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Abstract

Decision-making is an essential cognitive process by which we interact with the external world. However, at-
tempts to understand the neural mechanisms of decision-making are limited by the current available animal
models and the technologies that can be applied to them. Here, we build on the renewed interest in using tree
shrews (Tupaia belangeri) in vision research and provide strong support for them as a model for studying vis-
ual perceptual decision-making. Tree shrews learned very quickly to perform a two-alternative forced choice
contrast discrimination task, and they exhibited differences in response time distributions depending on the re-
ward and punishment structure of the task. Specifically, they made occasional fast guesses when incorrect re-
sponses are punished by a constant increase in the interval between trials. This behavior was suppressed
when faster incorrect responses were discouraged by longer intertrial intervals. By fitting the behavioral data
with two variants of racing diffusion decision models, we found that the between-trial delay affected decision-
making by modulating the drift rate of a time accumulator. Our results thus provide support for the existence
of an internal process that is independent of the evidence accumulation in decision-making and lay a founda-
tion for future mechanistic studies of perceptual decision-making using tree shrews.
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Significance Statement

Despite decades of work in the field of decision-making, we still have no clear brain-wide model of how per-
ceptual decisions are formed and executed. A major reason for this lack of understanding is the limited ani-
mal models in decision-making studies. Here, we have successfully established a rigorous perceptual
decision-making paradigm in tree shrews, and evaluated their choice and response-time behaviors with
both summary statistics and trial-level computational modeling. Our results suggest that an endogenously-
driven decision process, in addition to standard stimulus-dependent evidence accumulation, is necessary
for interpreting the observed behavior. Our study thus underscores the importance of characterizing addi-
tional factors that affect decisions and encourages future investigations using tree shrews to reveal the neu-
ral mechanisms underlying these cognitive processes.
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Introduction
Decision-making is a vital cognitive process, playing an

important role in many brain functions such as categoriza-
tion, learning, memory, and reasoning. Among different
forms of decision-making, perceptual decision-making,
where decisions are based on sensory stimuli, is a simple
yet informative task that is particularly amenable to exper-
imental studies. Visual stimuli are often used because the
visual system is arguably the best studied sensory sys-
tem, thus advantageous for understanding perceptual de-
cision-making from sensation to action.
Considering decision-making is a dynamic process with

complex combinations of distinct underlying variables, re-
searchers have frequently applied sequential samplingmod-
els (SSMs) to interpret and decompose decision behaviors.
These models assume that the evidence (i.e., a variable de-
pending on the sensory stimulus strength) is accumulated
through time, and a corresponding choice is made when
the accumulated evidence passes a threshold. By defining
these stochastic accumulation processes, SSMs can simu-
late decisions and response times (RTs) with the stimulus as
the input. The discovery of “ramping neurons” during deci-
sions in many brain regions provides neural evidence for
these models (Horwitz and Newsome, 1999; Roitman and
Shadlen, 2002; Ding and Gold, 2010; Mante et al., 2013).
Despite the models’ effectiveness in a wide range of appli-
cations, variants of the SSM make different predictions re-
garding what decision variables (bias, threshold, time
perception, etc.) are involved and how they interact with
each other (Ratcliff, 1978; Usher and McClelland, 2001;
Brown and Heathcote, 2005; Cisek et al., 2009). More im-
portantly, the neural mechanisms of these variables and
their interactions remain largely unknown, which typically re-
quire studies in animal models.
Monkeys and rodents (mostly rats and mice) are com-

monly used in decision-making studies, with respective
advantages and drawbacks. Monkeys are closely related
to humans, but they are expensive and limited in availabil-
ity, thus difficult to study or control individual differences.
Furthermore, most modern “circuit-busting” opto-genetic
and chemo-genetic techniques are not yet routinely used in
primates. On the other hand, recent use of rodents, espe-
cially mice, has significantly advanced our understanding of
decision-making (Odoemene et al., 2018; International Brain
Laboratory et al., 2021; Ashwood et al., 2022). However,

mice and rats are nocturnal animals with poor eyesight,
making them less than ideal for visual tasks. In addition, ro-
dents often learn visual tasks slowly (Aoki et al., 2017; Urai
et al., 2021), costing both time and effort to obtain high qual-
ity data. Here, we use a different animal model, tree shrews
(Tupaia belangeri; Fig. 1A) for visual decision studies. Under
the order of Scandentia, tree shrews are evolutionarily closer
to primates than rodents are (Yao, 2017). They are diurnal,
have an excellent acuity, and display visual system com-
plexity similar to primates (Petry and Bickford, 2019). Earlier
studies have shown that they could be reliably trained to
perform visual (color, orientation, spatial frequency, tempo-
ral frequency, etc.) discrimination tasks (Casagrande and
Diamond, 1974; Petry et al., 1984; Petry and Kelly, 1991;
Callahan and Petry, 2000; Mustafar et al., 2018). In addition,
tree shrews are of lower cost, smaller, and have a faster re-
production cycle than monkeys, making them more acces-
sible. Finally, modern viral, genetic, and imaging techniques
are being applied in tree shrews with a better success
than in primates (Lee et al., 2016; Li et al., 2017; Sedigh-
Sarvestani et al., 2021; Savier et al., 2021). Taken together,
tree shrews have the potential to advance the understanding
of neural mechanisms underlying perceptual decision-
making. In this study, we seek to establish a rigorous per-
ceptual decision-making paradigm for tree shrews, and to
characterize the decision-making features, including both
response accuracy and response time, in this animal model
quantitatively with both summary statistics and trial-level
computational modeling.

