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Abstract
Traditional models of choice-response time assume that sensory evidence accumulates for choice alternatives until a
threshold amount of evidence has been obtained. Although some researchers have characterized the threshold as varying
randomly from trial to trial, these investigations have all assumed that the threshold remains fixed across time within a trial.
Despite decades of successful applications of these models to a variety of experimental manipulations, the time-invariance
assumption has recently been called into question, and a time-variant alternative implementing collapsing decision thresholds
has been proposed instead. Here, we investigated the fidelity of the collapsing threshold assumption by assessing relative
model fit to data from a highly constrained experimental design that coupled a within-subject mixture of two classic response
time paradigms—interrogation and free response—within a random dot motion (RDM) task. Overall, we identified strong
evidence in favor of collapsing decision thresholds, suggesting that subjects may adopt a dynamic decision policy due to
task characteristics, specifically to account for the mixture of response time paradigms and motion strengths across trials in
the mixed response signal task. We conclude that time-variant mechanisms may serve as a viable explanation for the strategy
used by human subjects in our task.

Keywords Fixed boundaries · Collapsing boundaries · Random dot motion · Interrogation

Introduction

Many aspects of everyday decisions require that we not
only integrate information but also weigh the information
appropriately with respect to time. For example, when a
soccer player notices a window of opportunity, she might
be diligent in aiming for the illustrious top-left corner, but
she also must take into account that among the league’s elite
defenders, she will have only seconds before her window
closes. While it would be ideal to have the most accurate
shot possible, the shot itself presents a possibility of a goal,
whereas a block by the defender suffers an unfortunate fate.
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Hence, the accuracy of the shot must be traded for the
amount of available time as the defender approaches.

While it is undoubtedly clear that time matters when
making decisions, it is often not taken seriously when
studying simple decisions such as those commonly used in
perceptual decision-making tasks. Most theoretical accounts
simply assume that information is integrated in a time-
invariant manner, and the decision depends on a fixed policy
that is established prior to encountering the alternatives.
Recently, these theoretical accounts have been scrutinized
because they fail to capture important trends in behavioral
data under some specific tasks (e.g., Cisek, Puskas, & El-
Murr, 2009; Malhotra, Leslie, Ludwig, & Bogacz, 2017;
Purecell et al., 2010; Purcell, Schall, Logan, & Palmeri,
2012; Shadlen & Kiani, 2013; Thura, Beauregard-Racine,
Fradet, & Cisek, 2012), and there is a growing body of
literature identifying neural computations that are clearly
related to time, but not information (e.g., van Vugt, Simen,
Nystrom, Holmes, & Cohen, 2012; Wyart, De Gardelle,
Scholl, & Summerfield, 2012). Although quite mixed, most
of the evidence for time-varying decision policies is gar-
nered when using sophisticated stimuli whose properties
have a temporal component, where the average rate of
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evidence accumulation is controlled directly by the stim-
ulus. As a result, proponents of time-invariant decision
policies have not considered these effects to be problematic
for extant theoretical accounts.

The central thesis of this article is that in addition to
stimuli, task demands could also induce a time-varying
decision policy. Here, we examine the impact of task
characteristics on the decision policy in a conventional,
two-alternative, forced choice task. We use standard stimuli
that are dynamic, but stationary, meaning that while the
particular presentation changes continuously through time,
the changes happen at a fixed rate, and so they are
time-invariant. As for the elicitation procedure, we use a
simple interrogation (also known as the signal-to-respond)
paradigm, where the amount of integration time is treated as
an independent variable. The novel aspect of our task is the
ability for subjects to “opt out” of the trial by responding
prior to the go cue. The opt-out strategy has been used to
collect unique information in other domains, such as when
obtaining measures of confidence (Kiani & Shadlen, 2009).
After investigating a number of decision model variants, we
ultimately conclude that models with time-variant decision
policies provided the best account of our data.

Theoutline of this article is as follows. First,wediscuss the
evidence both for and against time-invariant decision-making,
where we place special emphasis on the types of stimuli used
and the task demands. Second, we discuss the basic details of
our task, and we explain why the task demands used here
might induce a time-variant policy. Third, we present the
mathematical details of the models used to explain the data
from our task and specifically how time-variance is imposed.
In this section, we also show how time-invariant and time-
variant models make different hypothetical predictions for
data from our task, emphasizing the critical opt-out contin-
gency. Fourth, we present the methods of our task and model
fitting procedure. Fifth, we discuss a number of results, from
the raw empirical data to the model-fitting results. Finally,
we close with a brief discussion of how our task relates to
the debate about time-invariance in decision-making.

The interaction between time and evidence

Currently, the most successful attempts to explain and
understand perceptual decision-making behavior in a 2AFC
framework involve sequential sampling theory (Stone,
1960; Laming, 1968; Ratcliff, 1978; Ratcliff & Rouder,
1998). In their most basic form, models that embody
sequential sampling theory assume that decisions are made
by sequentially accumulating sensory evidence from a start-
ing point toward a decision threshold. However, as we will
discuss below, the implementation of the decision threshold
within the model is contingent on the elicitation procedure.

The general class of sequential sampling models have
enjoyed widespread success as they have continued to suc-
cessfully account for a variety of empirical benchmarks
observed in decision-making tasks. One of the most success-
ful instantiations of sequential sampling theory is the diffu-
sion decision model (DDM; Ratcliff, 1978), which assumes
that decisions are based on the continuous accumulation
of noisy sensory evidence across time, gradually evolving
from an initial starting point toward one of two boundaries,
each representing a particular choice alternative. Since its
inception, the DDM has successfully explained data from a
variety of topics including aging (Ratcliff, Thapar, & McK-
oon, 2003, 2007), memory (Ratcliff, 1978, 1981; Ratcliff
& Rouder, 1998; Ratcliff & McKoon, 2008), and visual
processing (Ratcliff & Rouder, 2000; Smith, Ratcliff, &
Wolfgang, 2004).

However, despite the model’s ability to account for
behavioral data, recent literature has noted that it suffers
from a lack of neural plausibility in that it does not provide
an explicit explanation for how its mechanisms are imple-
mented in the brain. Ditterich (2006a) describes this prob-
lem in terms of a “black box” view of cognitive research,
such that there is a clear separation between models of
behavior and the actual neural mechanisms that produce
said behavior. While choice accuracy and response times
can be modeled with the hypothesized parameters of the
DDM, the black box view asserts that one’s knowledge
remains incomplete if the model fits cannot be substantiated
by the true neural correlates (but see Turner, Van Maanen,
& Forstmann, 2015, for such an analysis). In other words, if
we are to assume that it is the ground truth of the decision-
making process, there needs to be a more convincing link
between the parameters governing the behavioral response
and the observed neural activity (Ditterich, 2006a, b; Schall,
2004; Turner, Forstmann, Love, Palmeri, & Van Maanen,
2017).1

Urgency

Unsatisfied by the lack of a mechanistically plausible
account of trial-to-trial variability in the decision process,
Ditterich (2006a) proposed a time-variant model that
assumed a gain function on accuracy as time increases
within a trial, represented as a logistic curve. In this regime,
accumulating evidence has an initially higher gain to avoid
fast errors, but as time increases, the gain asymptotes

1We should note that no model of cognition is likely be the
“ground truth” and perfectly represent the system it is attempting
to explain. However, the degree to which a model can account for
both the behavioral response and be substantiated by the underlying
neural activity determines how well it represents the system under
consideration.
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such that accumulating more evidence does not necessarily
produce increases in accuracy.

To this end, Ditterich (2006a) fit a variant of the DDM
that assumed (1) no between-trial variability in starting
point, (2) between-trial variability in the drift rate, and (3)
an accumulation process with an urgency signal to both
behavioral and neural data from a random dot motion task
(Roitman & Shadlen, 2002). Ditterich (2006a) found that
only the time-variant model could account for both the
correct and error response time distributions and accurately
predict neural firing rates.

Following Ditterich (2006a), human EEG studies have
identified temporal components of the decision process
independent of the strength of evidence using spectral
analyses (van Vugt et al., 2012; Wyart et al., 2012),
and new models using time-dependent gating mechanisms
have provided better accounts of certain behavioral and
neurophysiological data than time-invariant models in both
traditional and novel experimental tasks (Cisek et al., 2009;
Purcell et al., 2010, 2012; Thura et al., 2012).

Collapsing bounds

Recently, a similar mechanism for time variance has
been proposed, where the bounds of the DDM collapse
(i.e., move toward the starting point) with increases in
time (Bowman, Kording, & Gottfried, 2015; Shadlen &
Kiani, 2013. These models are mathematically similar to
the urgency models above and provide similarly effective
accounts of behavioral data. The effective difference is
that for more difficult decisions, responses are faster when
the bounds collapse than when they do not. This small
change produces response time distributions that are less
skewed (Hawkins, Forstmann, Wagenmakers, Ratcliff, &
Brown, 2015). Much like the success of the urgency gating
model, models with collapsing decision boundaries have
proven more effective in fitting specific neurophysiological
and behavioral data than time-invariant competitors (e.g.,
Bowman et al., 2015; Cisek et al., 2009; Ditterich, 2006a;
Gluth, Rieskamp, & Buchel, 2012).

