for the data sorted by the regressors over time.
The plot shows increasing functions over time to peaks at 600 ms.

In addition to the analyses above (which followed those in
Philiastides et al., 2006 and Ratcliff et al., 2009), we also performed
regressor analyses on correct versus error responses, fast versus slow
responses, and beta and low gamma frequency bands at the peak of the
regressor in Fig. 5B for Experiment 1. None of these showed significant
sorting of the behavioral responses.

We can now extend our analysis by using the single-trial regressor
value at 600 ms in the diffusion model analysis directly. The assump-
tion is that drift rate for each individual trial is a constant (baseline
value, one for each condition) plus a coefficient (slope) multiplied by
the regressor value (normalized to a mean of 0 and SD of 1 for each
condition separately), that is a linear model with the drift rate a linear
function of the regressor. It is also assumed that there is random trial
to trial variability in drift rate because the regressor value is noisy and
not an exact measure of evidence). If the regressor had no influence on
drift rate (through the RT and choice), then the slope would be zero. In
the model that we fit, we allowed drift rate, across trial variability in
drift rate, and the regressor coefficient to differ between the old and
new conditions.

In order to perform model fitting, a maximum likelihood method
(Ratcliff and Tuerlinckx, 2002) was used (as opposed to the quantile
method) in which each individual choice and RT is used in fitting. In
this method, the likelihood or probability density of each response
choice and RT is computed and the model parameters adjusted until
the product of the likelihoods is maximized (or, equivalently, the sum
of minus the log likelihoods minimized). Tables 2, 3 show the
parameter values recovered from this method and we present t-values
for Experiments 1 and 2 (respectively). The results showed that, first
the coefficients of the regressor for old items are significantly different
from zero (t(16)=5.29, p < 0.05 and t(10)=2.86, p < 0.05), and for new
items they are not (t(16)=1.14 and t(10)=0.44). Also, the two coeffi-
cients differed from each other (t(16)=4.78, p < 0.05 and t(10)=2.72, p
< 0.05) and across trial variability in drift rate differed between old and
new items for Experiment 1 but not Experiment 2 (t(16)=4.52, p < 0.05
and t(10)=1.58), see Starns and Ratcliff (2014). These results show that
the regressor captures a proportion of trial-by-trial variability in drift
rate.

If the value of the regressor on each trial is a (noisy) measure of the
drift rate on that trial, then it is possible to generate simulated data
from the diffusion model while recording the drift rate to each trial and
examine how well the mean drift rates for hits, H, misses, M, false

alarms, FA, and correct rejections, CR, for each of the conditions of the
experiment match the regressor values. We do this for cases with
predictions from the diffusion model and signal detection theory. For
the diffusion model there are different possibilities with regard to how
much of the variability in drift rate is measured by the regressor (we
term this “systematic” variability). We consider cases in which none
and all are systematic and cases in which part of the variability is
systematic.

For signal detection theory (Fig. 6A), for predictions for hits, the
mean of the normal distribution above the criterion can be computed
by integration over the distribution from the criterion up (similar
integrations can be carried out to find the means for M, FA, and CR).
For the diffusion model for the example in Fig. 6B, 2000 simulated RTs
and choices were generated using the random walk method in
Tuerlinckx et al. (2001). The parameters used were from the top row
of Table 2 with drift rate 0.101, i.e., for once presented high frequency
words. For every simulated decision, the choice, the RT, and the drift
rate for that trial (randomly selected from the drift rate distribution
with mean v and SD η) were recorded. If the EEG component was an
accurate estimate of drift rate on each trial, then the drift rate would
match the EEG component value (of course, in practice, there is
variability in the EEG component value). Fig. 6B shows distributions
of hits and misses as a function of drift rate. From the “old” and “new”
responses in this histogram, the hit rate and miss rate can be
computed. Using this analysis for distributions for each condition,
the mean drift rate was computed for H, M, FA, and CR. For the
diffusion model with no systematic across trial variability in drift rate,
we used the values of the mean drift rates (but simulated data were
generated with trial to trial variability in drift rate). In the cases in
which across trial variability is composed of two parts, one is
systematic and the other is random. In this case (Fig. 6E), the SD in
drift across trials estimated from fits to the data is divided into two
values and one of these is used to generate drift rates and is saved for
the plot in Fig. 6E. To each of these drift rates, another random value is
added using the other SD and this new drift rate is used to generate
simulated data that is used to generate predictions in Fig. 6E. The
parameter values for all the diffusion model predictions are from fits to
all the data combined in Tables 2, 3.

Fig. 6C–F shows plot of the regressor value on the y-axis versus the
predicted values from SDT and three diffusion models with different
assumptions about across trial variability in drift rate. The regressor
values show an ordering of CR, FA, M and H with values for FAs and M
close to each other for Experiment 1 and with the values for FA closer
to those for CR for Experiment 2. For Fig. 6C, SDT produces the

Table 2
Parameter values for diffusion model fits.