Materials and Methods
Contrast discrimination task
We trained in total of nine (male = 7, female = 2) freely

moving tree shrews to perform a two-alternative forced
choice (2AFC) contrast discrimination task (Fig. 1C). At
the beginning of each trial, a visual stimulus of two orthog-
onal overlapping a-transparent gabors appeared at the
screen center to indicate that the tree shrew could lick the
center port to initiate the trial. After initiation, the center
stimulus disappeared, and two side gabor patches were
presented immediately on the left and right of the screen.
Tree shrews needed to choose the side with a higher con-
trast by licking the corresponding lick port. This self-ini-
tiation design helped to ensure that the animals were
focused from the beginning of each trial and allowed us
to record accurate RTs, which were calculated as the du-
ration between the stimulus (two side gabors) appear-
ance and the side-port lick detection. Once a choice lick
was detected, the stimulus would disappear from the
screen. We adopted a free-response structure that if no
choice was detected, the stimulus would be on for an in-
finite amount of time.
Intertrial intervals (ITIs) were randomly drawn from a

truncated normal distribution with a mean of 0.6, a SD of
1, a lower bound of 0.5, and an upper bound of 0.7 (unit:
seconds). For correct responses, liquid reward (50%
grape juice) was given right after the animals reported
their choices. The reward volume was determined by the
duration of the valve opening, which was randomly drawn
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from a truncated normal distribution with a mean of 0.1, a
SD of 0.06, a lower bound of 0.2, and an upper bound of
0.4 (unit: seconds). The speed of liquid flow was 150ml/s.
The average reward volume in one correct trial was 33ml
(0.22 s). The random ITI and random reward duration
helped the animals to stay engaged in the task.
For incorrect responses, two protocols were used to

generate a delay as a punishment. (1) A fixed delay of 4 s
was used in the first group of tree shrews for all incorrect
responses. If the animal licked the center port during the
delay (i.e., blank screen licks; detected in 0.8 s periods), a
penalty of 0.8 s was then added to the delay, with a maxi-
mum of 8 s for the total delay. (2) An exponential decay
function (Equation 1) was applied in the second group of
animals to generate a between-trial delay based on the
trial-level RT:

T ¼ 1
s
e
�RT�l

s
; (1)

where T is the between-trial delay, RT is the response
time of the current incorrect trial, and l and s are the lo-
cation and scale parameters, which shift and scale the
function in the stimulus generation code. For all ani-
mals, we used l = 0.1, s = 1.7. For the blank screen lick
penalty, 1.5 s was added for every center-port-lick,
with the total delay being Max(T, tpassed 1 penalty), and
no upper limit. To determine the potential effect of
these two delay paradigms, we calculated the reward
rate using the data of a representative animal from the
first group of tree shrews (Eq. 2): the response accu-
racy of each RT bin was fitted with a sigmoid function,
which was then used to calculate the theoretical re-
ward per unit time (pulse/s).

RRðtÞ ¼ AccðtÞ
AccðtÞ � t1 ð1� AccðtÞÞ � ðt1DelayðtÞÞ ;

(2)

where RR(t) is the reward rate for a response time of t,
Acc(t) is the response accuracy (i.e., ratio of correct
choices) under this response time t obtained from the ob-
served data, Delay(t) is the intertrial delay for incorrect re-
sponses, which is four for the fixed-delay rule or follows
the exponential decay function defined above (Eq. 1) for
the exponential-delay rule.

Animal training and data collection
Tree shrews were first acclimated to the behavior box

for 1–2d. For most animals (seven out of nine), water re-
striction started at this stage of training (stage 1). For the
other two animals, water restriction started a couple of
days before acclimation. Two approaches of water re-
striction were used: (1) we gradually reduced their water
intake from baseline (20–40 ml/d) to 5–10 ml/d by limiting
the availability of drinking water; (2) we used citric acid
(CA; Urai et al., 2021) water in their home cage to reduce
water intake and gradually increased its concentration from
2% to 4%. The progress of water restriction depended on
the animals’ weight loss, water-intake baseline, and toler-
ance, to make sure that they were motivated to stay focused
on the task for at least 25min/d, and at the same time, not
experiencing any health issue (weight�90% � baseline).
Depending on the animals’ acclimation and learning speed,
the water restriction progress (2–7d) could extend to stage
2 and even 3 before reaching a stable restriction level.
During stage 1, a single gabor stimulus would be shown