The plausibility of the collapsing boundary assumption
initially garnered support by measuring choice confidence
through post-decision wagering tasks (Hampton, 2001;
Kiani & Shadlen, 2009; Shields, Smith, &Washburn, 1997),
where the collapsing bounds assumption served as a better
account of data in tasks where the reliability of the stimuli
was unknown (i.e., varied across trials). van Maanen,
Fontanesi, Hawkins, and Forstmann (2016) provided both
behavioral and neural evidence supporting the idea of
collapsing decision thresholds and urgency using an
expanded judgment task, where they manipulated the rate
of evidence accumulation in order to “expand” the average
decision time. Using this strategy, van Maanen et al. (2016)

found that as the average rate of accumulation decreased
and the average decision time increased, participants were
more willing to form a response on less overall stimulus
information according to an ideal observer model. The
pattern of evidence needed to form a response conditional
on the time of the response formed an approximately
linear function, suggesting time-variance similar to the other
models discussed in this section (e.g., Bowman et al., 2015;
Cisek et al., 2009; Drugowitsch, Moreno-Bote, Churchland,
Shadlen, & Pouget, 2012).

Push back

Although the evidence is building for the presence of
time-variant decision policies, there is also evidence
continuing to support time invariance. In the most extensive
comparison of time-variant and time-invariant models to
date, Hawkins et al. (2015) fit variants of a diffusion model
with fixed boundaries, variants of a diffusion model with
collapsing boundaries, and a variant of the urgency gating
model to a variety of human and primate data sets to
determine which of the three models best characterized
the decision-making process of each subject across all the
tasks. The results across species were mixed, with data from
the human subjects being best accounted for by the time-
invariant models and data from the non-human primates
being best accounted for by the time-variant models.

In a similar type of analytic strategy, Voskuilen, Ratcliff,
and Smith (2016) investigated time-variant and time-
invariant models by fitting these models to several sets of
data from numerosity judgment and random dot motion
tasks. Similar to Hawkins et al. (2015) and Voskuilen et al.
(2016) argued that the properties of the stimuli themselves
in tasks like the expanded judgment tasks (e.g., Cisek et al.,
2009; van Maanen et al., 2016) were a likely contributor to
the evidence supporting time-variant models. After fitting a
class of models to data with a model comparison technique
argued to be more sensitive to the functional form of each
model (i.e., the parametric bootstrap cross-fitting method;
Wagenmakers, Ratcliff, Gomez, and Iverson, 2004), the
authors found that the time-invariant model provided a
better fit to the majority of data. Their analyses support the
notion that speeded judgments are better captured by time-
invariant decision policies, whereas expanded judgments are
better captured by time-variant decision policies.

Inducing collapsing bounds via task demands

While most of the evidence supporting collapsing bound-
aries has been garnered in experiments that use time-variant
stimuli, our hypothesis was that some task demands may
also induce a collapsing bound decision policy. Referring
back to the example from the introduction, while in most
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cases we may prefer to maximize accuracy (e.g., our prob-
ability of scoring a goal), under conditions where time will
expire (e.g., an approaching defender), it is better to make a
choice on the basis of only partial information (e.g., know-
ing where the goal is, but not the location of the goalie). A
long history of decision-making research agrees that humans
are able to trade accuracy for speed in remarkably flexible
ways (Bogacz, Wagenmakers, Forstmann, & Nieuwenhuis,
2010; Forstmann et al., 2008; Garrett, 1922; Pleskac &
Busemeyer, 2010; Ratcliff & Rouder, Wickelgren, 1998;
1977) and weigh information differently depending on the
time at which it was acquired (Tsetsos et al., 2011). Given
these findings, we hypothesized that manipulating the
amount of time a subject could integrate stimulus informa-
tion could make the subject more sensitive to the temporal
aspects of integration, thereby inducing a time cost for fur-
ther integration. In other words, by creating an environment
where the amount of integration time was uncertain, we
could induce a collapsing boundary.

For our task, we used an interrogation paradigm,
otherwise known as a signal-to-respond paradigm. The
interrogation paradigm has been used as an elicitation
procedure in a variety of tasks (e.g., Corbett & Wickelgren,
1978; Dosher, 1976, 1979, 1981, 1982, 1984; Gao, Tortell,
& McClelland 2011; Kounios, Osman, & Meyer 1987;
McElree &Dosher, 1993;Meyer, Irwin, Osman, &Kounios,
1988; Ratcliff, 2006; Reed, 1973, 1976; Schouten &Bekker,
1967; Turner, Gao, Koenig, Palfy, & McClelland, 2017;
Usher & McClelland, 2001; Wickelgren, 1977; Wickelgren
&Corbett, 1977) and has a few desirable properties. Perhaps
the most important feature of the interrogation paradigm
is that it allows researchers to track response accuracy
as a function of integration time, giving insight into the
points in time at which accuracy grows away from chance,
asymptotes, and interpolates between these two extremes.

Usher and McClelland (2001) used the interrogation
paradigm as a way of discriminating between two models
of perceptual integration by assuming that within this
paradigm, decision boundaries were not used when making
the choice. Instead, Usher and McClelland (2001) assumed
that observers continued to integrate information until a
go cue was presented. Ratcliff (2006) argued that the
interrogation paradigm itself did not necessarily preclude
the presence of a decision boundary. He argued that the data
obtained for a given go cue lag contained some decisions
based on integrated information up to the go cue, but also
contained some decisions that were essentially made prior to
the go cue (i.e., a threshold amount of evidence had already
been acquired). The probability of an observer making a
decision prior to the go cue could be calculated from the
DDM with decision boundaries in tact (also see Ratcliff,
1988). When modeling the choice probabilities as a mixture
of two different response contingencies, Ratcliff found that

the two models used in Usher and McClelland (2001) could
not be distinguished reliably.

While the modeling work of Ratcliff (2006) shows that
decision boundaries are still a concern within the interroga-
tion paradigm, there are two points that can be experimen-
tally improved upon for our purposes. First, Ratcliff (2006)
collected data from subjects in either the free response
or interrogation paradigm, and these two task demands
served as separate conditions within the experiment. Sec-
ond, the elicitation procedure within the classic interroga-
tion paradigm (e.g., Ratcliff, 2006) confounds our ability to
separate decision processes that terminate prior to the go cue
and those that terminate after the go cue. While the model
Ratcliff used (and one of the variants we will use below)
can clearly make separate predictions about the probability
of these two events, because the data do not inform us about
the relative probabilities of these two events, the model is
only weakly constrained.

To rectify the issues described above, we extended the
basic interrogation paradigm by including the possibility
of “opting out” within each trial. The motivation for this
feature comes from the additional constraint it can provide
in estimating decision states, such as in Kiani and Shadlen
(2009) to reveal choice confidence. For a given trial, we
will present each stimulus for some pre-determined amount
of time (i.e., an independent variable). At the end of this
time, we will remove the stimulus, which serves as the
cue to respond. However, if subjects are sure of their
response before the stimulus disappears, they can provide
a response at a time of their choosing, as they might in
a free response paradigm. Because our task also involves
a mixture of stimulus coherencies, we should expect these
coherencies to modulate the probabilities of responding
prior to and after the go cue, revealing better insights to
the decision dynamics. By including the opt-out procedure,
we obtain data on both decisions that were terminated prior
to the go cue and those that were terminated after the
go cue, thereby eliminating the confound of the standard
interrogation paradigm described above.

Modeling themixed response signal
paradigm

In this section, we describe the boundary details of the
diffusion decision model. Although Ratcliff (2006) and
Usher and McClelland (2001) have compared models such
as the DDM and Leaky Competing Accumulator (LCA)
model, we only examine the DDM here as the purpose
of our article is to investigate whether fixed or collapsing
boundaries provide the best account of our data, not
different model architectures. As many readers are already
familiar with the specific details of the DDM, we will turn
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our focus to how the decision thresholds in each form of
the DDM under investigation in this article are instantiated.
Interested readers should look to the Supplementary
Materials for details regarding the evolution of evidence
within the DDM.

Fixed boundaries

The fixed boundary model is the most common instantiation
of the DDM (Ratcliff, 1978, 1981; Ratcliff & McKoon,
2008; Ratcliff & Rouder, 1998). When assuming a fixed
boundary, one assumes the evidence accumulates until a
threshold amount of evidence a has been reached. The
model typically assumes that the amount of evidence
required to terminate the integration process is symmetric
about zero, so that the threshold amount of evidence for
one alternative is a and the threshold amount of evidence
for the other alternative is −a. Although the DDM is
primarily designed to capture data from a two-alternative
forced choice task, extensions to multiple alternatives are
possible (see Leite & Ratcliff, 2010; Diederich & Oswald,
2014).