Expt Analysis EEG signal a z Ter (ms) η old η new sz st (ms) av old av new χ2

1 Fits to all data 0.143 0.067 570 0.232 0.161 0.052 211 82.1
Separate fits for the 600 ms regressor Newer 0.148 0.071 569 0.234 0.173 0.049 223 59.0

Older 0.144 0.067 564 0.218 0.150 0.045 187 52.7
Separate drifts: 600 ms regressor 0.152 0.070 568 0.222 0.195 0.067 214 158.7
Separate drifts: 375 ms regressor. 0.144 0.067 567 0.203 0.185 0.056 229 157.2
Separate drifts: 450 ms regressor. 0.147 0.069 574 0.220 0.066 0.180 227 161.7
Separate drifts: 525 ms regressor. 0.145 0.068 572 0.222 0.053 0.195 229 174.2
MLH: 600 ms regressor 0.153 0.070 575 0.207 0.143 0.111 254 0.067 0.009

2 Fits to all data 0.170 0.088 518 0.299 0.170 0.034 152 28.3
Separate fits for the 600 ms regressor Newer 0.166 0.080 530 0.290 0.213 0.033 162 26.3

Older 0.166 0.084 521 0.310 0.167 0.046 172 22.5
Separate drifts: 600 ms regressor 0.169 0.084 519 0.269 0.183 0.039 172 59.9
Separate drifts: 375 ms regressor. 0.172 0.088 518 0.276 0.189 0.042 171 64.1
Separate drifts: 450 ms regressor. 0.172 0.090 520 0.272 0.207 0.046 159 55.6
Separate drifts: 525 ms regressor. 0.171 0.086 521 0.290 0.201 0.044 167 62.9
MLH: 600 ms regressor 0.149 0.069 512 0.160 0.125 0.046 201 0.033 0.003

Note. a=boundary separation, z=starting point, Ter=nondecision component of response time, η=standard deviation in drift across trials, sz=range of the distribution of starting point (z),
st = range of the distribution of nondecision times, av=slope of drift rate as a function of the regressor values, and χ2 is the chi-square goodness of fit statistic.

R. Ratcliff et al. Neuropsychologia 93 (2016) 128–141

137



ordering in Fig. 6A, namely, CR, M, FA, and H. The plot shows that FA
are predicted to have a higher value than the regressor values. The
diagonal line is a linear regression.

For the diffusion model with no across trial variability in drift rate,
the drift rates for H and M are identical (because they both arise from
random variability in the decision process) and likewise for FA and CR.
This can be seen in Fig. 6D because FA and CR line up vertically as do
H and M. This produces a mismatch between the predictions and the
regressor values.

For the diffusion model with across trial variability in drift rate that
is all systematic, the match between the regressor and drift rates is
good, but for Experiment 2, there is a mismatch for FA. Fig. 6E shows
plots for 2/3 of across trial variability in drift rate systematic and this
produces the best fits for between drift rates and the regressor values
for both experiments (we also generated values for 1/3 and 1/2 of the
variability systematic and the value 2/3 fit best).

This analysis provides additional evidence for the mapping between

the single trial regressor from the single-trial analysis of EEG data and
between the diffusion model with the assumption that drift rate varies
from trial to trial.

7. Discussion

Our results provide strong evidence for an EEG component that
reflects evidence used in the decision process. This component is
centered on a parietal location and peaks around 600 ms following
stimulus presentation. The single-trial regressor computed at this time
influences drift rate in a diffusion model analysis for old items. It can
be used to sort data from each old item condition into groups
representing more “old” and less “old” and diffusion model fits show
that drift rates differ for those groups. Another analysis assumes that
drift rate on each trial is a linear function of the regressor value and
estimates of the slope are different from zero. A comparison between
the regressor values for hits, misses, false alarms and correct rejections
for diffusion model and for signal detection theory predictions shows
that diffusion model predictions match best.

The EEG signals in an ERP analysis showed initial separation
between old and new items a little before 400 ms (Fig. 2A). The
observed frontal signal around 400 ms and the later parietal signal at
around 600 ms have been interpreted in prior studies as evidence for
different components used in making recognition decisions, an early
familiarity component indexed by the frontal signal and a later
recollection component indexed by the parietal signal. If the two
components were involved in decisions, then single-trial regressors at
both time points should sort data and produce differences in drift rate.
However, our analyses showed that the signal at 375 ms produces a
significant regressor (both regressors are significant by t-test, but the
regressor is significant by the leave-one-out analysis only for
Experiment 1) and sorting data based on the best regressor computed
at this time does not affect drift rate (in contrast to the signal at
600 ms). This is evidence that EEG activity at the 375 ms time point
does not represent information being used in the decision process (cf.,
the early perceptual component studied in Ratcliff et al., 2009), and
only the later component represents information used in the decision
process. The early component reflects global old versus new discrimi-
nation because of the training, but it does not map into whether an
individual item is more “old” or more “new” in the decision process.
The late component result is also consistent with a “mnemonic
accumulator” hypothesis that proposes a link between activity in the
posterior parietal cortex and memory retrieval (Cabeza et al., 2008;
Konishi et al., 2000; Wagner et al., 2005).

The results also show that the regressor begins to peak around
550 ms. This places it near the beginning of the diffusion decision
process as indicated by the estimated non-decision time from the
diffusion model fits (around 600 ms). This is consistent with the view
that the regressor indexes drift rate, that is, evidence driving the
decision process.