right above the center lick port. After the gabor appeared,

Figure 1. Experimental design. A, A photograph of a tree shrew in the home cage. B, A schematic of the training procedure. C, The
contrast discrimination task. The animal needs to choose the side that has a higher contrast gabor and report the choice by licking
the corresponding port. D, Learning curve of individual animals. The y-axis is the response accuracy for the easiest condition on
each day. Day 1 refers to the first day of training with two-sided gabor stimulus. Dashed gray line, 75% accuracy. Most animals
reached this level by day 2 and all by day 7.
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the animals could lick the center port at any time to trigger
a liquid reward (grape juice diluted with water in a 1:1
ratio). Each tree shrew was left in the behavior box to
learn to use the center port for no more than 20min every
day for acclimation, but this stage usually took only 1 d
(20–40 trials per day). Having learnt to get liquid reward
from the center port, the animals progressed to the
next stage. At stage 2, the contrast discrimination task
was set up with contrast pairs of 1.0 (full contrast) ver-
sus 0.0 (zero contrast), i.e., a single side stimulus was
shown. The goal of stage 2 was to train the animals to
use the left and right lick ports. Liquid reward from the
center port was gradually reduced to zero within ;50
trials. Animals usually perform 100–300 trials per day
at this stage. Once they learned and had a stable cor-
rect rate of .75%, they progressed to stage 3. Note
that most animals learned very fast and graduated
both stages 1 and 2 within 2 d.
At stage 3, we first gave the animals an easy condition

by using contrast pairs of 1.0 versus 0.1, and gradually
mixed in other pairs of smaller contrast differences, finally
achieving the stimulus set we use in the formal data col-
lection. During this stage of training, we also adjusted the
ratio of easy (e.g., comparing the highest and lowest con-
trast) and difficult (same or similar contrast) trials for each
animal. By including sufficient easy trials and limiting the
number of equal-contrast trials, we were able to keep the
animals motivated to keep doing the task. For equal con-
trast trials, the correct answer was randomly assigned to
left or right, so that the animals still had 50% chance to
get a reward in these trials. At this stage, the animals per-
formed 500–600 trials per day. Some animals could finish
it within 30min, while some of the others needed as long
as 1 h, especially when they produced large numbers of
incorrect choices (giving rise to more penalty time) or they
started to lose patience and focus (giving rise to more
idling time). To control the frustration level, we would stop
the training when the duration was over 1 h. At this time,
some animals (50%) also developed biased behavior by
making most choices to the same side. We discouraged
this behavior by automatically adjusting the probability of
left/right trials depending on their real-time performance.
For example, we calculated the proportion of choosing
rightward in the previous 10 trials, denoted as Pr. The
probability of the next trial being rightward was 1 – Pr.
This real-time bias correction quickly discouraged the bi-
ased behavior in the tree shrews.
After the animals achieved a stable (three to five con-

secutive days) overall accuracy�60% (at this time, the
accuracy is expected to be lower because of the exis-
tence of equal contrast trials and other difficult trials), we
collected data for consecutive days (500–600 trials per
day) to reach at least 100 repeats for each condition of
contrast discrimination. The data were first culled by ap-
plying a three SD outlier removal on the Box–Cox trans-
formed response time distribution in preprocessing. The
remaining trials were used in further analysis.
All animal procedures were performed in accordance

with the University of Virginia animal care committee’s
regulations.

Stimulus and apparatus
The experiment program was written in Python and

the stimuli were generated and presented with the State
Machine Interface Library for Experiments (SMILE;
https://github.com/compmem/smile). The Gabor patch
size was 288, and the spatial frequency was 0.2 cpd.
The stimulus screen had a 1280� 1024 resolution and
60-Hz refresh rate, and was g-corrected. It was set at a
distance of 15 cm from the animal. There were six levels
of stimulus contrasts ranging from 0.08 to 0.99, which
were evenly-spaced. All combinations of left and right
contrasts are presented in a randomized order.
The lick-detector circuit (adapted from Marbach and

Zador, 2017), and reward-valve control circuit (adapted from
https://bc-robotics.com/tutorials/controlling-a-solenoid-
valve-with-arduino/) were controlled with an NI USB-6001
multifunction I/O device (https://www.ni.com/en-us/support/
model.usb-6001.html). The Plexiglas behavior box was L:
40cm � W: 22cm � H: 20cm with a transparent window on
the front side to allow the animals to watch the screen.

Data analysis andmodels
To test the relationship between RT and contrast differ-

ence, we fitted a mixed effect linear regression model with
RT as the dependent variable, the absolute contrast dif-
ference between left and right stimuli as the independent
variable, and individual animal as the group variable,
using the statsmodels library in Python.
We fitted the behavioral data with two sequential sam-

pling decision-making models, the timed racing diffusion
model (TRDM) and the racing diffusion model (RDM), and
compared their performance using a Bayesian approach.
TRDM contains three independent accumulation proc-
esses, namely two evidence accumulators and one time
accumulator (or “timer”), whereas RDM only has the
two evidence accumulators. The probability density
function (PDF) [f(t)] and cumulative distribution function
[F(t)] for each evidence or time accumulation process
are defined by the inverse Gaussian (Wald) distribution
in Equation 3:

fðtjr ;s ;a; t0Þ ¼ a

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðt� t0Þ3

q exp � ½a � rðt� t0Þ�2
2s 2ðt� t0Þ

 !