The threshold a serves as a parameter to be estimated
from the data. When assuming a fixed boundary, a remains
at a constant value throughout time. In other words, under
this regime, the decision policy in the model is time
invariant. While many have derived analytic expressions
for the choice and response time from the fixed boundary
version of the DDM (Feller, 1968; Tuerlinckx, 2004;
Navarro & Fuss, 2009), because analytic expressions do
not yet exist for the collapsing bound version under
investigation, we do not discuss these efforts here.2

Collapsing boundaries

Rather than assuming that the amount of evidence required
to make a decision remains fixed across time, models that
impose a collapsing boundary assume that the amount of
evidence needed to make a decision depends on the time that
has elapsed. These collapsing boundary models are viewed
as extensions of the simple fixed bound version of the DDM
discussed above, but feature decisions boundaries whose
collapse functions are dictated by another set of model
parameters. With these additional parameters, collapsing
bounds models can explain a variety of data that traditional
fixed bounds models cannot, namely the neurophysiological
and decision-making behavior of primates (e.g., Ditterich,
2006a; Kiani & Shadlen, 2009; Shadlen & Kiani, 2013).
Additionally, researchers have found that adopting a

2Analytic expressions for the first passage of time distribution with
a time-dependent boundary were derived in Smith (2000). However,
these expressions assume a different functional form that the one we
use here (also used in Hawkins et al., 2015).

collapsing decision boundary is optimal in situations where
the reliability of the source of evidence is unknown (Shadlen
& Kiani, 2013), when there is an effort cost of deliberation
time (Busemeyer & Rapoport, 1988; Drugowitsch et al.,
2012; Rapoport & Burkheimer, 1971), or when one is
attempting to maximize reward after withholding a response
for a pre-specified amount of time (e.g., Malhotra et al.,
2017; Thura et al., 2012).

One conventionally assumed functional form specifies
that the upper boundary u decreases from its initial value a

across time t , such that

u (t) = a −
(
1 − exp

(
−

(
t

λ

)k
)) (

1

2
a − a′

)
(1)

Hawkins et al. (2015), where a is the initial starting point
of the boundary, a′ is the asymptotic boundary setting, and
λ and k are scaling and shape parameters, similar to the
Weibull distribution.

The specific shape of the collapse is determined by
the values of the parameters a′, λ, and k. The asymptotic
boundary setting a′ controls the extent to which the
boundaries collapse. Larger values of a′ lead to a larger
separation between the collapsing upper and lower and
boundaries (i.e., straighter boundaries), while smaller values
of a′ induce a larger collapse of the decision boundaries.
When a′ = 0, the boundaries completely collapse, where
the boundaries decrease to a critical value c that is half of
their initial starting point c = a/2 (Hawkins et al., 2015).
The left panel of Fig. 1 illustrates how the parameter a′
affects the shape of the decision boundary. Here, the scaling
parameter is fixed at λ = 1, and a′ varies from 0 to 1.
When a′ = 0, a complete collapse ensues such that the
boundaries collapse to half of the starting boundary value:
c = a/2 = 3/2 = 1.5. As the value of a′ increases, the
collapse becomes less severe, resembling a fixed bound.

The scaling parameter λ determines the stage (i.e., time)
of the boundary collapse. As λ decreases, the bounds
collapse earlier with respect to time. The effect of λ on the
decision boundary is illustrated in the right panel of Fig. 1.
Here, a′ is held constant at a′ = 1 and λ varies from 0.5
to 1.5. When λ = 0.5, the bounds collapse earlier in the
decision process, reaching the asymptotic collapse much
earlier than when λ is larger.

Finally, the shape parameter k determines the shape
of the boundary collapse. Depending on the value of k,
the boundary could collapse very early in the decision
process (early collapse), gradually throughout the decision
process (gradual collapse), or later in the decision process
(late collapse). For the purposes of this article, the shape
parameter was fixed at k = 3, which produces a “late”
collapse (see Hawkins et al., 2015, for a demonstration).
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Fig. 1 Effects of parameters on the shape of the collapse. A demonstration of how varying either a′ (left panel) or the scaling parameter λ (right
panel) affects the shape of the boundary collapse

Theoretical predictions

The shape of the boundary has a major impact on how the
diffusion model characterizes the decision-making process.
In the time-invariant model, the decision boundaries are
fixed, which implies that the amount of accumulated
evidence needed to reach a decision remains fixed over
time. By contrast, in the time-variant model, the decision
boundaries collapse toward zero, meaning that less evidence
is required as time increases.

Given these differences, one may wonder whether the
models make different predictions for our mixed response
signal task. To investigate this, we simulated the two models
10,000 times and recorded important response probabilities.
For the time-invariant model, we set the decision threshold
to a = 3. For the time-variant model, we fixed the starting
point of the threshold a = 3, the asymptotic boundary
parameter a′ = 0, the scaling parameter λ = 0.5, and the
shape parameter k = 3. All remaining parameters were
equivalent across models: the starting point z0 = 0, within-
trial variability in drift s = 0.1, nondecision time ter = 10
(in milliseconds), between-trial variability in nondecision
time to sτ = 0, between-trial variability in starting point to
s0 = 5, and between-trial variability in drift to η = 0.2.
In line with our mixed response signal task, we examined
five different interrogation times: 0.1, 0.3, 0.5, 0.7, and 0.9
s. We also examined three different coherencies: 0, 0.25,
and 0.50%. All parameters were chosen to highlight the
potential differences in predictions between the two models.

Figure 2 shows the response probabilities for important
statistics in our mixed response signal task: 1) the
probability p1 of making a right response prior to the
cue disappearing; 2) the probability p2 of making a left
response prior to the cue disappearing; 3) the probability p3

of making a left response after the cue disappears; and 4)
the probability p4 of making a right response after the cue
disappears. The time-variant model is illustrated as the lines
with “X”s, whereas the time-invariant model is illustrated
as the lines with open circles. The three coherencies are
illustrated as black (0%), red (0.25%), and blue (0.50%)
lines. The top left panel shows each model’s predictions for
the probability of responding prior to the go cue for each
interrogation time. Both models make similar predictions
for the first interrogation time, but as time increases, the
predictions diverge such that the time-variant model predicts
a larger probability of early responding (i.e., prior to the
disappearance of the stimulus). As one might predict from
the collapsing decision threshold in the time-variant models,
the probability of an early response increases by virtue of
the decreased need for more evidence with increases in
time. Furthermore, the degree of separation is modulated by
the strength of coherence for this metric. Namely, at low
coherencies, the differences in the models’ predictions are
larger than when the coherencies are high.

The top right panel of Fig. 2 shows the probability of
a correct response, marginalized over whether the response
was made prior to or following the go cue. Here, the
top right panel shows that the response probabilities are
virtually indistinguishable across the fixed and collapsing
bound models. These marginal probabilities are what have
been used previously to constrain and compare models
of evidence accumulation (Usher & McClelland, 2001;
Ratcliff, 2006).

The bottom panel of Fig. 2 shows the probabilities
from the top right panel separated by whether the response
was made prior to (left panel) or after (right panel) the
go cue. These probabilities (in addition to the top left
panel) are what make the mixed response signal paradigm
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Fig. 2 Differences in response probabilities. The time-invariant and
time-variant models make different predictions for important response
probabilities in the mixed task. The top left panel shows that the
time-variant model predicts a larger probability of an “early” response
(i.e., a response made prior to the disappearance of the stimulus). The
top right panel shows the probability of a correct response. The bot-
tom panels show the probability of a correct response, conditional on

whether the response was made either prior to (left panel) or after the
go cue (right panel). Predictions for the time-variant and time-invariant
models are shown as lines with either open circles or “X” symbols,
respectively. The color of each pair of lines illustrates differences in
the strength of motion coherence: 0% (black), 0.25% (red), and 0.50%
(blue)

unique compared to other interrogation paradigms, as they
eliminate the confound between processes that terminate
prior to and after the go cue. In the left panel, nearly all
model predictions are indistinguishable, with the exception
of the 0.25% coherency in the longer delays. Here, the
fixed boundary allows for higher accuracy to be achieved
relative to the collapsing boundary due to increased stimulus
integration. By contrast, the right panel shows large
differences between the two models for the probability of
a correct response, given that an observer waits for the
go cue. Namely, as the coherency increases, the collapsing
bound model predicts a substantial decline in accuracy as
time increases, relative to the fixed bound model. These
differences are most strongly influenced by the relative
differences in the amount of integration time.3

The purpose of the simulation above is to show
that the mixed response signal paradigm, along with a
coherence manipulation, can create differences in the model
predictions. Figure 2 reveals that, by allowing subjects
to respond early, the models can be discriminated more
strongly by virtue of making the response (top left) or
the accuracy of those responses conditional on whether a

3It should be noted that these probabilities are less stable for longer
integration times, as there are differences between the models for the
probability of an early response (i.e., see the top left panel of Fig. 2).

response was made prior to (bottom left) or after (bottom
right) the go cue.

By themselves, the four qualitative predictions in Fig. 2
will not be useful in discriminating between the time-invariant
and time-variant models when analyzed independently,
but rather, they should be used in conjunction to aid in
discrimination. For example, the top left panel of Fig. 2
shows discriminability among the models for low coherence
conditions, whereas the bottom right panel shows discrim-
inability among the models for high coherence conditions.
Hence, the experimental design will play a crucial role in
the model comparison analyses we report below (Myung &
Pitt, 1997, 2002, 2009). It should be noted that either of
the models can adjust other parameters to compensate for
predictions that are not supported by the data. For exam-
ple, the time-invariant model can easily produce increases
in the probability of early responses (i.e., the left panel of
Fig. 2) by increasing the between-trial drift variability term.
Increases in the between-trial drift variability term cause
increases in the variance of the state of sensory evidence,
and in the limit, the between-trial drift variability term has
the largest impact on how the variance increases with time
(see Supplementary Materials). When assuming the pres-
ence of a bound, the end result is an increase in (early)
terminations that also leads to a decrease in accuracy, on
average (e.g., see the top right and bottom right panels of
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Fig. 2). The question is whether the adjustments made by
either model produce deficiencies in other aspects of the
data. Our experiment was designed to capture these model
adjustments, while providing enough constraint to detect
said deficiencies.