These results have two major implications for recognition memory.
First, they show that early EEG signals that have been associated with
familiarity do not index the decision process, that is, the signal does not
indicate or predict how strong or weak an item is relative to other items
in that condition. In contrast, the signal at 600 ms does indicate how
strong or weak an item is. This suggests that results that show
differences in EEG signals as a function of experimental variables do
not provide evidence that these signals reflect the decision process.
This is especially important in recognition memory because EEG data
have been used as one of the major pieces of empirical support for dual
process theory.

The second major implication for recognition memory is that there
is greater across trial variability in drift rate for old items than for new
items. The usual way to examine the relative variability in the memory
strength of old and new items is to use ROC functions. Starns and
Ratcliff (2014) analyzed a large number of subjects (376) from a

Table 3
Drift rates for diffusion model fits.

Analysis:
Experiment 1

EEG signal v3 L v1 L vNL v3H v1H vNH

Fits to all data 0.291 0.113 −0.292 0.204 0.029 −0.183

Separate fits for
the 600 ms
regressor

Newer 0.263 0.059 −0.307 0.187 0.031 −0.187
Older 0.358 0.161 −0.254 0.292 0.102 −0.185

Separate drifts:
600 ms
regressor

Newer 0.237 0.059 −0.333 0.147 0.016 −0.196
Older 0.367 0.182 −0.294 0.270 0.097 −0.205

Separate drifts:
375 ms
regressor

Newer 0.255 0.096 −0.285 0.158 0.037 −0.191
Older 0.274 0.090 −0.294 0.206 0.034 −0.189

Separate drifts:
450 ms
regressor.

Newer 0.270 0.065 −0.313 0.169 0.055 −0.188
Older 0.297 0.142 −0.276 0.250 0.053 −0.182

Separate drifts:
525 ms
regressor.

Newer 0.237 0.066 −0.302 0.130 0.016 −0.180
Older 0.337 0.151 −0.285 0.274 0.074 −0.179

MLH: 600 ms
regressor

0.300 0.157 −0.294 0.219 0.116 −0.213

Analysis:
Experiment 2

EEG signal v3 v1 vN

Fits to all data 0.428 0.181 −0.227

Separate fits for
the 600 ms
regressor

Newer 0.360 0.145 −0.206
Older 0.549 0.234 −0.224

Separate drifts:
600 ms
regressor

Newer 0.314 0.119 −0.195
Older 0.510 0.221 −0.216

Separate drifts:
375 ms
regressor

Newer 0.382 0.164 −0.219
Older 0.405 0.162 −0.217

Separate drifts:
450 ms
regressor.

Newer 0.337 0.139 −0.248
Older 0.450 0.162 −0.216

Separate drifts:
525 ms
regressor.

Newer 0.362 0.130 −0.208
Older 0.451 0.211 −0.222

MLH: 600 ms
regressor

0.278 0.107 −0.221
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Fig. 6. Panel A shows an illustration of signal detection theory and the mean values for hits, misses, false alarms, and correct rejections. Panel B shows a plot of drift rates for the two
choices (“old” and “new”) for 2000 simulated trials from the diffusion model (across trial variability in drift rate produces the different values of drift rate). Panel C shows plots of the
regressor value against signal detection theory predictions for H, M, FA, and CR. Panel D shows plots of the regressor value against drift rates for H, M, FA, and CR from the diffusion
model without across trial variability in drift rate. Panel E shows plots of the regressor value against drift rates for H, M, FA, and CR from the diffusion model with 2/3 of the variability
in drift rate systematically related to the regressor value. Panel F shows plots of the regressor value against drift rates for H, M, FA, and CR from the diffusion model with variability in
drift rate systematically related to the regressor value. The error bars are plus or minus one SD average over subjects.

R. Ratcliff et al. Neuropsychologia 93 (2016) 128–141

139



number of experiments and found that across trial variability in drift
rate was larger for old items than for new items. This shows that a
diffusion model analysis can replace ROC analyses and use simple two
choice tasks to perform the same measurements. If we combine the
results for the two experiments, values are 0.258 for old items and
0.165 for new items and the difference is significant (t=5.9, p < 0.05).
This result replicates and is consistent with the results from Starns and
Ratcliff (2014).

There is an important methodological implication of this analysis
and that is that a linear model for drift rates can be embedded in the
diffusion model. This provides a way of measuring the effect of the EEG
regressor on the decision process.

The single process view assumes a signal detection representation
in which the old item distribution has larger standard deviation than
the new item distribution. In our analysis, a larger slope of drift rate as
a function of the regressor for old relative to new items further
supports this single process view.

Similar results distinguishing two potentially distinct processes
have been obtained in the perceptual domain. Philiastides et al.
(2006) showed that there are two EEG components that are significant,
one at around 180 ms and one at 380 ms in a face/car perceptual
discrimination task. Dividing the data into halves based on the late
component produced different values of drift rate, but dividing the data
based on the early component produced no difference in drift rates or
any model parameter (Ratcliff et al., 2009). This was interpreted as
showing that the early component tracks encoding during which a
stimulus representation is constructed, and the late component repre-
sents decision-related information extracted from the stimulus repre-
sentation. Generally stimulus representation has many attributes that
are not necessarily relevant to the decision, for example, color, size,
shape, and so on. Consequently, part of the nondecision time involves
extracting the decision-related information from the stimulus repre-
sentation before the decision process can begin.

