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A B S T R A C T

Distributed representations of scene categories are consistent between color photographs (CPs) and line drawings
(LDs) in the parahippocampal place area (PPA) and the retrosplenial cortex (RSC), as shown using multi-voxel
pattern analysis (MVPA). Here, we used repetition suppression (RS) to further investigate the degree of re-
presentational convergence between CPs and LDs of natural scenes. MVPA and RS can capture different aspects of
visual representations, and RS may prove useful in elucidating important differences in the representations of CPs
and LDs of natural scenes. We performed an event-related fMRI experiment, including image-repetitions either
within-type (i.e., CP to CP or LD to LD) or between-types (CP to LD, LD to CP). We found significant RS for within-
type repetitions in PPA, RSC and the occipital place area (OPA), but did not observe RS for between-types re-
petitions. By contrast, scene categories were decodable from activity patterns evoked by both CPs and LDs using
SVM classification for both within-type decoding and between-types cross-decoding. We conclude that there are
representational differences between CPs and LDs in scene-selective cortex despite a category-level correspondence.

1. Introduction

Over the last two decades, functional magnetic resonance imaging
(fMRI) has become an indispensable tool for uncovering the neural
processes underlying perception and cognition. Two analysis methods
have proven particularly useful for the probing of neural representa-
tions of perception, memory, intentions, and other cognitive processes:
repetition suppression (RS) and multi-voxel pattern analysis (MVPA).
Both methods have helped to elucidate the representational under-
pinnings of perceptual and cognitive processing in the brain, but recent
research has uncovered incongruencies between the two methods.

MVPA leverages spatial patterns of blood-oxygen-level-dependent
(BOLD) activity using similarity measures or machine-learning to de-
code (predict) content from brain activity (Haxby, 2001; Cox and
Savoy, 2003). RS is the reduction of BOLD signal across multiple re-
petitions of a stimulus (Grill-Spector and Malach, 2001; Fang et al.,
2005; Grill-Spector et al., 2006; Park et al., 2007; Turk-Browne et al.,
2012). Epstein and Morgan (2012) observed RS in the PPA, the RSC,
and the occipital place area (OPA) for repeated landmark identity.
However, they did not find RS for repeated scene category, even though

scene categories were decodable using MVPA. Ward et al. (2013)
showed differences in representations that track explicit and implicit
memory using MVPA and RS. Park and Park (2017) found a signal for
scene texture in the parahippocampal place area (PPA) using MVPA but
not using RS. Recently, Hatfield et al. (2016) identified neural sig-
natures of object orientations using MVPA but not RS in lateral occipital
cortex, and proposed a framework to characterize the divergent results
provided by RS and MVPA in light of the underlying neural activity
thought to drive each effect. Specifically, they proposed that significant
RS reflects co-activation of the same neural populations across stimulus
repetitions while significant MVPA reflects activity in either identical
populations of neurons or reliably clustered but not necessarily iden-
tical populations of neurons. They suggest co-use of both RS and MVPA
to explore similarity in neural representations across different stimulus
manipulations to better characterize the underlying neural signal
driving significant MVPA effects. Here, we use this framework to ex-
plore the nature of neural populations involved in encoding natural
scenes.

Natural scenes are central to humans’ visual experience in tasks
such as navigating through complex environments (Maguire et al.,
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1997; Maguire, 1998), extracting visual context (Bar, 2004; Oliva and
Torralba, 2007), and categorizing unknown scenes (Fei-Fei et al., 2007;
Greene and Oliva, 2009; Walther et al., 2009). Our research has de-
monstrated that structural components of natural scenes, as preserved
by line drawings (LDs), play a critical role in supporting scene cate-
gorization. LDs and color photographs (CPs) of natural scenes elicit
analogous multi-voxel representations of scene categories in the para-
hippocampal place area (PPA) and the retrosplenial cortex (RSC)
(Walther et al., 2011). Coarse scene structure is shared between CPs and
LDs, unlike color and most texture. To further characterize which
structural features preserved by LDs support scene categorization, we
used computational modeling on LDs to show features including con-
tour, curvature, and junctional type/angle discriminate between scene
categories and generate error patterns correlated to human categor-
ization errors (Walther and Shen, 2014) and neural encoding of scene
categories (Choo and Walther, 2016). Thus, scene structure as pre-
served in LDs appears to play a pivotal role in representations of scene
categories.