Fðtjr ;s ;a; t0Þ ¼ U
rðt� t0Þ � a

s
ffiffiffiffiffiffiffiffiffiffiffi
t� t0

p
� �

1 exp
2ar
s 2

� �
� U � rðt� t0Þ1a

s
ffiffiffiffiffiffiffiffiffiffiffi
t� t0

p
� �

; (3)

where t is the response time, r is the mean drift rate, s is
the within-trial variability of the drift rate, a is the threshold
(which was fixed to 1.0), t0 is the nondecision time, U is
the cumulative distribution function of a standard normal
distribution (Heathcote, 2004; Hawkins and Heathcote,
2021).
The mean drift rate (r ) of each evidence accumulator

was calculated using the following equation (Eq. 4), taking
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into consideration both the stimulus difference and their
total strength:

r l ¼ v0 1 vdðsl � srÞ1 vsðsl 1 srÞ
r r ¼ v0 1 vdðsr � slÞ1 vsðsl 1 srÞ; (4)

where r l and r r are the mean drift rate of the left and right
evidence accumulators, v0 is the baseline drift rate, sl and
sr are the contrasts of left and right stimuli, vd is the coeffi-
cient of the contrast difference term, vs is the coefficient
of the contrast summation term (van Ravenzwaaij et al.,
2020).
The accumulators race against each other. If one of

the evidence accumulators reaches the threshold first,
a corresponding choice is made. If the time accumula-
tor reaches the threshold first, one of the options will
be chosen randomly with a partial dependence on which
evidence is greater at that time point. This is done through
a process controlled by a parameter g , ranging from 0 to
1, with 1 being fully dependent on the evidence accumu-
lated up until that point, and 0 being completely random
regardless of the accumulated evidence. Other parame-
ters of the model include r t, v , and t0, as described in
Table 1.
To apply Bayesian inference, we first defined the “pri-

ors,” the belief of the true parameter values before data
observation, by assigning a probability distribution for
each of the parameters based on previous experience
(Table 1; Kirkpatrick et al., 2021). We then used the ob-
served data to update the prior distributions, to achieve
a more constrained posterior distribution of what pa-
rameters could have generated the observed data for
each model. Posterior samples were generated with the
differential evolution Markov chain Monte Carlo (DE-
MCMC; Ter Braak, 2006; Turner and Sederberg, 2012;
Turner et al., 2013) algorithm, which was shown to
be computationally efficient. This was implemented by
the RunDEMC library (https://github.com/compmem/
RunDEMC). We set 10k (k is the number of parameters)
parallel chains for 200 iterations in the burn-in stage
and 500 iterations to sample the posterior.
Specifically, we apply a standard Metropolis–Hastings

algorithm to accept or reject proposed samples from the
posterior. Here, a new parameter proposal is evaluated by

comparing its posterior probability with that of the current
proposal, with the probability of accepting a new proposal:

PðacceptÞ ¼ PðDju 9ÞPðu 9Þ
PðDju ÞPðu Þ ; (5)

where D represents the observed data, u9 is the new pro-
posal, u is the current proposal, P(D|u9) and PðDju Þ are
the likelihoods calculated with Equation 6, and P(u9) and
P(u ) are the priors.
To calculate the likelihood PðDju Þ of observing the data

D given the parameters u , we multiply the likelihoods of
observing each choice and RT as determined by the
model probability density function (PDF) defined by the
parameters u . For example, the PDF for observing a left
response with a decision time t is defined by the follow-
ing equation (Heathcote, 2004; Hawkins and Heathcote,
2021):

PDFleftðtÞ ¼ fE;leftðtÞ 1� FE;rightðtÞ
� �

1� FTðtÞð Þ
1PTfTðtÞ 1� FE;leftðtÞ

� �
1� FE;rightðtÞ
� �

PT ¼ gFXð0Þ1 1
2

1� gð Þ

X;N r rt� r lt;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 h c

ffiffi
t

p� �2
r !

; (6)

where f(t) and F(t) are the density and distribution func-
tions defined above, fE and FE are for the evidence accu-
mulators, while fT and FT are for the time accumulator. FX
is the cumulative distribution function for the random vari-
able X, and X follows a normal distribution defined by the
difference in evidence accumulator distributions. r l and
r r are the mean drift rate for left and right evidence accu-
mulators, hc is the within-trial variability of the drift rate
for the evidence accumulators.
Finally, to compare the performance of the two models,

we first calculated the Bayesian information criterion (BIC)
values (Eq. 7) of each model fitting result:

BIC ¼ klnðnÞ � 2ln Lðû Þ
� �

; (7)

where k is the number of parameters, n is the number of data
points, Lðû Þ is the maximum likelihood of the model’s fit to
the data. Then we approximated the Bayes factor (BF) with
BIC as in Equation 8 (Kass and Raftery, 1995):

BFij � exp � 1
2
ðBICi � BICjÞ

� �
; (8)

where BICi and BICj are BIC values for Model i (in this
case the TRDM) and Model j (the RDM) respectively. BFi,j
. 1 means evidence is in favor of Model i over Model j.
BFi,j . 3, 20, 150, correspondingly ln (BFi,j). 1, 3, 5, indi-
cates positive, strong, very strong evidence for Model i
over Model j, respectively (Lodewyckx et al., 2011).

Code accessibility
Python code for preprocessing and running TRDM/RDM

models are included in the Extended Data 1.