The analyses presented here show that the regressor predicts trial-
level fluctuations in drift rate. Originally, across trial variability was
introduced into the diffusion model because in application to memory,
it is difficult to see how items in different lists are encoded to exactly
the same degree (Ratcliff, 1978). This also produces slow errors and
later it was found to produce good fits to experimental data (Ratcliff
et al., 1999). However, it has been claimed that this is not correct, that
there is no such across-trial variability in drift rates and models have
been developed to account for data using collapsing bounds without
trial to trial variability in drift rate (Churchland et al., 2008; Ditterich,
2006a, 2006b; Drugowitsch et al., 2012; Kiani et al., 2014; Palmer
et al., 2005; Zhang et al., 2014). Hawkins et al. (2015) performed a
comprehensive study fitting a flexible collapsing boundary model and
the standard model and found that for human subjects, the standard
model with across trial variability in drift rate was preferred. The
results presented here and in Ratcliff et al. (2009) provide strong
independent evidence for the hypothesis that drift rate varies from trial
to trial.

There is also a recent claim in the psychological literature by Jones
and Dzhafarov (2014) who argued that if the forms of the across-trial
variability distributions were unconstrained, the model could exactly
match any data, that is, any accuracy values and any RT distributions,
hence rendering the models unfalsifiable. However, Smith et al. (2014)
pointed out (among other things) that their argument is predicated on
eliminating within-trial noise from the accumulation process. Within-
trial noise in the accumulation process is a fundamental assumption of
the model, and it is within-trial noise that leads to most errors and
most variability in RTs. The Jones and Dhzafarov argument boils down
to a mapping between velocity, distance, and time in which each RT is
transformed to a constant times 1/RT which serves as a drift rate. Our
analysis shows a consistent relationship between across trial variability
in drift rate, an independent EEG measure of trial to trial variability,
and the time course of this effect in decision making in recognition

memory.
The combination of the single-trial regressor and behavioral data

avoids the multiple comparison problems that can affect analyses of
neural data. The single-trial regressor is computed based on electrical
signals and whether the test item was studied or not and this analysis is
completely independent of the behavioral data. The single-trial regres-
sors are applied to behavioral data with no modification based on the
results of the behavioral analysis. The fact that the analysis produces a
robust effect on drift rates at around 600 ms but no effect at 375 ms
shows that the effect at 600 ms is not spurious or caused in some way
by overfitting.

Experimental approaches in the human neuroscience of memory
make the strong assumption that EEG (and fMRI) signals index
evidence that is being used to make a decision. However, as
(Philiastides et al., 2006; Ratcliff et al., 2009) demonstrated and as
our results show, simply finding differential activity does not guarantee
that it represents information being used in making the decision.
Philiastides et al. colored the stimuli red and green and made the task
red/green discrimination and found that the early 180 ms component
was unaffected but the late component disappeared. Ratcliff et al.
showed that the late 380 ms component sorted the data but the 180 ms
component did not. These results were interpreted as showing that the
180 ms component reflected perceptual encoding of all aspects of the
stimulus and the 380 ms component reflected the decision relevant
aspects of the stimulus extracted from the encoded representation.

More generally, these examples serve to illustrate a pervasive
problem in studies of cognition: neural and behavioral responses are
not direct measures of cognitive processes. It could be that a neural
response represents the results of earlier processing that is then
transformed to later processing. But it is also possible that processing
produces several possible output streams, only some of which are used
in any particular task. The outputs not used might produce a strong
neural response (face vs. car stimuli in Philiastides et al.), but that
encoding might have little to do with the decision process (red vs. green
discrimination, Philiastides et al.). We believe that methods like this
one that allows item level effects to be examined provide more
convincing evidence that the neural response is involved in the
processing stream giving rise to the decision.

Cognitive processes are latent variables that give rise to both the
observed neural activity and behavior. While the goal of cognitive
neuroscience is to map neural activity to these underlying mechanisms,
we believe that traditional means of analyzing neural data that map
neural activity to behavior are greatly enhanced by explicit theory of
this mapping. Recently, there has been a push to incorporate computa-
tional models that explicitly represent the cognitive mechanisms into
the analysis of neural data. Such models provide a theory of the link
between the observed neural activity and the cognitive processes used
in the task (e.g., Gold and Shadlen, 2001; Purcell et al., 2010, 2012;
Ratcliff et al., 2003; Ratcliff et al., 2006; Turner et al., 2013).

In our view, the present memory results complement the perceptual
results from Ratcliff et al. (2009) by showing a (nonsignificant)
component at about 375 ms that does not map into the decision
process and a later component around 600 ms does map into the
decision process. The strongest conclusion from this research, in both
the perceptual and memory domains, is that it is necessary to show that
an EEG component has behavioral consequences on a trial-to-trial
basis to conclude that the component represents processing in making
a decision.

Acknowledgments

This article was supported by NIA Grant R01-AG041176, AFOSR
Grant FA9550-11-1–0130, and NIMH grant R01-MH085092.