Previously, we have used MVPA to decode representations of scene
categories from patterns of fMRI activity in high-level visual brain re-
gions, identified regions where classifier error patterns match human
categorization error patterns, and shown that CPs and LDs of natural
scenes evoke equivalent and cross-decodable representations of scene
categories (Walther et al., 2011; Walther and Shen, 2014; Choo and
Walther, 2016). Here, we further probe the equivalence of scene cate-
gory representations for CPs and LDs of natural scenes using RS. Ad-
ditionally, our previous studies used category-blocked designs to max-
imize category-specific activity patterns. Additionally, we assess
whether previously measured cross-decodability of scene categories
from CPs and LDs holds for individually presented natural scenes.

We performed an event-related fMRI experiment in which partici-
pants viewed a stream of CPs and LDs depicting natural scenes with
embedded repetitions of individual scenes, either within-type (CP-CP or
LD-LD) or between-types (CP-LD or LD-CP) (Fig. 1A). Depending on the
presence or absence of RS and MVPA effects for between-types condi-
tions, we aimed to infer the degree of overlap between neural popula-
tions that represent CPs and LDs of scenes (Fig. 1B). We found RS only
for within-type but not between-types repetitions in PPA, RSC, and
OPA, suggesting that the representation of scenes accessed by RS does

not transfer between CPs and LDs. By contrast, we were able to decode
scene categories within image types as well as across image types in the
same regions of interest, thereby confirming our previous block-based
results. We conclude that there are representational differences be-
tween CPs and LDs in scene-selective cortex, and that CPs and LDs of
scenes are represented by non-identical neural populations that are
spatially clustered within voxels.

2. Materials and methods

2.1. Participants

Fifteen participants (nine males, mean age 22.3 years, range 19–26
years) completed the experiment, which was approved by The Ohio
State University Institutional Review Board. All participants had normal
or corrected-to-normal vision, were right-handed, provided written
informed consent, and were paid for their participation.

2.2. Stimuli

Participants were shown 288 images (144 CPs and 144 LDs) de-
picting natural scenes from six categories: beaches, forests, city streets,
highways, mountains, and offices. CPs had been previously rated by an
independent set of human participants as highly representative of their
respective category (Torralbo et al., 2013). LDs were created at the
Lotus Hill Research Institute by trained artists tracing contours in the
CPs (Walther et al., 2011). All images had a resolution of 800×600
pixels and occupied 9.5°× 7.1° of visual angle when viewed in the
scanner using back projection.

2.3. Procedure

Participants completed 8 main experiment runs, in which they viewed a
stream of CPs and LDs containing repetitions of individual scenes in a fast
event-related design. Images were presented for 1000ms each with a cen-
tral fixation cross overlaid starting 500ms before and ending 500ms after
stimulus presentation. The inter-stimulus interval (ISI) was jittered between
3 s and 6 s (mean = 4.5 s). Scenes were repeated within the same run as
either the same (CP1CP2 or LD1LD2) or different (CP1LD2 or LD1CP2) image

Fig. 1. A. Repetition conditions. Participants were shown color photographs (CPs) and line drawings (LDs) of natural scenes in an event-related design. Across two
presentations, each scene was repeated either within image-type (CP1CP2 and LD1LD2) or between image-types (CP1LD2 and LD1CP2). B. Possible outcomes. The first
column shows three hypotheses for how CPs and LDs may be represented relative to one another. The second column shows schematized activity for each hypothesis
in a four voxel brain with eight neurons per voxel. Red indicates an active neuron. The final column shows the expected RS and MVPA results associated with each
hypothesis. If the same neural populations are active for both image types, we expect to see repetition suppression (RS) for between-types repetitions (CP1LD2 &
LD1CP2) and significant cross-decoding of scene categories between CPs and LDs (CPTrainLDTest & LDTrainCPTest). In the second row, different neurons are active for
CPs and LDs, but active neurons are clustered at a spatial scale smaller than voxels, leading to the same multi-voxel pattern of activity. In this case, we expect to see
significant cross-decoding between CPs and LDs but not between-types RS. In the final row, different neurons are active for CPs and LDs, and the different neural
populations do not cluster together at the sub-voxel level. In this final case, we do not expect to see RS or cross-decoding of scene category between CPs and LDs.
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type (Fig. 1b). A lag of 3–7 trials (19.5–45.5 s) separated scene repetitions to
avoid expectation-related RS (Summerfield et al., 2008; Turk-Browne et al.,
2012; Larsson and Smith, 2012). Each run had one instance of each re-
petition condition for each of the six scene categories, for a total of 24 pairs
(48 trials) per run. Participants performed a two-alternative forced-choice
(2-AFC) natural versus manmade categorization task to engage their at-
tention throughout the experiment.