Table 1: Priors of free parameters in tested models

Parameter Description Prior
v Bias IL(0, 1.4)
t0,c Nondecision time of choice IL(0, 1.4)
v0; vs; vd Drift rate coefficients of choice LN(1.56, 1.5)
r �
t Mean drift rate of timer LN(1.56, 1.5)

hc; h
�
t Within-trial variability LN(1.56, 1.5)

g * Mixture between random
and evidence-based
timer-induced decision

IL(–1, 1.0)

IL inverse logit distribution.
LN log normal distribution.
* parameters only exist in TRDM.
The best fitting parameters of the two models for each animal are shown in
Extended Data Tables 1-2 and 1-3. We also tested the relationship between
RT and contrast difference using nonmodel statistics described in Extended
Data Table 1-1.
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Results
Tree shrews quickly learned to perform a contrast
discrimination 2AFC task
We trained a total of nine (male = 7, female = 2) tree

shrews to perform a 2AFC contrast discrimination task
(Fig. 1). The 2AFC design was chosen over other classic
paradigms such as “Go/no-Go” tasks because it elimi-
nates the asymmetry between responses for different op-
tions. Also, we designed the trials to be self-initiated and
self-paced by the animals, to obtain precise response
time (RT) data for comprehensive behavioral analysis.
During training, freely moving tree shrews were first accli-
mated in the behavioral box with a single gabor stimulus
appearing at the center or either side of the screen (Fig.
1B). After the animals learned the association between
the stimulus and liquid reward, often within 1–2d, two ga-
bors of different contrasts were introduced with the higher
contrast one indicating the location of the reward (Fig.
1C). All the tree shrews were able to learn the task and
reach an accuracy .75% for the easiest condition within
oneweek (Fig. 1D). In fact, most of them reached 75% ac-
curacy within 2 d. It is worth noting that, once the animals
reached a good performance, the overall difficulty was
increased progressively. In other words, the “easiest”
condition often became more difficult in successive
days. However, the animals’ performance was stably
above 75%, indicating that they had learned the rule of
the task, instead of the specific stimuli, within a very
short period. These observations thus highlight the im-
pressive learning capability of tree shrews and indicate

that they can be a promising animal model in cognitive
neuroscience research.

Tree shrews showed different behaviors under two
training schemes
In the first group of animals (n=5; male = 4, female = 1),

a fixed trial delay of 4 s was used to punish incorrect re-
sponses (Fig. 2A). All animals were able to learn the task.
An increase in difficulty (i.e., a decrease of contrast differ-
ence between the two stimuli) induced an expected drop
of response accuracy (Fig. 2B). However, task difficulty
did not have a significant effect on the response time
(RT) in correct trials (mixed effect linear regression,
b = 0.008a, p=0.125; Extended Data Table 1-1), whereas
the RT in incorrect trials increased with task difficulty (Fig.
2C, mixed effect linear regression, b = –0.075b, p, 0.001).
This result is different from previously reported RT trend in
humans, monkeys, and mice (Roitman and Shadlen, 2002;
Palmer et al., 2005; Philiastides et al., 2011; Dmochowski
and Norcia, 2015; Jun et al., 2021; Orsolic et al., 2021),
where increasing task difficulty usually resulted in an
increase in RT in correct trials. We examined the RT
distribution of individual animals and saw a bimodal-
like shape in most animals (n = 4 out of 5) in this group
(Fig. 2D; Extended Data Fig. 2-1), instead of the more
common log-normal distribution (Ratcliff, 1978; Smith
and Ratcliff, 2004). Furthermore, the first small peak of
the RT distribution contained a similar proportion of
correct and incorrect trials, while the second peak had
many more correct than incorrect trials. This bimodal

Figure 2. Tree shrews show different behaviors under two training schemes. A, A fixed delay of 4 s (solid line) was used in training
one group of animals. The dashed line shows the theoretical reward rate under this fixed delay. B, Psychometric curve of animals
from this training scheme. Contrast difference: right contrast (R) – left contrast (L). Gray dashed line, Individual animals. Black solid
line, Average across animals. C, Response time (RT) as a function of contrast difference. Dashed line, Individual animals. Solid line,
Average across animals. The shaded area is 95% confidence interval. D, RT density histogram from a representative animal.
Correct and incorrect trials are separately plotted. E, An exponential decay delay scheme (solid line) was applied in another group.
The dashed line shows the theoretical reward rate under this scheme. F–H, Same as C–E but for the second group. Figures 2-1
and 2-2 show the RT distributions of individual animals from the fixed-delay group and exponential-delay group respectively.

Research Article: New Research 6 of 11

November/December 2022, 9(6) ENEURO.0419-22.2022 eNeuro.org

https://doi.org/10.1523/ENEURO.0419-22.2022.t1-1
https://doi.org/10.1523/ENEURO.0419-22.2022.f2-1
https://doi.org/10.1523/ENEURO.0419-22.2022.f2-1
https://doi.org/10.1523/ENEURO.0419-22.2022.f2-2


distribution suggested two possible modes in the be-
havioral responses, a “fast-guessing” mode of random
performance and a slower mode where an animal was
more “engaged” in the task.
To discourage the animals from “fast guessing,” we em-

ployed an exponential decay trial delay for incorrect re-
sponses in the second group (n=4; male=3, female=1; Fig.
2E). The exponential decay delay would punish fast incorrect
responses more than slow incorrect ones, at a more aggres-
sive level than the fixed trial delay procedure (Fig. 2A,E). All
animals in this group were again able to learn the task quickly
(Fig. 2F,G). Notably, the overall RT was substantially slower
compared with the fixed-delay group, indicating the effective-
ness of the new trial delay paradigm. Furthermore, the RTs in
correct trials showed a slightly increasing trend with task diffi-
culty (mixed effect linear regression, b = –0.021c, p=0.001),
while the effect on the incorrect RT became less prominent
than for the fixed-delay group (mixed effect linear regression,
b = –0.046d, p=0.014). When examining the RT distribution
of individual animals, we saw one-peak log-normal distribu-
tions, similar to what was reported in other species, and a
clear above-chance accuracy across the entire range (Fig.
2H; Extended Data Fig. 2-2). These behavioral data thus
demonstrate that the tree shrews responded to the two trial
delay schemes with different behaviors.