R. Ratcliff et al. Neuropsychologia 93 (2016) 128–141

140



References

Blankertz, B., Lemm, S., Treder, M., Haufe, S., Muller, K.-R., 2011. Single-trial analysis
and classification of ERP components - a tutorial. NeuroImage 56, 814–825.

Brysbaert, M., New, B., 2009. Moving beyond Kucera and Francis: a critical evaluation of
current word frequency norms and the introduction of a new and improved word
frequency measure for American English. Behav. Res. Methods 41, 977–990.

Buchler, N.G., Light, L.L., Reder, L.M., 2008. Memory for items and associations: distinct
representations and processes in associative recognition. J. Mem. Lang. 59,
183–199.

Cabeza, R., Ciaramelli, E., Olson, I.R., Moscovitch, M., 2008. The parietal cortex and
episodic memory: an attentional account. Nat. Rev. Neurosci. 9, 613–625.

Castellanos, N.P., Makarov, V.A., 2006. Recovering EEG brain signals: artifact
suppression with wavelet enhanced independent component analysis. J. Neurosci.
Methods 158, 300–312.

Churchland, A.K., Kiani, R., Shadlen, M.N., 2008. Decision-making with multiple
alternatives. Nat. Neurosci. 11, 693–702.

Cohen, A.L., Rotello, C.M., Macmillan, N.A., 2008. Evaluating models of remember-
Know judgments: complexity, mimicry, and discriminability. Psychon. Bull. Rev. 15,
906–926.

Dennis, S., Humphreys, M.S., 2001. A context noise model of episodic word recognition.
Psychol. Rev. 108, 452–477.

Ditterich, J., 2006a. Computational approaches to visual decision making. In: Chadwick,
D.J., Diamond, M., Goode, J. (Eds.), Percept, Decision, Action: Bridging the Gaps.
Wiley, Chichester, U.K, 114.

Ditterich, J., 2006b. Stochastic models of decisions about motion direction: behavior and
physiology. Neural Netw. 19, 981–1012.

Drugowitsch, J., Moreno-Bote, R., Churchland, A.K., Shadlen, M.N., Pouget, A., 2012.
The cost of accumulating evidence in perceptual decision making. J. Neurosci. 32,
3612–3628.

Dunn, J.C., 2004. Remember-know: a matter of confidence. Psychol. Rev. 111, 524–542.
Eichenbaum, H., Yonelinas, A.P., Ranganath, C., 2007. The medial temporal lobe and

recognition memory. Annu. Rev. Neurosci. 30, 123–152.
Geller, A.S., Schleifer, I.K., Sederberg, P.B., Jacobs, J., Kahana, M.J., 2007. PyEPL: a

cross-platform experiment-programming library. Behav. Res. Methods 39, 950–958.
Gillund, G., Shiffrin, R.M., 1984. A retrieval model for both recognition and recall.

Psychol. Rev. 91, 1–67.
Gold, J.I., Shadlen, M.N., 2001. Neural computations that underlie decisions about

sensory stimuli. Trends Cogn. Sci. 5, 10–16.
Gratton, G., Coles, M.G.H., Donchin, E., 1983. A new method for off-line removal of

ocular artifact. Electroencephalogr. Clin. Neurophysiol. 55, 468–484.
Hawkins, G.E., Forstmann, B.U., Wagenmakers, E.-J., Ratcliff, R., Brown, S.D., 2015.

Revisiting the evidence for collapsing boundaries and urgency signals in perceptual
decision-making. J. Neurosci. 35, 2476–2484.

Hintzman, D.L., 1984. MINERVA 2: a simulation model of human memory. Behav. Res.
Methods, Instrum., Comput. 16, 96–101.

Jones, M., Dzhafarov, E.N., 2014. Unfalsifiability and mutual translatability of major
modeling schemes for choice reaction time. Psychol. Rev. 121, 1–32.

Kiani, R., Corthell, L., Shadlen, M.N., 2014. Choice certainty is informed by both
evidence and decision time. Neuron 84, 1329–1342.

Konishi, S., Wheeler, M.E., Donaldson, D.I., Buckner, R.L., 2000. Neural correlates of
episodic retrieval success. Neuroimage 12, 276–286.

Laming, D.R.J., 1968. Information Theory of Choice Reaction Tme. Wiley, New York.
Nelder, J.A., Mead, R., 1965. A simplex method for function minimization. Comput. J. 7,

308–313.
Paller, K.A., Voss, J.L., Boehm, S.G., 2007. Validating neural correlates of familiarity.

Trends Cogn. Sci. 11, 243–250.
Palmer, J., Huk, A.C., Shadlen, M.N., 2005. The effect of stimulus strength on the speed

and accuracy of a perceptual decision. J. Vis. (5), 376–404.
Parra, L., Alvino, C., Tang, A., Pearlmutter, B., Young, N., Osman, A., Sajda, P., 2002.

Linear spatial integration for single-trial detection in encephalography. NeuroImage
17, 223–230.

Parra, L., Spence, C., Gerson, A., Sajda, P., 2005. Recipes for the linear analysis of EEG.
NeuroImage 28, 326–341.

Pereira, F., Mitchell, T., Botvinick, M., 2009. Machine learning classifiers and fMRI: a
tutorial overview. NeuroImage 45, S199–S209.