2.4. Data acquisition

fMRI data were recorded on a 3-Tesla Siemens Tim Trio MRI with a
12-channel matrix head coil at The Ohio State University Center for
Cognitive and Behavioral Brain Imaging. Functional images were ob-
tained using a gradient echo, echo-planar imaging (EPI) sequence:
TR=2.5 s, TE=28ms, flip angle= 75°, matrix= 66×74,
FOV=220mm, 48 transverse 3mm slices without gap (3×3×3mm
voxels). A high-resolution (1×1×1mm voxels) MPRAGE T1-
weighted anatomical scan (TR=1.9 s, TE=4.68ms, flip angle= 10°)
was collected to assist in the alignment of EPI scans.

2.5. Data preprocessing

Functional data were motion corrected, spatially smoothed (4mm
FWHM), and normalized to percent signal change using AFNI (Cox,
1996). The anatomical scan and localizer scans (described below) were
aligned to functional data from the main experiment.

2.6. ROIs

PPA, RSC, and OPA were identified using separate localizer se-
quences with blocks showing images of faces, objects, or landscapes.
ROIs were defined with a standard [landscapes> objects, faces] linear
contrast (Epstein and Kanwisher, 1998). A minimum threshold of
p < 0.01 (corrected for multiple comparisons using false discovery
rate) was applied to each contrast. Average bilateral ROI sizes across
participants were 138 voxels (SD=11.8) for PPA, 98 voxels
(SD=23.7) for RSC, and 99 voxels (SD=24.9) for OPA. PPA and OPA
were localized bilaterally in all 15 participants, and RSC was localized
bilaterally in 12 participants, only in the right hemisphere in 2 parti-
cipants, and not at all in 1 participants. Only participants with bilateral
ROIs were included in the analyses for each region.

The fusiform face area (FFA) was identified in an analogous manner,
using a [faces> objects, landscapes] linear contrast (Kanwisher et al.,
1997). At p < 0.01 (corrected for multiple comparisons using false
discovery rate), average bilateral FFA size was 106.47 voxels
(SD=40.46).

Primary visual cortex (V1) was included as a visually active area
where we did not expect representations of scene content beyond
simple visual features. We localized V1 bilaterally, using the meridian
stimulation method (Sereno et al., 1995), in 14 participants. Average
bilateral V1 ROIs contained 245 voxels (SD=40.8). Technical issues
prevented localization of V1 in one participant.

2.7. General linear models

We estimated single-trial activity for each participant using general
linear models (GLMs). Single-trial activity within each condition and
presentation combination (e.g., 1st presentation CP1CP2, 2nd pre-
sentation CP1CP2, 1st presentation LD1LD2) was modeled using eight
separate GLMs. Regressors were defined for each individual trial in a
given condition by presentation combination, and a set of nuisance
regressors were defined as all other trials. We then used the
stim_times_IM option in 3dDeconvolve in AFNI (Cox, 1996), which uses
ordinary least squares regression to compute single-trial β-estimates for
the current condition/presentation. Pooling across the eight GLMs
provided single-trial β-estimates for each trial in the experiment.

2.8. Repetition suppression analysis

To control for any differences in activation magnitude for CPs and
LDs, we calculated RS with respect to the average activation elicited for
first presentations of the same image type as the second presentation.
Average activation for novel CPs was computed by pooling across first
presentations in the CP1CP2 and CP1LD2 conditions, and average acti-
vation for novel LDs was computed by pooling across first presentations
in the LD1LD2 and LD1CP2 conditions. RS was then calculated as the
difference between activation for a second presentation and the corre-
sponding first presentation activation for the same image type. In the
LD1LD2 or CP1LD2 conditions, RS was calculated as the activation for
LD2 minus the average activation for all first presentation LDs, whereas
in the CP1CP2 or LD1CP2 conditions, RS was calculated as the activation
for CP2 minus the average activation for all first presentation CPs. For
each condition, RS significance was determined using two-tailed re-
peated-measure t-tests between average baseline β-estimates and
second presentation β-estimates across participants.