Non-evidence-accumulationmechanism is crucial to
interpreting tree shrew behaviors
The above behavioral data suggest the involvement

of a process in addition to evidence collection during

decision-making. One possibility is a time accumulation
process where the animals had an internal time threshold
on the task, and they would rush into a more or less ran-
dom choice if the time threshold was reached before
accumulating enough evidence to guide the choice. This
time limit would be different under the two trial delay para-
digms: shorter under fixed delay, thus leading to many fast
guesses. To test the plausibility of this explanation, we turned
to cognitive models of decision-making.
We fitted two models, racing diffusion model (RDM)

and timed racing diffusion model (TRDM; Hawkins and
Heathcote, 2021), to the data obtained from individual
animals. In a 2AFC task, the RDM describes 2 inde-
pendent evidence accumulators racing against each
other. When one of the accumulators first reaches the
threshold, a corresponding choice is made (Fig. 3A). The
TRDM has one additional accumulator that tracks time
(Fig. 3B). If the time accumulator reaches the threshold
before the evidence accumulators, a decision is made
based on the current accumulated evidence with a certain
probability g . We fixed all the accumulation thresholds
to be 1. A fast time accumulator was thus effectively
equal to a short time limit as described above. The two
models allowed us to test whether an additional timing
mechanism can better explain tree shrew decision
behaviors.
We used a Bayesian approach for model fitting (Ter

Braak, 2006; Turner and Sederberg, 2012; Turner et al.,
2013), and then simulated choice and RT data with the
best fitting parameters to visualize the goodness of fit. We
found that the RDM captured the RT distribution of the

Figure 3. Modeling results suggest that evidence accumulation combined with a timing mechanism better fits tree shrew decision-
making behavior. A, B, Racing diffusion model (RDM; A) and timed racing diffusion model (TRDM; B). Blue trace, The evidence
accumulator for left choice. Yellow trace, The evidence accumulator for right choice. Gray trace, The time accumulator. The two evi-
dence accumulation processes race against each other. In these schematics, the accumulator for right stimuli (yellow) reaches the
threshold first, resulting in a rightward choice. C, Observed (histograms) and simulated (lines) RT distribution for the representative
animal from the fixed-delay group. Top, RDM simulation. Bottom, TRDM simulation. D, Observed and simulated RT distribution for
the representative animal from the exponential-delay group. Top, RDM simulation. Bottom, TRDM simulation. E, Estimated log
Bayes factor comparing the two models’ performance. Positive values favor TRDM, while negative values favor RDM. Gray dots
represent the animals from the fixed-delay training, and green dots represent the exponential-delay group. The upper and lower
edges of the gray shaded area represent the lower limit for “very strong” evidence [ln(BF) = 5].
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exponential-delay group well, but failed to fit the fixed-
delay group (Fig. 3C,D, top panels). On the other hand,
the TRDM fitted well to both groups (Fig. 3C,D, bottom
panels). To quantify their performance difference, we esti-
mated the Bayes factor (BF) of the two models for each
animal (Fig. 3E). For animals in the fixed-delay group, the
values of ln(BF) were extremely high, ranging from 45 to
1062, providing overwhelming support for the TRDM.
These values were much higher than 5, which is a conven-
tional threshold for “very strong” evidence for one model
over the other in Bayesian modeling (Lodewyckx et al.,
2011). For the exponential-delay group, the evidence fa-
vored the RDM for three out of the four tree shrews,
although the magnitude of evidence was not nearly as
strong [ln(BF) ranging from �6 to 1]. It should be noted
that Bayes factor in our estimation punishes complex
models that have more parameters. As a result, despite
the similar performance of the two models in fitting the

exponential-delay group data, the RDM had the advant-
age of simplicity, thus leading to the winning BF.
We then simulated choice and RT data with the best fit-

ting parameters (Extended Data Tables 1-2 and 1-3) for
each animal using the winning model, to visually check
the goodness of fit. Figure 4 illustrates that the TRDM fit
the data of the fixed-delay group well (Fig. 4A), and the
RDM was able to reproduce the behavior of the exponen-
tial-delay group (Fig. 4D), for both the psychometric
curves and the RT-contrast relationship. Consistent with
the result in Figure 3, the TRDM was also able to fit the
psychometric curves and the RT-contrast relationship for
the exponential-delay group (Fig. 4C), similarly to the
RDM, while the RDM failed to capture the RT-contrast re-
lationship for the fixed-delay group (Fig. 4B). The fact that
the behavior of both groups could be explained by the
TRDM supported the involvement of the non-evidence-
accumulation process during tree shrew visual decision-