Model variants

To test the relative merits of collapsing and fixed bound-
aries, we created 16 different variants by allowing different
combinations of between-trial sources of variability and col-
lapsing bound parameters. As a guide, Table 1 provides a
list of all model parameters. For simplicity, we can divide
these 16 models into four classes. Class 1 (Models 1-4) con-
sists of four variants assuming fixed boundaries that differ
by which sources of between-trial variability are allowed to
be estimated. Classes 2, 3, and 4 are time-variant models
that simply allow different combinations of the collaps-
ing bound parameters to be freely estimated. All models
freely estimate the mean of the nondecision time param-
eter τer , the between-trial variability in nondecision time
Sτ , an initial threshold a, the mean of the starting point z0,
and coherence scaling parameter v. The response criterion
c(t) = ξ , which was used to determine a rightward or left-
ward response should a response not be made prior to the
stimulus being removed from the screen, was fixed at ξ = 0.
The within-trial variability in drift was fixed at s = 0.1
for identifiability purposes. We now discuss the remaining
specifications intrinsic to each model variant within each
class.

Class 1 is composed of four models that systematically
fix and free the between-trial variability in starting point
parameter S0 and the between-trial variability in drift rate
η. Specifically, Model 1 assumes that both of these terms

Table 1 Diffusion model parameters. Notation of the parameters used
throughout this article, along with a description of their functionality

Parameter Description

a Initial response threshold value

v Drift rate

z0 Starting point

s Within-trial variability in drift rate

τer Nondecision time

Sτ Between-trial variability in nondecision time

S0 Between-trial variability in starting point

η Between-trial variability in drift rate

a′ Extent of the boundary collapse

λ Stage of the boundary collapse

k Shape of the boundary collapse

are fixed to be zero (i.e., S0 = η = 0), Model 2 allows η

to be freely estimated (i.e., S0 = 0), Model 3 allows S0 to
be freely estimated (i.e., η = 0), and Model 4 allows both
model parameters to be freely estimated.

Classes 2 (Models 5–8), 3 (Models 9–12), and 4 (Models
13–16) are derivatives of the four models comprising Class
1, but systematically fix and free the asymptotic boundary
setting a′ and the scaling parameter λ. For all three of these
classes, we set the shape parameter k = 3 to reduce both the
complexity of the time-variant models and the number of
potential model variants. Class 2 freely estimates a′ but fixes
λ = 1. Class 3 freely estimates λ, but fixes a′ = 0. Finally,
Class 4 freely estimates both a′ and λ. The arrangement of
parameters featured in each of the 16 variants can be found
in the Supplementary Materials.

Methods

In this section, we describe our perceptual decision-making
task. As discussed in the introduction, our strategy was to
use a mixture of interrogation and free response paradigms
so that the amount of stimulus processing time could be
treated as an independent variable in our experiment. In
addition, the levels of processing time were crossed with the
coherency of the dot motion, creating a fully factorial design
of strength and duration of evidence.

Subjects

Fourteen healthy subjects were recruited from Ohio
State University. All subjects provided written consent in
accordance with the university’s institutional review board
and received partial course credit for their time. With the
exception of two subjects, all subjects completed the full
design consisting of 650 trials. Of the two who failed to
complete the study, one only completed 543 of the 650 trials
due to scheduling conflicts, and the other abandoned the
task at trial 220 of 650. However, both subjects’ data were
included in all analyses.

Stimuli and equipment

The random dot motion task (see Newsome and Pare,
1988) was created using a custom program named the
State Machine Interface Library for Experiments (SMILE;
https://github.com/compmem/smile) , which is an open-
source, Python-based experiment building library. Subjects
completed the task on a desktop computer with a 15- inch
display, running at 60 Hz, in a cubicle within view of an
experimenter.

https://github.com/compmem/smile
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Design

The mixed response signal task used a 5×5 (motion strength
× interrogation time) within-subject factorial design. The
levels of motion coherency were 0, 5, 15, 25, or 35% in
either the rightward or leftward direction. The condition of
0% coherency was used as a control condition to enhance
our ability to infer perceptual biases that might occur for
each subject. The interrogation time could occur at any of
the following times: 100, 300, 500, 700, or 900 ms. The
interrogation times serve as the control for the stimulus
duration. That is, the stimuli were presented for a certain
number of milliseconds, after which time the dots were
removed from the display. Subjects were trained to treat the
removal of the dots as a “go cue” such that a response should
be initiated. However, subjects were also instructed that they
could initiate a response while the dots were still on the
screen. The full factorial design of our task is displayed in
Table 2.

On each trial, subjects were presented with clouds of
dots constructed using one of the motion strength and
interrogation time pairs listed in Table 2, and they were
required to make a direction of motion (i.e., either left or
right) decision based on which direction most of the dots
were moving by pressing either the “D” key with their left
hand or the “K” key with their right hand.

Subjects completed one practice block before completing
13 additional blocks, consisting of 50 trials per block.
This resulted in 650 total trials. On each block, each
motion-strength-interrogation-pair in Table 2 was randomly
presented once for rightward moving dots and once for
leftward moving dots.

Procedure

After obtaining informed consent, subjects sat in front of
the computer and were provided with brief instructions by
the experimenter. These instructions informed the subject
that they would be completing several blocks of a random

dot motion task, and that the dot stimuli would only be on
the screen for a short period of time before being removed.
After explaining the task, the experimenter explicitly
stressed that while the dots would be removed after a short
period of time, the subject did not have to wait for the dots
to disappear and could respond at any time. Subjects were
informed that they could respond as soon as they were aware
of which direction the dots were moving, and that they could
respond prior to the dots leaving the screen if they so chose.

After the instruction period, the experimenter started
the program and left the room. Each block began with an
instruction screen that provided a description of the task, the
key mapping, and an illustration of leftward and rightward
moving dots. Once subjects felt they were ready to begin
the task, they pressed the ENTER key and the task began.
Each trial began with the presentation of a fixation cross that
remained on screen for 100 ms. Then, a cloud of randomly
moving dots were presented to the subject for a prespecified
amount of time, and the subjects were asked to make a
direction decision. Again, subjects were informed prior to
beginning the experiment that they were free to respond
as soon as they felt they knew the answer. The motion
strength and interrogation times were randomly chosen and
counterbalanced across trials. Once a response was made,
feedback was presented for 100 ms in the form of a green
checkmark for correct answers or a red X for errors. Finally,
the fixation cross reappeared, denoting a new trial. Subjects
were also given feedback in the form of “too fast” or “too
slow” if they responded prior to 100 ms after stimulus onset
or after 2500 ms post interrogation time, respectively.

Fitting themodels

Figure 3 shows the basic strategy we used for fitting each of
the 16 models to data by demonstrating how the data were
organized for a given stimulus coherency i and duration
time j (see Table 2). For each cell in the factorial design,
we organized the data Di,j = {n1, n2, n3, n4} based on the
number of times four unique events occurred: a rightward

Table 2 Experimental design. Columns represent the levels of stimulus durations (i.e., interrogation times), whereas rows represent the levels of
coherency. In each block, each stimulus duration and motion strength pair was randomly selected and presented twice

Stimulus duration (s)

Coherency 0.1 0.3 0.5 0.7 0.9

0 (0, 0.1) (0, 0.3) (0, 0.5) (0, 0.7) (0, 0.9)

0.05 (0.05, 0.1) (0.05, 0.3) (0.05, 0.5) (0.05, 0.7) (0.05, 0.9)

0.15 (0.15, 0.1) (0.15, 0.3) (0.15, 0.5) (0.15, 0.7) (0.15, 0.9)

0.25 (0.25, 0.1) (0.25, 0.3) (0.25, 0.5) (0.25, 0.7) (0.25, 0.9)

0.35 (0.35, 0.1) (0.35, 0.3) (0.35, 0.5) (0.35, 0.7) (0.35, 0.9)
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Fig. 3 Model fitting strategy. For a given stimulus coherence and dura-
tion (i.e., black vertical line), the figure shows how the data (left panel)
and model simulations (right panel) were organized to evaluate the
suitability of a given model parameter. The left panel shows how the
data were discretized into four contingencies: rightward (n1) or left-
ward (n2) response prior to the cue disappearing, and a rightward (n3)

or leftward (n4) response after the interrogation time. The right side
illustrates an analogous discretization of the model simulations. The
red horizontal line represents the right/left criterion. Note that in the
model simulations, the criterion is only realized if a bound is not hit
prior to the disappearance of the cue

(n1) or leftward (n2) response prior to the dots disappearing
(i.e., prior to the interrogation time); and a rightward (n3)
or leftward (n4) response after the dots disappeared (i.e.,
after the interrogation time), where

∑
k nk = Ni,j . From a

modeling perspective, this distinction is important because
it separates out two different types of accumulation: in one
type, enough evidence was acquired prior to an interrogation
time, whereas in another, introspection is necessary to
determine the state of evidence acquired conditional on
the stimulus duration. By factorially manipulating the
stimulus coherency with stimulus duration, we can decipher
how coherency interacts with duration and provide greater
constraints on the models.