Philiastides, M.G., Ratcliff, R., Sajda, P., 2006. Neural representation of task difficulty
and decision making during perceptual categorization: a timing diagram. J.
Neurosci. 26, 8965–8975.

Purcell, B.A., Heitz, R.P., Cohen, J.Y., Schall, J.D., Logan, G.D., Palmeri, T.J., 2010.
Neurally-constrained modeling of perceptual decision making. Psychol. Rev. 117,

1113–1143.
Purcell, B.A., Schall, J.D., Logan, G.D., Palmeri, T.J., 2012. From salience to saccades:

multiple-alternative gated stochastic accumulator mode of visual search. J. Neurosci.
32, 3433–3446.

Ratcliff, R., 1978. A theory of memory retrieval. Psychol. Rev. 85, 59–108.
Ratcliff, R., 2013. Parameter variability and distributional assumptions in the diffusion

model. Psychol. Rev. 120, 281–292.
Ratcliff, R., Cherian, A., Segraves, M., 2003. A comparison of macaque behavior and

superior colliculus neuronal activity to predictions from models of simple two-choice
decisions. J. Neurophysiol. 90, 1392–1407.

Ratcliff, R., Childers, R., 2015. Individual differences and fitting methods for the two-
choice diffusion model. Decision 2, 237–279.

Ratcliff, R., Philiastides, M.G., Sajda, P., 2009. Quality of evidence for perceptual decision
making is indexed by trial-to-trial variability of the EEG. Proc. Natl. Acad. Sci. 106,
6539–6544.

Ratcliff, R., Thapar, A., McKoon, G., 2004. A diffusion model analysis of the effects of
aging on recognition memory. J. Mem. Lang. 50, 408–424.

Ratcliff, R., Thapar, A., McKoon, G., 2010. Individual differences, aging, and IQ in two-
choice tasks. Cogn. Psychol. 60, 127–157.

Ratcliff, R., Thapar, A., McKoon, G., 2011. Effects of aging and IQ on item and associative
memory. J. Exp. Psychol. Gen. 140, 46–487.

Ratcliff, R., Tuerlinckx, F., 2002. Estimating the parameters of the diffusion model:
approaches to dealing with contaminant reaction times and parameter variability.
Psychon. Bull. Rev. 9, 438–481.

Ratcliff, R., Van Zandt, T., McKoon, G., 1999. Connectionist and diffusion models of
reaction time. Psychol. Rev. 106, 261–300.

Rotello, C.M., Macmillan, N.A., Reeder, J.A., 2004. Sum-difference theory of
remembering and knowing: a two-dimensional signal-detection model. Psychol. Rev.
111, 588–616.

Rugg, M.D., 1995. Memory and consciousness: a selective review of issues and data.
Neuropsychologia 33, 1131–1141.

Rugg, M.D., Curran, T., 2007. Event-related potentials and recognition memory. Trends
Cogn. Sci. 11, 251–257.

Rugg, M.D., Yonelinas, A.P., 2003. Human recognition memory: a cognitive neuroscience
perspective. Trends Cogn. Neurosci. (7), 313–319.

Shadlen, M.N., Kiani, R., 2013. Decision making as a window on cognition. Neuron 80,
791–806.

Shiffrin, R.M., Steyvers, M., 1997. A model for recognition memory: rem: retrieving
effectively from memory. Psychon. Bull. Rev. 4, 145–166.

Smith, P.L., Ratcliff, R., McKoon, G., 2014. The diffusion model is not a deterministic
growth model: comment on Jones and Dzhafarov (2013). Psychol. Rev. 121,
679–688.

Starns, J.J., Ratcliff, R., 2008. Two dimensions are not better than one: streak and the
univariate signal detection model of remember/know performance. J. Mem. Lang.
59, 169–182.

Starns, J.J., Ratcliff, R., 2014. Validating the unequal-variance assumption in recognition
memory using response time distributions instead of ROC functions: a diffusion
model analysis. J. Mem. Lang. 70, 36–52.

Starns, J.J., Ratcliff, R., McKoon, G., 2012. Evaluating the unequal-variability and dual
process explanations of zROC slopes with response time data and the diffusion
model. Cogn. Psychol. 64, 1–34.

Tuerlinckx, F., Maris, E., Ratcliff, R., De Boeck, P., 2001. A comparison of four methods
for simulating the diffusion process. Behav. Res. Instrum. Comput. 33, 443–456.

Turner, B.M., Forstmann, B.U., Wagenmakers, E.-J., Brown, S.D., Sederberg, P.B.,
Steyvers, M., 2013. A Bayesian framework for simultaneously modeling neural and
behavioral data. NeuroImage 72, 193–206.

Usher, M., McClelland, J.L., 2001. The time course of perceptual choice: the leaky,
competing accumulator model. Psychol. Rev. 108, 550–592.

Wagner, A.D., Shannon, B.J., Kahn, I., Buckner, R.L., 2005. Parietal lobe contributions to
episodic memory retrieval. Trends Cogn. Sci. (9), 445–453.

Wixted, J.T., 2007. Dual-process theory and signal-detection theory of recognition
memory. Psychol. Rev. 114, 152–176.