Figure 4. Model simulation of the psychometric curves and associated response time, and the posterior of the timer-related parameters. A,
TRDM simulation for the fixed-delay group. Left, Observed (black) and simulated (red) psychometric curves for individual animals (dotted lines)
and the group average (solid lines). The simulations were done with the best fitting parameters of the TRDM. Right, Observed (dots, solid
lines, and dotted lines) and simulated RT function (“x”). Dotted lines, Individual animals. Solid lines, Group average. B, RDM simulation for the
fixed-delay group. C, TRDM simulation for the exponential-delay group. D, RDM simulation for the exponential-delay group. E, Percentage of
timer-induced choice calculated from the TRDM-simulated data for each animal. F, The posterior distribution of the time accumulator mean
drift rate (r t) for individual animals from the TRDM fitting. The dot in each distribution indicates the mean value. G, Same as F, but for the drift
rate variability of the time accumulator (h t). Figure 4-1 shows the decomposed simulation data of TRDM for one example animal.
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making, and this process can be manipulated by applying
different trial delay rules.
The models allowed us to track down the generating

mechanism of the simulated data, i.e., whether each deci-
sion was initiated by an evidence accumulator or the timer
crossing the threshold. We separated the TRDM-simu-
lated data for each animal according to the generating
mechanism, and found the timer and evidence accumula-
tors contributed to two separate RT peaks. Extended
Data Figure 4-1 shows the comparison between simu-
lated data and observed data for an example tree shrew
from the fixed-delay group (Fig. 2D). The results indicated
that the fast RTs were largely generated by the timer
(Extended Data Fig. 4-1A). In addition, when examining
the simulated RTs for correct choices generated by evi-
dence accumulators only, they increased with the task
difficulty (Extended Data Fig. 4-1D), similar to what has
been previously reported in humans, monkeys, and
mice (Roitman and Shadlen, 2002; Palmer et al., 2005;
Philiastides et al., 2011; Dmochowski and Norcia, 2015;
Jun et al., 2021; Orsolic et al., 2021). These model re-
sults suggest that the tree shrews learned the visual de-
cision-making task, and they had similar behaviors as
other animals when “engaged” in the task. Moreover,
the timer-driven random choices explained the plateau
of a nonperfect accuracy, even in the easiest conditions
(Extended Data Fig. 4-1C).
Next, for each tree shrew, we quantified the percentage

of timer-induced choices from the TRDM-simulated data
(Fig. 4E). As expected from the above analysis, all of the
animals from the fixed-delay group showed many timer-
induced choices (ranging from 30% to 66%), while the
value was near zero for every animal in the exponential-
delay group. To understand what decision variables were al-
tered by the change of delay rule, we examined the posterior
distribution of the parameters in the TRDM. The posteriors
of the timer-related parameters showed a general trend of
higher mean drift rate for the time accumulator (r t) and high-
er time drift rate variability (h t) in the fixed-delay group than
in the exponential-delay group (Fig. 4F,G). The two parame-
ters work together to determine the accumulation speed of
time during decision-making, with the fixed-delay group
having faster timers. The model results therefore pro-
posed a possible mechanism that the exponential delay
worked by slowing down the time accumulation pro-
cess in the tree shrews, which resulted in far fewer
“timer-induced” fast responses with compromised ac-
curacy, and more correct responses guided by the evi-
dence accumulation process.

Discussion
In this study, we aimed to and succeeded in establish-

ing a response-time paradigm of perceptual decision-
making for tree shrews. The behavioral results showed
that tree shrews are able to perform a contrast-discrimi-
nation perceptual decision task and generate informative
choice and response time data. Model-based analyses
suggest that, other than the choice-related evidence ac-
cumulation process, additional mechanisms, presumably
mechanisms that keep track of time, are involved in the

decision-making process depending on the specific de-
sign of trial delay because of incorrect responses. This
new animal model will facilitate future decision-making
studies with fast learning, reliable behaviors, increased
availability, and more modern techniques.
We carefully considered two points when designing the

behavioral paradigm. First, we adopted a 2AFC frame-
work, where two alternative options match symmetrically
with two response targets. In other widely used tasks,
there often exists asymmetry in either responses or stimu-
lus categories, which can be problematic when interpret-
ing different behaviors. For example, Go/no-Go tasks
involve an action (“go”) and a suppression of action (“no-
go”) as two responses, which are likely driven by different
neural circuits. Such tasks have thus become more suita-
ble for studying impulsion and inhibition (Eagle et al.,
2008; Dong et al., 2010; na Ding et al., 2014). On the other
hand, yes/no tasks offer two asymmetric stimulus catego-
ries as options, which are likely represented differently at
the neural level (Wentura, 2000; Donner et al., 2009). In
comparison, a multiple alternative forced choice frame-
work is better in perceptual decision-making studies.
Second, we designed the task to be self-initiated and
self-paced by the animals. Self-initiation ensures that the
animals are focused during the stimulus presentation, and
self-pacing encourages them to respond without delay
once they reach a decision. Compared with the com-
monly-used design where the stimuli show up automati-
cally and animals can respond at any time point within a
fixed response window, our design allowed us to collect
precise response times in addition to choice data. Response
times are particularly useful because they are continuous
(whereas choice data are discrete) and are more informative
when characterizing decision behaviors. For example, fast
correct responses have potentially different mechanisms
from slow correct responses, which would be impossible
to study without the RT information.
We used models under the SSM family to fit tree shrew