To fit our models to data, we require a method of
assessing the relative accuracy of a model’s predictions
relative to the data contingencies illustrated in the left panel
of Fig. 3. Given that some of the models under investigation
in this article do not yet have analytic likelihood functions,
we can instead simulate the model many times to obtain
an approximation of how likely the data in the left panel
of Fig. 3 are under a given set of model parameters
(i.e., the likelihood function). Various methods for using
model simulations to approximate the likelihood function
have been developed and shown to be accurate in several
different modeling applications (e.g., Heathcote, Brown, &
Mewhort, 2002; Turner & Van Zandt, 2012, 2014; Turner &
Sederberg, 2012, 2014; Turner, Dennis, & Van Zandt, 2013;
Turner, Schley, Muller, & Tsetsos, 2018; Hawkins et al.,
2015; Palestro et al., 2018). The right panel of Fig. 3 shows
simulated trajectories from one of the models for a given
set of model parameters. Here, we simulated the model
many times for a fixed amount of time (i.e., the longest

interrogation time in our experiment), and then we analyzed
the accumulation paths to separate the event contingencies
in an analogous way to the data arrangement in the left
panel.

To separate the event contingencies, we simply track the
state of each accumulation path. Letting x (t) denote a given
accumulation path, the first contingency is whether a bound
was hit prior to the stimulus disappearance. If we let a(t)

denote the state of the boundary at a given time t and t∗
denote the interrogation time, we can define the first point
t0 such that a boundary was crossed as

t0 = min [t ∈ (0, ∞) : |x(t)| ≥ a(t)] .

Because we cannot realistically simulate the model for an
infinite amount of time, it is possible that the state x(t) never
crosses the boundary a(t). In this case, we set t0 = t∗ to
indicate that a boundary was not hit prior to the stimulus
disappearing.4 Using the boundary crossing time t0 and
the boundary symmetry assumed within the DDM (i.e., the
boundaries are symmetrical about 0), we can define the
probability of making a right (p1) or left (p2) response prior
to the stimulus disappearing as

p1 = p
(
t0 < t∗ ∩ x(t = t0) > 0

)
, and

p2 = p
(
t0 < t∗ ∩ x(t = t0) < 0

)
,

respectively. The second contingency is whether a decision
was made after the stimulus disappeared. For simplicity,
we assume that when the stimulus disappears, no more
information can be processed, although there are many

4Of course, any arbitrary value of t0 such that t0 ≥ t∗ will satisfy the
law of total probability for the event contingencies

∑
k pk = 1.
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other proposals for post-stimulus processing (Pleskac &
Busemeyer, 2010; Moran, 2015). Because we assume that
no more information can be processed, to form estimates of
the final contingencies, we examine the states of evidence at
the interrogation time t∗. To make a left/right decision, we
assume the observer evaluates the state of evidence at the
interrogation time relative to a criterion parameter ξ . If the
state of evidence is greater than the criterion, a rightward
decision is made, whereas if the state of evidence is less
than the criterion, a leftward decision is made. Formally, the
probabilities of leftward (p3) and rightward (p4) responses
following an interrogation time are

p3 = p
(
t0 ≥ t∗ ∩ x(t = t∗) > ξ

)
, and

p4 = p
(
t0 ≥ t∗ ∩ x(t = t∗) < ξ

)
,

respectively. Together, the above decision rules enforce
the constraint

∑
k pk = 1. Each event probability pk is

shown in the right panel of Fig. 3, and their relationship
to important probabilities in the mixed response signal
task is shown in Fig. 2. The red horizontal line represents
the criterion parameter ξ , but it should be noted that
the criterion only plays a role when decisions are made
after the stimulus has disappeared. Similarly, the response
threshold a(t), illustrated as the boundary box surrounding
the trajectories, only plays a role when decisions are made
prior to the disappearance of the stimuli.

Once each of the event probabilities have been obtained,
we need to evaluate how closely the distribution of event
probabilities match the observed data. One way to do
this is through a simplified version of the probability
density approximation (PDA; Turner & Sederberg, 2014)
method for data of discrete type. Here, we conceive the
data observations as a multinomial draw with probabilities
dictated by the model simulations. For a given stimulus
coherency i and viewing duration j , we can evaluate the
probability of observing the data Di,j given a set of model
parameter θ as

π(Di,j |θ) = N !
n1!, n2!, n3!, n4!p

n1
1 p

n2
2 p

n3
3 p

n4
4 ,

where

(p1, p2, p3, p4) ∼ Model(θ).

The notation Model(θ) denotes the model simulation
process and path analysis described above, producing the
predicted model probabilities pk . Note that to simulate the
model, design information such as stimulus coherency and
viewing duration are used explicitly in the model to generate
the paths and produce each pk .

For computational convenience, we simulated the model
1000 times for a given parameter proposal θ using the
longest viewing duration in our experiment (i.e., 900

ms). We then calculated each of the pks by analyzing
the trajectories for each viewing duration by setting t∗
accordingly in the process described above. To form an
approximation of the likelihood function L(D|θ) of the data
D given a parameter proposal θ , we need only calculate
the distribution of p relative to the distribution of n across
all stimulus coherencies and viewing durations using the
following equation:

L(θ |D) =
∏
i

∏
j

π
(
Di,j |θ

)
.

To generate the parameter proposals θ , we used a
simulation-based method know as approximate Bayesian
computation with differential evolution (ABCDE; Turner
& Sederberg, 2012). Specifically, we used the “burn in”
mode of the ABCDE algorithm, as we were only interested
in maximizing the approximate posterior density (i.e., the
approximate maximum a posteriori (MAP) estimate), rather
than sampling full posterior distributions. For each model,
we implemented this sampler with 32 chains for 300
iterations. The in-group migration probability was set to
0.15, and the jump scaling factor was set to b = 0.001.

Prior specification

With a suitable approximation of the likelihood function
in hand, the final step in estimating the joint posterior
distribution is to specify prior distributions for each of the
model parameters. We specified the following priors:

log(v), log(z0), log(ter ), log(St ), log(η), log(a′), log(λ) ∼ N (0, 1)

log(a) ∼ N (1, 0.5)

log(S0) ∼ N (0.5, 1) .

While these priors may seem informative, as most of the
parameters are on the log scale, the constraint is justified as
once these variables are transformed, the range of the prior
is only mildly informative. For example, the 95% credible
range of a log normal prior with mean 0 and standard
deviation of 1 is (0.14, 7.13).

Model comparison

To compare the relative fit of the 16 models, we computed
three different metrics: the Bayesian information criterion
(BIC; Schwarz, 1978), the approximated posterior model
probabilities (Wasserman, 2000), and an approximation to
the Bayes factor. The BIC is computed for each model using
the equation

BIC = −2log
(
L

(
θ̂ |D

))
+ log (N) p, (2)
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where L
(
θ̂ |D

)
represents the log of the posterior density

at the parameter value that maximized it (i.e., the maximum
a posteriori (MAP) estimate), p represents the number of
parameters for a given model, and N is the number of data
points (i.e., trials) for a given subject. The BIC penalizes
models based on complexity, with models of higher
complexity (i.e., models with more parameters) receiving a
stronger penalty than models of lower complexity. As such,
the inclusion of additional parameters must substantially
improve the fit to the data to overcome the penalty incurred
for adding them.

We can use the BIC values calculated for each candidate
model to approximate each model’s posterior model prob-
ability relative to the other 15 models. This approximation,
as given by Wasserman (2000) is as follows:

PBIC (Mi |Data) =
exp

(
−1

2
BIC (Mi)

)
∑m

j=1 exp

(
−1

2
BIC

(
Mj

)) . (3)

We can calculate the Bayes factorBFq,r between two model
candidates Mq and Mr using

BFq,r = p(D|Mq)

p(D|Mr)
, (4)

where p (D|Mi) is the marginal likelihood of the data D

under a model Mi . While simple in theory, to calculate the
Bayes factor, it is preferred that the likelihood function for
each candidate model be analytically tractable (see Gel-
man et al., 2004; Liu and Aitkin, 2008 for greater detail).
Unfortunately, while the likelihood function for the time-
invariant diffusion decision model has been analytically
derived (Feller, 1968; Ratcliff, 1978; Tuerlinckx, 2004;
Navarro & Fuss, 2009; Voss, Voss, & Lerche, 2015), the
collapsing decision boundary under consideration com-
plicates these equations enough to render the likelihood
intractable. As the likelihoods must be approximated, so too
must the marginal likelihoods in Eq. 4.

To approximate the Bayes factor, we can use a method
suggested in Kass and Raftery (1995), which estimates the
Bayes factor by comparing the BIC value calculated for
each candidate model. Kass and Raftery (1995) demon-
strated that the difference between BIC values for candidate
Models q and r asymptotically approximates −2log

(
BFqr

)
as N approaches ∞. Hence, we can approximate the Bayes
factor in Eq. 4 by using the BIC values from Eq. 2:

BFq,r ≈ exp

[
−1

2

(
BICq − BICr

)]
, (5)

where BICi denotes the BIC score for Model i.

Results

We present the results in three stages. First, we show the
raw behavioral data to ensure that our task manipulations
were effective. Second, we provide details of the model
comparison by reporting the Bayesian Information Criterion
(BIC; Schwarz, 1978), an approximation of each model’s
posterior model probability (Wasserman, 2000), and an
approximation to the Bayes factor (Kass & Raftery,
1995) and a comparison to observed data. Here, we
also investigate the role that practice effects might have
played in influencing our model fitting results. Finally, we
provide some insight into the model comparison results by
examining the representations inferred from the model fits.