2.9. Whole-brain analysis

To investigate effects outside of pre-determined ROIs, whole-brain
RS analysis was performed in the same manner described above on
voxel-wise activity normalized to Montreal Neurological Institute
(MNI) standard space. Significance of RS across subjects was assessed
using paired t-tests (p < 0.01) and corrected for multiple comparisons
at the cluster level.

2.10. Scene category decoding analysis

We performed six-way scene category decoding using spatial pat-
terns of β-estimates as input for a linear support vector machine (SVM)
classifier. In an eight-fold leave-one-run-out (LORO) cross validation,
the SVM classifier was trained with β-estimates from seven of the eight
runs for a given ROI to predict scene category and tested with β-esti-
mates from the left-out run. In two within-type conditions, the classifier
was trained and tested on evoked responses from the same image type
(CPTrainCPTest and LDTrainLDTest). Alternatively, it was trained on one
image type and tested on the other in two between-types conditions
(CPTrainLDTest and LDTrainCPTest). Classification rates across participants
were compared to chance accuracy (1/6) using one-tailed t-tests.

3. Results

3.1. Behavioral

All subjects exhibited high performance on the 2-AFC natural versus
manmade task (mean accuracy=0.94, SD=0.077), indicating that
they attended to the stimuli throughout the experiment.

3.2. Repetition suppression

We only found RS for within-type repetitions (CP1CP2 and LD1LD2,
Fig. 2A): CP repetition evoked significant RS in the PPA, and marginal
effects were seen in RSC, and OPA (see Table 1 for all RS results and
statistics). Repeating the same LD produced significant RS in PPA, OPA,
and FFA. We found no RS for the two between-types conditions (CP1LD2

and LD1CP2, all p > 0.103). However, we observed significant
(p < 0.05) repetition enhancement in V1 for the LD1CP2 condition.

Within each ROI, we compared RS across conditions using a two-
way, repeated-measures ANOVA, with first image type (CP or LD) and
repetition type (within-type or between-types) as factors. In all scene-
selective ROIs, we found a significant main effect for repetition type:
PPA: F(1,14) = 23.75, p= 0.000246, RSC: F(1,11) = 7.33, p=0.0203,
OPA: F(1,14) = 16.23, p= 0.00125. A main effect for repetition type
was also found in FFA, F(1,14) = 6.07, p= 0.0273. Within-type RS was
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greater than between-types RS in each case. There were no main effects
for first image type (p > 0.362) and no interactions between first
image type and repetition type in any ROI (p > 0.352).

3.3. Whole brain repetition suppression

For the CP1CP2 condition (Fig. 3A), significant RS (p < 0.01, cor-
rected) was present bilaterally in the parahippocampal gyri, which
corresponds to our functional PPA ROIs. At a relaxed threshold
(p < 0.05, corrected), we found RS bilaterally in the middle occipital
gyrus, corresponding to our OPA ROI, and unilaterally in the left pos-
terior cingulate cortex, corresponding to our right RSC ROI. For the
LD1LD2 condition (Fig. 3B), significant RS (p < 0.01 corrected) was
present in the right parahippocampal gyrus, which corresponds to the
right PPA ROI. Additionally, the right middle occipital gyrus showed

significant RS, which corresponds to our right OPA ROI. There was also
a significant cluster of RS centered on the right inferior temporal gyrus
and extending through the right middle temporal gyrus. Finally, at a
relaxed statistical threshold (p < 0.05 corrected) we found bilateral RS
in the inferior frontal gyrus. Neither the CP1LD2 nor the LD1CP2 con-
trasts yielded significant RS anywhere in the brain.

3.4. Scene category classification

In all of the ROIs (PPA, RSC, OPA, V1, and FFA), classification rates
for discriminating between scene categories were significantly above
chance (1/6) for all four conditions (Fig. 2B), with the exception of
CPTrainCPTest in RSC and FFA (see Table 2 for all MVPA results and
statistics), replicating previous results showing that scene category
could be reliably decoded between CPs and LDs (Walther et al., 2011).