Yonelinas, A.P., 1994. Receiver-operating characteristics in recognition memory:
evidence for a dual-process model. J. Exp. Psychol. Learn. Mem. Cogn. 20,
1341–1354.

Yonelinas, A.P., 1997. Recognition memory ROCs for item and associative information:
the contribution of recollection and familiarity. Mem. Cogn. 25, 747–763.

Zhang, S., Lee, M.D., Vandekerckhove, J., Gunter, M., Wagenmakers, E.-J., 2014. Time-
varying boundaries for diffusion models of decision making and response time.
Front. Quant. Psychol. Meas. 5, 1364.

R. Ratcliff et al. Neuropsychologia 93 (2016) 128–141

141

http://refhub.elsevier.com/S0028-16)30363-sbref1
http://refhub.elsevier.com/S0028-16)30363-sbref1
http://refhub.elsevier.com/S0028-16)30363-sbref2
http://refhub.elsevier.com/S0028-16)30363-sbref2
http://refhub.elsevier.com/S0028-16)30363-sbref2
http://refhub.elsevier.com/S0028-16)30363-sbref3
http://refhub.elsevier.com/S0028-16)30363-sbref3
http://refhub.elsevier.com/S0028-16)30363-sbref3
http://refhub.elsevier.com/S0028-16)30363-sbref4
http://refhub.elsevier.com/S0028-16)30363-sbref4
http://refhub.elsevier.com/S0028-16)30363-sbref5
http://refhub.elsevier.com/S0028-16)30363-sbref5
http://refhub.elsevier.com/S0028-16)30363-sbref5
http://refhub.elsevier.com/S0028-16)30363-sbref6
http://refhub.elsevier.com/S0028-16)30363-sbref6
http://refhub.elsevier.com/S0028-16)30363-sbref7
http://refhub.elsevier.com/S0028-16)30363-sbref7
http://refhub.elsevier.com/S0028-16)30363-sbref7
http://refhub.elsevier.com/S0028-16)30363-sbref8
http://refhub.elsevier.com/S0028-16)30363-sbref8
http://refhub.elsevier.com/S0028-16)30363-sbref9
http://refhub.elsevier.com/S0028-16)30363-sbref9
http://refhub.elsevier.com/S0028-16)30363-sbref9
http://refhub.elsevier.com/S0028-16)30363-sbref10
http://refhub.elsevier.com/S0028-16)30363-sbref10
http://refhub.elsevier.com/S0028-16)30363-sbref11
http://refhub.elsevier.com/S0028-16)30363-sbref11
http://refhub.elsevier.com/S0028-16)30363-sbref11
http://refhub.elsevier.com/S0028-16)30363-sbref12
http://refhub.elsevier.com/S0028-16)30363-sbref13
http://refhub.elsevier.com/S0028-16)30363-sbref13
http://refhub.elsevier.com/S0028-16)30363-sbref14
http://refhub.elsevier.com/S0028-16)30363-sbref14
http://refhub.elsevier.com/S0028-16)30363-sbref15
http://refhub.elsevier.com/S0028-16)30363-sbref15
http://refhub.elsevier.com/S0028-16)30363-sbref16
http://refhub.elsevier.com/S0028-16)30363-sbref16
http://refhub.elsevier.com/S0028-16)30363-sbref17
http://refhub.elsevier.com/S0028-16)30363-sbref17
http://refhub.elsevier.com/S0028-16)30363-sbref18
http://refhub.elsevier.com/S0028-16)30363-sbref18
http://refhub.elsevier.com/S0028-16)30363-sbref18
http://refhub.elsevier.com/S0028-16)30363-sbref19
http://refhub.elsevier.com/S0028-16)30363-sbref19
http://refhub.elsevier.com/S0028-16)30363-sbref20
http://refhub.elsevier.com/S0028-16)30363-sbref20
http://refhub.elsevier.com/S0028-16)30363-sbref21
http://refhub.elsevier.com/S0028-16)30363-sbref21
http://refhub.elsevier.com/S0028-16)30363-sbref22
http://refhub.elsevier.com/S0028-16)30363-sbref22
http://refhub.elsevier.com/S0028-16)30363-sbref23
http://refhub.elsevier.com/S0028-16)30363-sbref24
http://refhub.elsevier.com/S0028-16)30363-sbref24
http://refhub.elsevier.com/S0028-16)30363-sbref25
http://refhub.elsevier.com/S0028-16)30363-sbref25
http://refhub.elsevier.com/S0028-16)30363-sbref26
http://refhub.elsevier.com/S0028-16)30363-sbref26
http://refhub.elsevier.com/S0028-16)30363-sbref27
http://refhub.elsevier.com/S0028-16)30363-sbref27
http://refhub.elsevier.com/S0028-16)30363-sbref27
http://refhub.elsevier.com/S0028-16)30363-sbref28
http://refhub.elsevier.com/S0028-16)30363-sbref28
http://refhub.elsevier.com/S0028-16)30363-sbref29
http://refhub.elsevier.com/S0028-16)30363-sbref29
http://refhub.elsevier.com/S0028-16)30363-sbref30
http://refhub.elsevier.com/S0028-16)30363-sbref30
http://refhub.elsevier.com/S0028-16)30363-sbref30