Raw behavioral data

To explore the effectiveness of our task manipulation,
we first examined the choice response time distributions
as a function of the levels of our independent variables.
Recall that we explicitly manipulated the length of time
that a given stimulus was presented and the strength
of motion coherence. Our hypothesis was that each of
these variables should affect both the accuracy and the
response time associated with each decision, as they both
uniquely contribute to the amount of evidence for a choice.
Namely, the strength of motion coherence should contribute
positively to the quality of the decision, where increases
in motion coherence should increase accuracy and decrease
response times. Interrogation times should also contribute
positively to the quality of the decision, where increases in
the length of the viewing times should increase accuracy.
The interaction between interrogation times and response
times is complicated in our task, as subjects had the ability
to respond before the stimulus was removed from the screen.
However, a “premature” (i.e., relative to the interrogation
time) response does give us information about the perceived
strength of evidence as well as the amount of evidence
required by an observer to make a choice. As we will discuss
later, these features of the data were helpful in evaluating
performance among the models.

Figure 4 shows the choice response time distributions
for each level of the two independent variables in our task.
The panels of Fig. 4 are organized by the time at which
subjects were interrogated (columns) and the strength of
motion coherency (rows). Within each panel, response times
associated with correct responses are shown on the positive
axis, whereas response times associated with incorrect
responses are shown on the negative axis. As a reference,
a response time of zero seconds is illustrated as a red
vertical line, and the interrogation times (also indicated by
the column) are shown as the blue vertical lines. Response
times were trimmed to be greater than 100 ms and less than
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Fig. 4 Choice response time distributions. Each panel shows the
choice response time distributions from our experiment, collapsed
across subjects, where response times associated with correct
responses are shown on the positive axis and incorrect responses on the
negative axis. The panels are organized by the time at which subjects
were interrogated (columns) and strength of motion coherency (rows).

As a reference, a response time of zero seconds is illustrated as the
red vertical line, and the level of interrogation time is illustrated as the
blue vertical line. The statistic in the upper right corner of each panel
provides the probability that a response was made prior to the stimulus
disappearing

4000 ms, resulting in a removal of approximately 0.7% of
trials. Again, as the response times depend to some extent
on the interrogation times, this particular feature of our
data is difficult to visualize in Fig. 4. Within each panel,
if response times appear between the red vertical line and
the blue vertical line (on either axis), then the choice was
made prior to the stimulus disappearing. By contrast, if a
response time is larger than the interrogation times (i.e., blue
vertical lines), then a response was made after the stimulus
disappeared.

Figure 4 reveals a few interesting interactions between
the independent and dependent variables. To get a sense
of accuracy, we must compare the relative heights of the
two response time distributions within a panel, where a
larger density of the response time distribution on the
positive axis indicates greater accuracy. Comparing across
the rows, for a given interrogation time, accuracy increases
with increasing coherency, and the response times tend
to decrease. Together, these results suggest that coherency
had a large impact on the strength of evidence for the
correct choice. Comparing across columns, for a given
coherency, accuracy increases with increasing interrogation
times, suggesting that with longer viewing durations, a

stronger overall strength of evidence could be appreciated
by the subjects. The interrogation times do not seem to
have a direct impact on the response times, although as
interrogation times increased, more responses were made
prior to the stimulus disappearing. Also, some distributions
do appear to be bimodal, especially at longer interrogation
times. One potential explanation for this bimodality is
that longer interrogation times induce different response
modalities across subjects: some subjects tend to respond
prior to the go cue (creating one mode), whereas others
prefer to wait until the go cue before initiating a response,
producing the bimodal shape.

The left panel of Fig. 5 displays the accuracy data in
another way, where here the accuracy for each experimental
cell was calculated by collapsing over response time.
The accuracy (y-axis) is shown as a bar plot for
each interrogation time (x-axis) and for each coherency
(columns). In the 0% coherency condition, accuracy
centers around chance responding (i.e., 0.50). As coherency
increases, Fig. 5 shows that the proportion of correct
responses increases for each level of interrogation time.
For a given coherency, the accuracy of the responses tends
to increase with increases in the interrogation time. The
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Fig. 5 Accuracy across independent variables. The left panel shows
the accuracy (y-axis) as a bar plot for each interrogation time (x-axis),
and for each coherency (panels), collapsed across response times.
The right panel shows the same information as in the left panel, but

separated based on whether the response was made prior to (top panel)
or after (bottom panel) the stimulus disappeared. Error bars represent
the standard error in the proportion correct

right panel of Fig. 5 shows the accuracy data in the same
way, but separated by whether the response was made
prior to (i.e., top panel) or after (i.e., bottom panel) the
stimulus disappeared. Here, we see that when a response
was executed prior to the cue disappearing, it tended
to be modulated by the interrogation time, where longer
interrogation times tend to increase the accuracy. However,
this trend is not necessarily observed when responses are
made after the cue disappeared (i.e., bottom panel).

Taken together, Figs. 4 and 5 suggest that the data from
the mixed response signal task match our expectations about
how each independent variable should interact with both
accuracy and response time.

Model comparison

The most important aspect of our results is the comparison
in fit statistics across models. We used the approach detailed
in Section 2 to fit each of the 16 model variants to our data.
We fit each subject independently and obtained a single
maximum a posteriori (MAP) estimate that maximized the
posterior density. The MAP estimate was then used to
evaluate the log likelihood obtained, so that the Bayesian
predictive information (BIC; Schwarz, 1978) could be
calculated.

Figure 6 shows the resulting BIC values obtained by
fitting each model (i.e., rows) to each subject’s data (i.e.,

columns 1-14). For visual purposes and because the BIC
values cannot be interpreted in an absolute sense, we z-
scored the BICs (i.e., the zBIC) across models for a given
subject so that model performance could be assessed more
easily. To do this, we subtracted each BIC value in a given
column from the mean BIC value in that column and divided
by the standard deviation of the BIC values within that
column. The final column shows the performance of each
model by averaging the BICs across subjects. Although
these group values do not technically reflect how well
each model fit the entire set of data, they provide some
information about the average performance across subjects.
Each model performance statistic is color coded according
to the legend on the right hand side; for the zBIC (and the
BIC), lower values reflect better model performance, which
are illustrated with cooler (i.e., bluish) colors.

The left panel of Fig. 6 provides a schematic of
the various models investigated here. Parameters are
represented as nodes in each column, where parameters
that were freely estimated are empty, parameters that were
fixed are solid, and parameters that are not applicable
are shown as “x”s. From left to right, the columns are
the model numbers, between-trial variability in starting
point s0, between-trial variability in drift η, the asymptotic
boundary setting a′, and the scaling parameter λ. For ease
of discussion, the models were grouped into four classes
mentioned in Section 2: Models 1-4 (Class 1; red) are the
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color coded according to the legend on the right-hand side. Lower BIC
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The panel on the left summarizes the models investigated here, where
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parameters that were either fixed (filled circle), free to vary (empty cir-
cle) or not applicable (an “x” symbol). For convenience, the models
were also grouped into classes: time-invariant (Models 1-4; red), time-
variant models with a′ free (Models 5-8; blue), time-variant models
with λ free (Models 9-12; green), and time-variant models with both
a′ and λ free (Models 13-16; purple)

time-invariant models, Models 5-8 (Class 2; blue) are the
time-variant models with a′ free and λ fixed, Models 9-12
(Class 3; green) are the time-variant models with a′ fixed
and λ free, and Models 13-16 (Class 4; purple) are the time-
variant models with both a′ and λ free. A similar analysis
using the approximate posterior model probabilities as given
by Wasserman (2000) can be found in the Supplementary
Materials, along with the raw model fit statistics.

Figure 6 shows that, across subjects (i.e., going down the
group column in Fig. 6), lower zBIC values are obtained
with time-variant models, specifically the Class 3 models
that allow λ to be free. The Class 4 models also perform
well, presumably because λ is free, and the penalty incurred
by freeing a′ is not enough to hinder the performance of
these models. Of course, for some subjects this is not the
case, such as with Subject 12 and 13, who are poorly fit
by Class 4 models, but are still fit well by Class 3 models.
In this case, the penalty term for freeing a′ was enough to
rule out Class 4 models. The clear worst-performing class is
Class 1, with the worst performer within this class being the
one that is most constrained (i.e., having only nondecision
time variability).

Within a class, it is more difficult to say which
parameters should be free to vary, as some inconsistencies
emerge. For example, in Class 2, having between-trial
variability in starting point performs about as well as having
between-trial variability in drift or allowing both to vary.
However, in Class 3, having either one of these parameters
free to vary performs better than having neither one free or
both free. For Class 4, having between-trial variability in
drift is better than every other combination.

Model fit to observed data

In addition to comparing fit statistics across models, we can
also evaluate how well each model fit the data by comparing
the predictions of the model against the observed data. To
do so, we simulated the best-fitting model from each class
(Models 4, 7, 11, and 14) 10,000 times using the best-
fitting model parameters (i.e., the MAP estimates) for each
subject. After simulating, we calculated the probability of
each event contingency using the same method as described
in Section 2 and then averaged these probabilities across
subjects. Finally, using these probabilities, we calculated
the proportion correct for each condition in our task for
three different response types—all responses, responses
before the cue (i.e., before the dots were taken away),
and responses after the cue (i.e., after the dots were taken
away)—and plotted the model predictions against the data
in Fig. 7.