Classification rates were compared across conditions using a two-
way, repeated-measures ANOVA, with training image type (CP or LD)
and testing image type (within-type or between-types) as factors. No
significant main effects or interactions were found in PPA or RSC: scene
category was equally decodable regardless of which image type was
used for training or testing in both ROIs, again replicating previous
results showing scene category can be cross decoded between CPs and
LDs in the PPA and the RSC (Walther et al., 2011). Additionally, no
significant main effects or interactions were found in V1, OPA, or FFA.

4. Discussion

We used RS and MVPA to investigate the similarity of neural re-
presentations of CPs and LDs in scene-selective cortical areas. Using an
event-related design, we replicated our previous findings (Walther
et al., 2011; Choo and Walther, 2016) showing that scene categories
can be decoded and cross-decoded from CPs and LDs of natural scenes
across scene-selective cortex, suggesting similarities in the underlying
representations. However, we found RS only for within-type repetitions
in PPA, RSC, and OPA and not for between-types repetitions anywhere
in the brain, suggesting representational differences between CPs and
LDs of natural scenes. How can we reconcile these seemingly contra-
dictory results provided by MVPA and RS?

Hatfield et al. (2016) presented a clear framework for interpreting

Fig. 2. A. Repetition suppression. Significant repetition suppression was seen for within-type repetitions (CP1CP2 & LD1LD2) but not between-types repetitions
(CP1LD2 & LD1LD2). This is consistent with color photographs and line drawings activating identical neural populations or non-identical but spatially clustered neural
populations. B. Decoding scene categories. Significant decoding was observed for within-image-type decoding and between-image-type cross-decoding. Along with
repetition suppression just for within-type repetitions, these results are consistent with color photographs and line drawings activating non-identical but spatially
clustered neural populations. ***p < 0.001, **p < 0.01, *p < 0.05.

Table 1
All results and statistics for the repetition suppression analyses.

ROI df Condition % signal change SEM T-Stat P-value

PPA 14 CP1CP2 − 0.163 0.037 − 4.44 0.0006
LD1LD2 − 0.127 0.039 − 3.27 0.0056
CP1LD2 − 0.027 0.019 − 1.46 0.1668
LD1CP2 − 0.021 0.019 − 1.10 0.2881

RSC 11 CP1CP2 − 0.079 0.036 − 2.19 0.0512
LD1LD2 − 0.059 0.046 − 1.28 0.2285
CP1LD2 0.052 0.029 1.78 0.1031
LD1CP2 − 0.010 0.039 − 0.25 0.8101

OPA 14 CP1CP2 − 0.107 0.057 − 1.89 0.0798
LD1LD2 − 0.145 0.043 − 3.39 0.0044
CP1LD2 − 0.006 0.027 − 0.23 0.8213
LD1CP2 0.040 0.041 0.96 0.3510

V1 13 CP1CP2 0.040 0.061 0.66 0.5194
LD1LD2 − 0.009 0.036 − 0.24 0.8148
CP1LD2 0.037 0.029 1.29 0.2182
LD1CP2 0.083 0.036 2.29 0.0394

FFA 14 CP1CP2 − 0.063 0.050 − 1.27 0.2260
LD1LD2 − 0.112 0.033 − 3.40 0.0043
CP1LD2 − 0.010 0.035 − 0.28 0.7827
LD1CP2 − 0.009 0.033 − 0.26 0.7977
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the presence/absence of MVPA and RS effects in terms of their under-
lying neural signals. The presence of significant similarity in multi-
voxel patterns (MVPs) could reflect repeated activation of the same
population of neurons across both presentations of a stimulus or acti-
vation of different populations of neurons reliably clustered at a spatial
scale smaller than a voxel (similar to hypercolumns). On the other
hand, the presence of significant RS is thought to reflect repeated ac-
tivation of the same population of neurons across both presentations of
a stimulus (Grill-Spector and Malach, 2001; Grill-Spector et al., 2006).
Even though there are several competing accounts for the physiological
basis of RS (Grill-Spector et al., 2006; Malach, 2012), the conflicting
theories all predict activation of the same neural populations by the
initial and repeated stimulus presentations. Taken together, the pre-
sence or absence of MVPA and RS effects can be used to infer the nature
of neural populations that represent different classes of stimuli (such as
CPs and LDs, Fig. 1B). The presence of both MVPA and RS effects be-
tween stimulus classes would suggest that identical neural populations
represent both classes of stimuli. Presence of MVPA but not RS would
suggest that reliably clustered but distinct neural populations represent
each class of stimuli.