decision behaviors on the trial level. SSMs predict the
choice and RT distribution with a mathematically defined
dynamic decision-making process controlled by cogni-
tively meaningful parameters and offer testable hypothe-
ses about the underlying mechanisms. Signal detection
models have also been used to explain perceptual deci-
sion-making behaviors (Newsome et al., 1989), but they
only predict the choices made by subjects in a decision
process, ignoring the information contained in the re-
sponse time. Furthermore, the choice data are usually
averaged over trials, further reducing the information
present in the raw data. By comparison, SSMs have the
advantage of maximizing the efficiency of the animal
experiments and data analysis (Ratcliff et al., 2003).
Despite the RDM showing a slightly better Bayes factor

than the TRDM in the exponential-delay group because of
simplicity, the TRDM had the same ability to reproduce
the observed choice and RT pattern. Together with its
overwhelmingly better performance in the fixed-delay
group, the TRDM was overall the better model for this
dataset. By examining the source of the simulated data
(Extended Data Fig. 4-1), we found that timer-induced
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random choices largely contribute to the plateau of a non-
perfect accuracy in the easiest conditions. Canonically,
this nonperfect accuracy is modeled by “lapse rate” under
the Signal Detection framework (Wichmann and Hill, 2001;
International Brain Laboratory et al., 2021; Wang et al.,
2020; Prins, 2012). The lapses are usually assumed to hap-
pen via a Bernoulli process, i.e., the animals simply make
guesses at some random rate independently from trial to
trial, while providing no detailed process of choice genera-
tion. In comparison, the TRDM utilizes a time accumulator
that is highly similar to evidence accumulation to generate
random choices. It offers a more integrative solution to
the interaction between evidence-based and stimulus in-
dependent mechanisms. This can be more plausible on the
neuronal level than two separate processes that involve
very different calculations. In addition, the TRDM provides
the extra ability to explain why we rarely see extremely long
RTs in the difficult conditions, especially in the equal-evi-
dence conditions. The time accumulator can limit the RT
so that the decision-makers do not waste too much time
on a single decision when the evidence is obscure. Thus,
we think that the TRDM has more explanatory power than
models that include a “lapse rate.” Furthermore, a recent
study showed that mice alternate between states, such as
lapse or biased decisions, during a perceptual decision-
making task, and they have a higher probability to stay in
the same state for consecutive trials (Ashwood et al.,
2022). Therefore, Bernoulli “lapses” would be an oversim-
plified explanation of how nonperfect choices happen. In
future studies, the temporal sequence of choices and RTs
should also be analyzed to further investigate the mecha-
nism of decision state switching.
Finally, it is intriguing that the tree shrews in this study

showed a fair amount of premature choices under fixed
trial-delay although this strategy was suboptimal, in that it
did not maximize the reward rate. The TRDM suggested
that the animals actively applied a fast timer (or a short
time limit) on the task without being trained to perform the
task speedily. Interestingly, this tendency of rushing into
choices was discouraged by the exponential trial-delay
design that specifically punished fast incorrect responses
more. The baseline suboptimal behavior could partly be
because of (1) the characteristics of this animal model
and/or (2) the stimulus design. The tree shrews showed
much faster responses compared with humans on similar
tasks (Kirkpatrick et al., 2021). They were very nimble and
showed swift movements and reactions in various envi-
ronments (behavior rig, home cage, nature, etc.). Given
their motor capabilities, fast responses could be a survival
strategy to guarantee the total amount of reward via
high sampling frequency with slightly compromised
accuracy, and could be broadly used in most scenar-
ios to facilitate “exploration” behaviors, unless specifi-
cally discouraged. Additionally, in previous perceptual
decision-making studies, stochastic stimuli with mo-
tion such as random dot kinematogram were usually
used (Roitman and Shadlen, 2002; Ditterich, 2006;
Resulaj et al., 2009). These stimuli require temporal in-
tegration to acquire evidence for choices. In our study,
we used the static feature (contrast) as evidence.

Although studies showed support for evidence accumula-
tion even using the static stimuli in other species (Kirkpatrick
et al., 2021), temporal integration might not be needed as
strongly to generate a choice under this situation. This could
result in short response times, leading the animals to a faster
RT regime (more prone to make premature choices) and
masking the effect of task difficulty on the RT (Fig. 2G, minor
effect, although significant). Nevertheless, the tree shrew
data emphasized the natural existence of f evidence-inde-
pendent mechanisms in decision-making and offered an op-
portunity to examine their effects. These behavioral patterns
also suggest that we should consider the involvement of
processes in addition to the evidence accumulation process
in other animal/human models when interpreting both be-
havioral and neural data from decision-making tasks. Here,
we included an independent time accumulator to imple-
ment this additional process in our decision-making
models (Hawkins and Heathcote, 2021). However, it
should be noted that mechanisms other than the time
accumulator could also generate the fast-guessing re-
sponses and our results do not rule out these possible
mechanisms. In other words, the time accumulator was
not necessarily the true underlying mechanism, but
rather a piece of evidence for the involvement of multiple
generative processes for decision instead of one single
process. Other studies have indeed applied alternative
approaches to account for decisions not entirely based
on evidence accumulation, such as combining the deci-
sion process with a probabilistic fast-guess mode that
generates a normally distributed guessing time (Ratcliff
and Kang, 2021). Future studies that incorporate neural
data will be needed to reveal exactly how response
times in perceptual decision tasks are affected by infor-
mation other than the sensory strength.
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