Comparing across all four panels, Fig. 7 suggests that
while each model appears to make similar predictions,
Model 4 (includes both sources of variability) and Model
14 (includes both sources of variability and freely estimates
a′ and λ) over-predicted the accuracy on some occasions
relative to Model 7 (includes between-trial variability in
the starting point and freely estimates a′) and Model 11
(includes between-trial variability in starting point and
freely estimates λ). The correlations between the predictions
and the data support this notion: Model 7, Model 11, and
Model 14 had the highest correlations (r = 0.662, r =
0.649, and r = 0.616, respectively); while Model 4 had the
lowest correlation (r = 0.561). These correlations suggest
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Fig. 7 Average model predictions versus observed data. Each panel plots the model predictions from the best-fitting model from each class against
the observed data, collapsed across time and coherency

a different rank ordering than the BIC statistics displayed
in Fig. 6. However, the general pattern is consistent: time-
variant models account for the observed data better than the
time-invariant model. The Supplementary Materials provide
model comparison plots against the raw data, separated by
condition and coherency.

Approximating the Bayes factor

Once each BIC value had been obtained (see Fig. 6),
we used Eq. 4 to approximate the Bayes factor (Kass &
Raftery, 1995). Rather than comparing all 16 models, Fig. 8
shows the Bayes factor for the best-fitting collapsing bound
model across subjects (Model 11) relative to the best-fitting
fixed bound model across subjects (Model 4). Figure 8
shows the approximated Bayes factor for each subject,
sorted according to the amount of evidence provided for
the collapsing bound variant. The Bayes factor is shown on
the log scale, so subjects near zero are best described by
neither model preferentially. For 11 out of the 14 subjects,
the approximated Bayes factor for the collapsing bound
model is larger than 100, indicating strong preference. The

approximated Bayes factor scores for each subject can be
found in the Supplementary Materials.

Practice

In plotting the aggregated response time as a function of
experimental block, we noticed a substantial decrease in
the response times through blocks (see the Supplementary
Materials for additional information). While this general
pattern of decreasing response times with practice is
ubiquitous (sometimes referred to as the “power law of
practice” ; Logan, 1988), because practice effects have been
put forward as an explanation for differences in decision
policies across species (e.g., Hawkins et al., 2015), we
performed an additional analysis to ensure the generality of
our results.

To determine if practice unduly biased subjects to
collapse their decision thresholds, we split the data in half
and fit Models 4, 7, 11, and 14 (i.e., the best-fitting model
from each class) to both halves independently, using the
same methodology as in Section 2. If practice does bias
each subject’s strategy, we might expect the time-invariant



Psychon Bull Rev (2018) 25:1225–1248 1241

lo
g
( B

F
C

o
ll
a
p
s
e

F
ix

e
d
)

0
5
0

1
0
0

1
5
0

1 : 1

100 : 1

5 13
8 14

2
12

6 9
10

4

11

7 1

3
Evidence for Collapsing Bound

Subject Number

Fig. 8 Bayes factor approximation by subject. Each point represents the approximated Bayes factor comparing the overall best-fitting
time-invariant model (Model 4) to the overall best-fitting time-variant model (Model 11) for each subject

model (Model 4) to provide a better fit to the first half of
the data and some time-variant model (Models 7, 11, or 14)
to provide a better fit to the second half. If practice has
little to no impact on strategy, then the time-variant models
should provide better fits to both halves of data, relative to
the time-invariant model.

Figure 9 displays the BIC values obtained from fitting the
four models to each subject’s first (top panel) and second
(bottom panel) half data. This figure was constructed in the
same manner as Fig. 6, where the BIC values were z-scored
across models for a given subject and color coded according
to the legend on the right hand side. Again, lower values
reflect better model performance and are illustrated as
cooler colors while higher values reflect worse performance
and are illustrated as warmer colors.

The top panel of Fig. 9 shows the relative fits of each
model to the first half of the data. In this panel, Model 7
explains the data from all 14 subjects better than the other
three models with Models 11 14, and 4 following in that
order. The bottom panel of Fig. 9 shows the relative fits
of each model to the second half of data. These fits show
much more variability across subjects relative to the first
half fits, but here, we observe a pattern of results similar to
that of Fig. 6, where Model 11 provided the best fit to most
of the subjects. As an additional check (see Supplementary
Materials), we performed another model-fit comparison by
fitting the same four models to the entire set of data, with
the first four problematic blocks removed. Here, we again
found that Model 11 provided the best account, with Models
14, 7, and 4 following in that order. Taken together, lower
zBIC scores are obtained with time-variant models across
subjects and halves, with the time-invariant model (Model
4) being the worst overall performer. These results suggest

that the model-fitting results are consistent, regardless of
some moderate practice effects in the first four blocks of our
data.

Inferred task representations

Thus far, our results suggest that all of our subjects are best
accounted for by some variant of a collapsing bound model.
However, model fit comparisons such as the ones presented
in Figs. 6 and 8 do not tell us much about why one model
architecture provides a better fit over another. To investigate
this, we can look to the task representations that might have
been used by each subject during the task. Examining the
inferred task representations has the advantage of projecting
several parameter dimensions down into something that is
easily visualized, so that we can gain clearer insight into
how the various parameters interact with one another.

To illustrate the differences in model fit, Fig. 10 shows
two subjects who obtained two different results in the
model fitting comparison. The left column shows Subject
6, whose data were best accounted for by the “modern”
time-invariant model (Model 4; includes both sources of
between-trial variability), whereas the right column shows
Subject 8, whose data were best accounted for by its
time-variant derivative (Model 16; includes both sources of
between-trial variability and freely estimates a′ and λ). The
top row shows the empirical response time distributions,
collapsed across choice and condition information. The
middle row shows the inferred task representation used by
a fixed bound model, whereas the bottom row shows the
inferred task representations used by a collapsing bound
model. These subjects were chosen because (1) they yielded
different model fitting results, and (2) their general pattern
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Fig. 9 Model comparison of split data. Each box illustrates the z-
scored BIC value obtained for each subject (columns) and model
(rows) combination, color coded according to the legend on the right-
hand side. Lower BIC values (i.e., bluish colors) correspond to better
model performance. The panel on the left summarizes the models
investigated here, where the columns correspond to the model num-
ber and the specific model parameters that were either fixed (filled

circle), free to vary (empty circle) or not applicable (an “x” symbol).
The models are color coded according to class: time-invariant (Model
4; red); time-variant with a′ free (Model 7; blue); time-variant with λ

free (Model 11; green); and time-variant models with both a′ and λ

free (Model 14; purple). The top panel shows the model evaluations
for the first half of the data (i.e., Blocks 1-8), whereas the bottom panel
shows the results for the second half of the data (i.e., Blocks 9-16)

of choice response time distributions were similar. The
Supplementary Materials provides similar plots for the
remaining 12 subjects.

To generate the task representations, we simply recreated
plots such as the one presented in Fig. 2 using the MAP
estimates obtained during the model fitting process. The
relevant MAP estimates for Fig. 10 are the threshold, drift
rates, nondecision times, and collapsing bound parameters
(i.e., for the bottom row). For the drift rates, we plotted the
average trajectory that was inferred from fitting the model
to data for each stimulus coherency condition. For Subject
6, Fig. 10 shows that for the time-variant model, the inferred
boundary does not collapse until late in the decision-making
process (i.e., after most of the drift rate trajectories have
crossed the boundary), and the inferred collapse in the
bottom panel is minimal, suggesting that the collapse played
no role in the model’s ability to account for the data of this
subject. As such, the time-invariant model provided a better
fit once balancing for the number of parameters.

The right panel of Fig. 10 shows the inferred repre-
sentations for Subject 8, who was best captured by the
time-variant model. In contrast to the left panel, the inferred
boundary collapses completely and early in the decision-
making process, causing the drift rates to terminate at the
collapsing boundary rather than the fixed boundary. For this

subject, the interaction of the drift rates and the stage of the
collapse allow the collapsing bound model to account for
the tail end of the response time distribution slightly better.
Across all subjects, the pattern of drift rates interacting with
the collapsing bound parameters was a strong predictor in
determining which model would ultimately provide the best
fit. Namely, when the drift rates of one or more coherency
condition hit a boundary during a collapse, the collapsing
bound provided the better fit.

Discussion

The classic, time-invariant DDM has proven exemplary in
accounting for a variety of empirical data across a number
of domains (see Forstmann, Ratcliff, & Wagenmakers,
2015, for a review). Recently, the classic DDM has come
under scrutiny with the focal point being the manner in
which the model deals with the timing of the choice. In
its place, diffusion models with additional mechanisms,
such as urgency or collapsing boundaries, have been
proposed, and these models have proven effective in
accounting for both human and primate data from similar
perceptual decision-making tasks (Ditterich, 2006a, b; Kian
& Shadlen, 2009; Shadlen & Kiani, 2013). While there is
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considerable controversy surrounding the nature of the task
demands, stimulus used, and even the species of the subject
under study, if these mechanisms have proven generally
effective in capturing data, they provide an interesting and
exciting alternative to a long standing tradition in models
instantiating sequential sampling theory.