Here, we find that scene categories can be decoded and cross-de-
coded from MVPs elicited by CPs and LDs of natural scenes. When in-
terpreted using the above framework, these results suggest that CPs and
LDs are either represented by the same neural populations or re-
presented by populations of neurons reliably clustered at a sub-voxel

level. However, we do not find RS between CPs and LDs of natural
scenes. The presence of RS for within-type repetitions confirms that we
reliably activate the same neural populations by repeating the exact
same image within our experimental paradigm. The absence of RS for
between-type repetitions indicates that identical neural populations are
not activated by CPs and LDs of the same scenes. Taken together, the
MVPA and RS results provide evidence that CPs and LDs are re-
presented by reliably clustered, but not identical, neural populations in
scene-selective cortical areas (Fig. 1B).

Another potential explanation for the divergent results from MVPA
and RS is that the two analyses access different levels of representation
in the brain. For natural scenes, Epstein and Morgan (2012) found that
both landmark identity and scene category are decodable with MVPA,
but RS is only present for landmark identity repetition and not scene
category repetition. In our case, LDs preserve many structural compo-
nents of CPs, including the distribution of curvature and contour
junction features across the visual field, while eliminating color and
most texture. These structural components have been shown to be
computationally predictive of behavioral (Walther and Shen, 2014) and
neural categorization error patterns for natural scenes (Choo and
Walther, 2016). However, we do not find RS between CPs and LDs of
the same scene. One explanation for this finding is that the structural
components of a scene preserved by LDs are sufficient to support re-
presentation of scene category but not scene identity. Other features
present in CPs but not preserved in LDs, such as color and fine-grained
texture, may play a more important role in scene identification despite
not being necessary for successful scene categorization. If this account
is correct and RS and MVPA are differentially accessing representations
supporting identification and categorization, our results would suggest
that representation of scene identity requires a more complete match in
image properties, such as color and fine-grained texture, than is af-
forded by the scene structure preserved in LDs. Additional behavioral
and computational modeling experiments are necessary to confirm this
hypothesis.

Between-types RS was not observed in the PPA. The PPA has been
shown to represent many visual attributes of scenes (see Malcolm et al.,
2016 for a review), including spatial layout (Epstein and Kanwisher,
1998; Epstein et al., 2007; Park et al., 2007, 2011; Epstein, 2008;
Kravitz et al., 2011), relative distance and expanse (Kravitz et al., 2011;
Harel et al., 2013), size and clutter (Park et al., 2014), contextually-
relevant objects (MacEvoy and Epstein, 2011), texture (Lowe et al.,
2017; Park and Park, 2017), and spatial frequency content (Rajimehr
et al., 2011; Kauffmann et al., 2015; Watson et al., 2016; Berman et al.,
2017). CPs and LDs of scenes differ in many of these features. The fact
that we can decode and cross-decode scene categories from brain ac-
tivity patterns evoked by CPs and LDs in the PPA does not indicate that
no other information is being represented within the region; decoding
analysis does not allow for a complete functional description of a region
(Naselaris et al., 2011). In fact, several aspects of a scene including its

Fig. 3. Whole brain repetition suppression (RS) results. A.) RS for within-type repetition of color photographs. B.) RS for within-type repetition of line drawings. No
between-types RS was observed anywhere in the brain.

Table 2
All results and statistics for the MVPA classification analyses.

ROI df Condition Accuracy SEM T-Stat P-value

PPA 14 CPTrainCPTest 21.94% 0.89% 5.90 0.00004
LDTrainLDTest 20.31% 0.80% 4.57 0.00043
CPTrainLDTest 19.69% 0.58% 5.17 0.00014
LDTrainLDTest 21.63% 0.98% 5.09 0.00017

RSC 11 CPTrainCPTest 18.10% 0.77% 1.85 0.09162
LDTrainLDTest 19.97% 0.99% 3.33 0.00676
CPTrainLDTest 20.70% 1.02% 3.94 0.00230
LDTrainLDTest 19.62% 0.93% 3.17 0.00897

OPA 14 CPTrainCPTest 20.76% 0.90% 4.56 0.00044
LDTrainLDTest 20.24% 0.82% 4.34 0.00068
CPTrainLDTest 19.69% 0.59% 5.09 0.00016
LDTrainLDTest 20.63% 0.81% 4.90 0.00024