http://refhub.elsevier.com/S0028-16)30363-sbref31
http://refhub.elsevier.com/S0028-16)30363-sbref31
http://refhub.elsevier.com/S0028-16)30363-sbref31
http://refhub.elsevier.com/S0028-16)30363-sbref32
http://refhub.elsevier.com/S0028-16)30363-sbref32
http://refhub.elsevier.com/S0028-16)30363-sbref32
http://refhub.elsevier.com/S0028-16)30363-sbref33
http://refhub.elsevier.com/S0028-16)30363-sbref34
http://refhub.elsevier.com/S0028-16)30363-sbref34
http://refhub.elsevier.com/S0028-16)30363-sbref35
http://refhub.elsevier.com/S0028-16)30363-sbref35
http://refhub.elsevier.com/S0028-16)30363-sbref35
http://refhub.elsevier.com/S0028-16)30363-sbref36
http://refhub.elsevier.com/S0028-16)30363-sbref36
http://refhub.elsevier.com/S0028-16)30363-sbref37
http://refhub.elsevier.com/S0028-16)30363-sbref37
http://refhub.elsevier.com/S0028-16)30363-sbref37
http://refhub.elsevier.com/S0028-16)30363-sbref38
http://refhub.elsevier.com/S0028-16)30363-sbref38
http://refhub.elsevier.com/S0028-16)30363-sbref39
http://refhub.elsevier.com/S0028-16)30363-sbref39
http://refhub.elsevier.com/S0028-16)30363-sbref40
http://refhub.elsevier.com/S0028-16)30363-sbref40
http://refhub.elsevier.com/S0028-16)30363-sbref41
http://refhub.elsevier.com/S0028-16)30363-sbref41
http://refhub.elsevier.com/S0028-16)30363-sbref41
http://refhub.elsevier.com/S0028-16)30363-sbref42
http://refhub.elsevier.com/S0028-16)30363-sbref42
http://refhub.elsevier.com/S0028-16)30363-sbref43
http://refhub.elsevier.com/S0028-16)30363-sbref43
http://refhub.elsevier.com/S0028-16)30363-sbref43
http://refhub.elsevier.com/S0028-16)30363-sbref44
http://refhub.elsevier.com/S0028-16)30363-sbref44
http://refhub.elsevier.com/S0028-16)30363-sbref45
http://refhub.elsevier.com/S0028-16)30363-sbref45
http://refhub.elsevier.com/S0028-16)30363-sbref46
http://refhub.elsevier.com/S0028-16)30363-sbref46
http://refhub.elsevier.com/S0028-16)30363-sbref47
http://refhub.elsevier.com/S0028-16)30363-sbref47
http://refhub.elsevier.com/S0028-16)30363-sbref48
http://refhub.elsevier.com/S0028-16)30363-sbref48
http://refhub.elsevier.com/S0028-16)30363-sbref49
http://refhub.elsevier.com/S0028-16)30363-sbref49
http://refhub.elsevier.com/S0028-16)30363-sbref49
http://refhub.elsevier.com/S0028-16)30363-sbref50
http://refhub.elsevier.com/S0028-16)30363-sbref50
http://refhub.elsevier.com/S0028-16)30363-sbref50
http://refhub.elsevier.com/S0028-16)30363-sbref51
http://refhub.elsevier.com/S0028-16)30363-sbref51
http://refhub.elsevier.com/S0028-16)30363-sbref51
http://refhub.elsevier.com/S0028-16)30363-sbref52
http://refhub.elsevier.com/S0028-16)30363-sbref52
http://refhub.elsevier.com/S0028-16)30363-sbref52
http://refhub.elsevier.com/S0028-16)30363-sbref53
http://refhub.elsevier.com/S0028-16)30363-sbref53
http://refhub.elsevier.com/S0028-16)30363-sbref54
http://refhub.elsevier.com/S0028-16)30363-sbref54
http://refhub.elsevier.com/S0028-16)30363-sbref54
http://refhub.elsevier.com/S0028-16)30363-sbref55
http://refhub.elsevier.com/S0028-16)30363-sbref55
http://refhub.elsevier.com/S0028-16)30363-sbref56
http://refhub.elsevier.com/S0028-16)30363-sbref56
http://refhub.elsevier.com/S0028-16)30363-sbref57
http://refhub.elsevier.com/S0028-16)30363-sbref57
http://refhub.elsevier.com/S0028-16)30363-sbref58
http://refhub.elsevier.com/S0028-16)30363-sbref58
http://refhub.elsevier.com/S0028-16)30363-sbref58
http://refhub.elsevier.com/S0028-16)30363-sbref59
http://refhub.elsevier.com/S0028-16)30363-sbref59
http://refhub.elsevier.com/S0028-16)30363-sbref60
http://refhub.elsevier.com/S0028-16)30363-sbref60
http://refhub.elsevier.com/S0028-16)30363-sbref60

	A single trial analysis of EEG in recognition memory: Tracking the neural correlates of memory strength
	Introduction
	Methods
	Subjects
	Stimuli
	Design
	Equipment
	Procedure
	EEG data processing

	Diffusion model
	Diffusion model fitting
	Single trial regressor analysis
	Results
	Discussion
	Acknowledgments
	References