The purpose of this article was to further investigate how
stimulus characteristics interact with task demands. While
other reports have been criticized for using stimuli that may
inherently bias subjects toward a collapsing bound policy,
our task centers on one of the most well-studied stimuli in
perceptual decision-making history: the random dot motion
task. Starting from a well-agreed-upon stimulus, we asked
whether factorially manipulating the strength of coherent
motion as well as the length of the stimulus exposure could
induce a collapsing boundary policy. The factorial structure

of the experiment helped to add constraints on the ensuing
model-fitting exercise, but perhaps the strongest constraint
was the addition of an “opt-out” policy embedded within
the interrogation paradigm. As discussed, the standard
version of the interrogation paradigm produces a confound
in that decisions terminated via an endogenous stopping rule
cannot be separated from decisions that are terminated via
an exogenous cue (i.e., the go cue). The opt-out procedure
allows us to separate out these two possibilities, allowing
for better assessment of how stimulus strength interacts with
the decision boundary.

To test our hypothesis, we compared the relative fit
of 16 diffusion model variants with fixed and collapsing
decision thresholds to data from our modified random
dot motion task. We compared each model’s ability to fit
data from the mixed response signal task by calculating
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three different model fit statistics: the Bayesian information
criterion (Schwarz, 1978), approximated posterior model
probabilities (Wasserman, 2000), and an approximation
to the Bayes factor (Kass & Raftery, 1995). The BIC
measures suggested that a variant with collapsing decision
boundaries was preferred across all 14 subjects. Collapsing
across subjects, we found time-variant models that freely
estimate the scaling parameter λ in the collapsing decision
boundary provide the best fits overall. The approximate
posterior model probabilities showed similar results (see
Supplementary Materials), with time-variant models that
freely estimate the scaling parameter λ having higher
posterior model probabilities across all subjects. The
approximated Bayes factor analysis further confirmed
this point in that they provided definitive and consistent
evidence for time-variant models.

We also compared the fit of the four best-fitting models
from each class to data from the mixed response signal task.
This comparison further corroborated our results that the
time-variant models provide a better fit to the data than the
time-invariant model. Taken together, our results suggest
that the mechanisms in the time-variant model provide a
more viable explanation for the strategies subjects use to
complete our mixed response signal task.

Given that we found evidence supporting collapsing
boundaries, it seems productive to speculate on the reason
for adopting a collapse for our particular task. As other
researchers have compared models using time-variant and
time-invariant mechanisms (e.g., Ditterich, 2006a; Hawkins
et al., 2015; Voskuilen et al., 2016), we can follow some
of their rationales in interpreting our results. This section
discusses three such rationales: species differences, stimuli
differences, and task differences.

Species differences

Much of the support for time-variant models comes from
neurophysiological literature exploring the decision-making
behavior of primates (e.g., Chuchland, Kiani, & Shadlen,
2008; Hanks, Mazurek, Kiana, Hopp, & Shadlen, 2011)
and behavioral literature comparing the relative fits of time-
variant and time-invariant models to primate data (e.g.,
Ditterich, 2006a). In the most detailed comparison to date,
Hawkins et al. (2015) tested whether human and primate
data were best captured by time-variant or time-invariant
models and found that the majority of the primate data sets
were best accounted for by time-variant models. However,
when applying the same set of models to human data,
Hawkins et al. (2015) found that the majority of human data
sets were best accounted for by time-invariant models.

One of the major explanations of differences in results
across species was the effect of practice. Hawkins et al.

(2015) explained that non-human primates are subject to
many practice sessions, often on the order of months
or years. Due to this extensive practice, it is of course
reasonable that the distributions of response times change.
While the shapes of our subject’s response time distributions
do not appear Gaussian (see Fig. 10 as an example),
an analysis of the mean and standard deviation of the
response times across each experimental block in our task
(see Supplementary Materials) identified that some practice
effects may have been present in our data.

However, after splitting the data in half and fitting
the best-fitting model form each class to each half
independently, we found that time-variant mechanisms
better explained each half of data than time-invariant
mechanisms. We further refit the models by removing the
early blocks identified as being potentially problematic
(see Supplementary Materials), and found a similar result.
Taken together, these results suggest that while practice may
influence the form of the collapsing decision boundary that
each subject adopts in our task, it did not provide support
for a fixed boundary policy. As such, we can conclude
that practice cannot viably explain why subjects adopt a
time-variant strategy to complete our task.

Alternatively, even though practice effects clearly exist
in our data, the presence of these effects implies that
subjects were not overly practiced on the task. As one of
the arguments for the particular shapes of response time
distributions was that the non-human primates were overly
practiced, the fact that our subjects were not implies that
the evidence we found for collapsing bound models is not
explainable through only the result of practice.

Stimuli differences

Another potential explanation for the adaption of a
collapsing boundary focuses on the properties of the stimuli
used in decision-making tasks. Voskuilen et al. (2016) point
out that many of the studies that conclude time-variant
models provide a better explanation of decision-making
behavior have analyzed data from expanded judgment tasks
(e.g., Busemeyer & Rapoport, 1988; Drugowitsch et al.,
2012; van Maanen et al., 2016), where the rate of evidence
accumulation across time is controlled by the properties
of the stimuli. The idea is that as the rate of evidence
accumulation decreases and the average decision time
increases, subjects are more willing to base their decisions
on less evidence at later times (i.e., they feel a sense of
urgency to respond). Thus, one tenable argument against
evidence for collapsing boundaries is that the properties of
the stimuli used in these expanded judgment tasks induce
a bias toward a time-variant policy, severely limiting this
mechanism’s generalizability.
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By and large, previous literature does support the notion
that the properties of a stimulus can affect a subject’s
decision threshold. Namely, time-invariant models appear
to better explain data from speeded judgment tasks, which
use simple stimuli to induce a fast perceptual judgment,
while time-variant models appear to be more suitable
for tasks using dynamic stimuli that manipulate the rate
of evidence accumulation and the average decision time
(e.g., expanded judgment tasks). While, at present, it is
unclear whether this division in the literature is due to
actual differences in strategy or if it can be explained
by the novelty of time-variant models and their lack of
application to speeded judgment data, there is currently little
evidence to suggest that a boundary collapse is necessary
for speeded judgments. However, given we find evidence
that subjects collapse their decision boundaries in our task,
which featured stimuli more closely aligned with traditional
speeded judgment tasks, it seems unlikely that the boundary
policy adopted by our subjects can be explained solely by
the properties of the stimuli we used.

Task differences

Hawkins et al. (2015) argued that the mechanisms
underlying decision-making behavior may vary as a
function of task constraint. In their study, they found
that two main task characteristics—the administration of
reward and the level of practice—served as strong predictors
for which model (time-variant versus time-invariant) best
described a subject’s data. Regarding reward, in tasks where
subjects are required to withhold their response for a certain
amount of time, researchers find that it is optimal to
adapt a collapsing decision threshold to maximize reward
(e.g., Busemeyer & Rapoport, 1988; Ditterich, 2006a;
Drugowitsch et al., 2012; Malhotra et al., 2017; Thura et al.,
2012). Regarding practice, subjects who complete extensive
training sessions prior to commencing a task are often better
characterized by time-variant models, while subjects with
fewer or no practice sessions are better characterized by
time-invariant models, suggesting that collapsing thresholds
may result from high levels of practice (Balci et al. 2011;
Hawkins et al., 2015; Starns & Ratcliff, 2010).

While these two task constraints served as a viable
explanation for the results of Hawkins et al. (2015),
they are not applicable to the current study. As subjects
received a flat reward at the end of the task that was not
contingent on performance and only completed one short
practice block, neither reward nor extensive practice can
explain the evidence of the collapsing boundary in our
results. Additionally, our analyses in Section 2 suggest
that practice has little influence on subjects adopting a
collapsing decision boundary, further supporting this notion.

However, we do believe that the task demands have
induced the need for a collapsing boundary policy in
our task. Namely, the coupling of the interrogation and
free response paradigms may have induced subjects to
attend to the evidence at earlier time points more than at
later ones, because on some trials, the stimulus was very
brief. It seems plausible that the manipulation of stimulus
duration induced a cost on integration time, as integrating
for longer periods of time was associated with the risk of
the stimulus being taken away. Furthermore, the particular
sequence of coherencies we investigated here may have also
contributed to the time-variant decision policy according to
the optimality analyses presented in Malhotra et al. (2017).
In short, subjects learn that some trials are difficult and
some are easy. Hence, it seems reasonable to engage in
different approaches to solving these different types of
problems. On easy trials, because it is easier to engage in
the integration process, subjects may use a time-invariant
boundary. However, on hard trials, once the subject realizes
that the motion signal is very weak, the policy might change
toward collapsing their boundary so that they can move on
to the next trial in order to reduce the overall amount of
energy expended. Such a behavioral dynamic has already
been observed in the context of multi-alternative choice
(Hawkins et al., 2012), and so we feel that this is the best
explanation for why subjects adapt a collapsing decision
boundary in our mixed response signal task.

Conclusions

This article contributes to the growing body of literature on
the nature of decision processes with respect to time. The
purpose of this article was to test whether manipulating the
coherency of motion in a speeded judgment task and the
duration of stimulus exposure could induce a time-varying
decision policy. We found strong evidence supporting time-
variant models for all 14 of our subjects, leading us to
conclude that this particular experimental manipulation was
successful in inducing a time-varying decision policy. As we
have discussed, explanations such as the type of stimulus,
degree of practice, and reward rate maximization do not
seem to be applicable here. Instead, we suspect that the
coupling of interrogation and free response paradigms is the
most likely explanation of the evidence we have found for a
time-varying decision policy.
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