V1 13 CPTrainCPTest 21.69% 1.20% 4.19 0.00106
LDTrainLDTest 20.68% 1.03% 3.91 0.00178
CPTrainLDTest 19.61% 0.83% 3.55 0.00354
LDTrainLDTest 20.87% 0.92% 4.59 0.00051

FFA 14 CPTrainCPTest 17.67% 0.87% 1.15 0.26764
LDTrainLDTest 19.13% 0.68% 3.64 0.00267
CPTrainLDTest 17.95% 0.57% 2.26 0.04014
LDTrainLDTest 18.47% 0.47% 3.88 0.00167

T.P. O’Connell et al. Neuropsychologia 117 (2018) 513–519

517



spatial, textural, object, or spatial frequency content are likely to be
represented by populations of neurons in PPA and to contribute to the
representation of scene content (such as category). Such coexistence of
overlapping representations for various attributes of natural scenes
within the same brain regions is consistent with neurophysiology
findings in macaques (Kornblith et al., 2013) and helps explain the wide
variety of scene attributes decodable from the PPA.

There are several alternative interpretations for our results. It is
possible that format-specific image properties, such as color, are coded
by populations of neurons confined within individual voxels and that
format-general features, such as the local or global scene structure, are
only encoded in populations of neurons spanning several voxels. This
scenario would also explain why MVPA generalizes across CPs and LDs
but RS does not. While we cannot exclude this explanation with our
current data, we favor the explanation based on separate but spatially
intermixed neural populations for encoding CPs and LDs of scenes,
because it depends less on assumptions about a specific spatial dis-
tribution of neurons across voxels and, therefore specific choices of the
spatial grid for data acquisition.

Additionally, the magnitude of RS is modulated by different psy-
chological manipulations, including temporal context (Turk-Browne
et al., 2012) and selective attention (Yi and Chun, 2005; Moore et al.,
2013), and RS has been linked to explicit memory (Turk-Browne et al.,
2006; but see Ward et al., 2013) and implicit memory (Maccotta and
Buckner, 2004; Wig et al., 2005; Zago et al., 2005; Turk-Browne et al.,
2006; Ward et al., 2013). However, the current experiment was not
designed to test for these effects. In fact, we took great care to counter-
balance any experimental parameters that could potentially affect at-
tention and memory, such as the temporal separation of repeated pre-
sentations in time and the temporal position of stimuli within blocks
and within the experiment session, across repetition conditions.

Another explanation could be that participants do not remember
repeated instances of the same scene when the image type changes
across presentations. It is possible that the natural/manmade response
is bound to the memory of the image, and the magnitude of repetition
suppression reflects stimulus-response learning between the scene and
the response, which has been linked to RS (Dobbins et al., 2004). The
observed lack of RS for between-types repetitions between CPs and LDs
could reflect disrupted stimulus-response learning across image types.
Future work can systematically explore this possibility by manipulating
and tracking attention and memory for CPs and LDs behaviorally and
linking behavioral performance to RS and MVPs.

Why do we not see RS effects in V1 for the ROI-based analysis or
anywhere in early visual cortex for the whole brain analysis? Across the
literature, there are two primary designs used to evoke RS: repetition
within a trial (short-interval RS) and repetition between trials (long-
interval RS). Epstein et al. (2008) systematically explored the difference
between these two types of RS within the same set of participants. For
natural scenes, they found short-interval RS in both scene selective and
early visual cortex but only found long-interval RS in scene selective
cortex. We here employed a long-interval RS design with a lag of
19.5–45.5 s between repetitions. Thus, the lack of RS effects in V1 and
early visual areas observed in this study is consistent with previous
reports.

To summarize, we have confirmed the representational equivalence
of CPs and LDs of real-world scenes with respect to MVPA decoding of
scene categories. However, the structural features preserved in LDs
were insufficient to give rise to RS for stimulus repetitions across image
type. Taken together, these results lead us to conclude that CPs and LDs
of natural scenes are represented in scene-selective cortical areas by
distinct neural populations that are reliably spatially clustered at a sub-
voxel level. MVPA and RS are complementary analysis tools when in-
vestigating neural representations of real-world scenes. Jointly, they
provide us with new insights into the organization of visual information
in scene-selective visual cortex.
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