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Previous research has shown that face-sensitive brain regions, such as the fusiform face area (FFA) and anterior
inferior temporal lobe (aIT), not only respond selectively to face stimuli, but also respond uniquely to individual
faces. A common factor in the existing literature is that face stimuli in these experiments are highly familiar to
participants, usually by design.We set out to investigate towhat extent familiarity correlateswith the emergence
of face-specific information in face-sensitive regions by testing novel faces with only a single repetition. Our re-
sults, consistent with a familiarity hypothesis, demonstrate that the FFA and aIT show face-specific information
only when participants demonstrate subsequent memory for those faces. Functionally-defined regions that are
not believed to process faces holistically showed no face-specific information, regardless of subsequentmemory.
To our knowledge, this is the first demonstration of face-specific information in face-sensitive regions for stimuli
that were not highly familiar. These results contribute to our understanding of how individuating information
comes to be represented in face-sensitive regions and suggest that this process can take place even after a single
repetition of a particular face.

© 2015 Elsevier Inc. All rights reserved.
1 We refrain from describing aIT as a “face area” per se because we reserve that phrase
Introduction

How the human brain represents face information is a core question
in cognitive neuroscience, with implications ranging from machine
vision (Tistarelli et al., 2009) to social biases (Van Bavel et al., 2008).
Converging evidence from human neuroimaging (Collins and Olson,
2014; Haxby et al., 2000; Kanwisher and Yovel, 2006; Kanwisher et al.,
1997) and cellular recordings of nonhuman primates (Freiwald et al.,
2009; Tsao et al., 2006) supports the existence of specialized regions
in the primate brain that preferentially process faces. It has been pro-
posed that these regions form a face-processing network, with different
regions assumed to play unique but potentially overlapping roles in the
processing of face stimuli (Collins and Olson, 2014; Haxby et al., 2000;
Nestor et al., 2011). However, what exactly each region represents—and
how they come to represent it—is not yet understood.

Several key face-processing regions lie in the ventral visual process-
ing pathway. The most well-studied of these, the fusiform face area
(FFA) is a portion of the fusiform gyrus that responds preferentially to
face stimuli relative to many other categories, such as scenes or objects
(Kanwisher and Yovel, 2006; Kanwisher et al., 1997). FFA responds to
constituent face features, but it is also sensitive to complete face config-
urations, suggesting that it may contain holistic representations of faces
(Harris and Aguirre, 2010; Liu et al., 2009). In contrast, the more poste-
rior occipital face area (OFA) does not appear sensitive to intact face
.

configurations, suggesting that it represents only the components of
faces (Haxby et al., 2000; Liu et al., 2009; Pitcher et al., 2007, 2011). Ad-
ditionally, the anterior inferior temporal region (aIT)1 is strongly impli-
cated in both the perception and memory of faces (Collins and Olson,
2014). Indeed, lesions to aIT impair the ability to bind episodic and
semantic information to individual faces (Gainotti and Marra, 2011;
Olson et al., 2013; Ross and Olson, 2010) and produce deficits in face
discrimination (Busigny et al., 2014; Olson et al., 2014). In contrast,
the evidence for FFA's involvement in face-memory is mixed (Collins
and Olson, 2014), with some studies showing differential FFA activity
for highly familiar vs. novel faces (Lehmann et al., 2004; Verosky et al.,
2013) and others showing no such differentiation (Eger et al., 2005;
Gorno-Tempini and Price, 2001). Finally, the OFA is believed to be unin-
volved in memory for faces (Collins and Olson, 2014).

The precise function of these regions is still an open question.
For instance, the FFA has been viewed as performing face detection
(Kanwisher et al., 1998), face identification (Gauthier et al., 2000), or
both (Grill-Spector et al., 2004). Taking advantage of advancements in
multivariate analysis of fMRI, recent research has shown that face-
sensitive regions contain information that differentiates individuals
(Anzellotti and Caramazza, 2014). An early study presented one male
for regions that are typically functionally defined as more responsive to faces than other
stimulus categories. Due to known issues in imaging the anterior temporal lobewith fMRI
(Devlin et al., 2000; Visser et al., 2009), functional localization of a face-sensitive ROI in an-
terior inferior temporal lobe is less common.
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and one female to participants many times during scanning. Multivari-
ate analyses revealed that information in the aIT, but not the FFA, was
distinct for each face (Kriegeskorte et al., 2007). Although this result
could reflect the presence of gender information, more recent work
also found information in face-selective voxels in the FFA and anterior
temporal lobe that individuated different faces of the same gender
(Nestor et al., 2011). More recently, the OFA, FFA, and aIT were shown
to contain information identifying individuals even when some aspect
of individuals' faces changed across presentations. For instance, a
pattern classifier trained on faces from several viewpoints was used
to effectively discriminate between those faces when tested on novel
viewpoints (Anzellotti et al., 2013). Other researchers extracted
individuating information from faces that persisted across changes in
facial expression (Nestor et al., 2011). Indeed, converging neuroimaging
and lesion data suggest that the integration of information across these
face areas may be essential for face identification in humans (Anzellotti
and Caramazza, 2014; Collins and Olson, 2014; Haxby et al., 2001; Natu
et al., 2009).

One commonality across these studies is that they all present
the same faces multiple times during scanner sessions, usually with
additional presentations during a pre-scanning training phase. Conse-
quently, participants inevitably become familiar with the stimuli used.
Often, this training or familiarization process is an intentional, and
perhaps critical, element of the experiment. Because familiarization is
a constant feature of these studies, it leads to a question about when
and how this differentiating information arises in face regions. One
possibility is that these regions contain individuating information
regardless of familiarity.2 Face regions may give rise to information for
individual faces (i.e. face-specific information) through the bottom-up
processing of face stimuli and the representation of each face's unique
constellation of features. Under this hypothesis, patterns in face-
sensitive regions should individuate faces without any prior exposure.
Consequently, face-specific information should be present in both OFA
and FFA, which are believed to represent face components (Harris and
Aguirre, 2010; Liu et al., 2009). OFA, which appears to more specifically
represent lower-level features (Haxby et al., 2000; Liu et al., 2009;
Pitcher et al., 2007, 2011), may show greater face-specific information
than FFA. Finally, face-specific information may or may not be present
in aIT, which is typically associated with more abstracted or view-
invariant representations of identities (Anzellotti et al., 2013; Collins
and Olson, 2014; Freiwald and Tsao, 2010).

An alternate hypothesis is that familiarization of a face is what leads
to this individuating information. According to this latter hypoth-
esis, face regions should only individuate faces that are familiar to par-
ticipants. Additionally, the face regions more strongly associated with
face or person memory, FFA (Grill-Spector et al., 2004) and especially
aIT (Collins and Olson, 2014; Gainotti and Marra, 2011; Olson et al.,
2013), should contain this face-specific information, whereas OFA may
not contain information for individual faces.

The current study directly compares these hypotheses. To do this,
we forego extensive training and repeated presentations of faces during
scanning. Instead, we use a single repetition (i.e. two presentations) of
target faces during scanning, and then test memory for those faces
after scanning. We operationalize familiarity as subsequent memory
for these target faces. That is, remembered faces will retrospectively
indicate whether faces were familiar to a participant at the initial repe-
tition and forgotten faces will have remained unfamiliar during study.
According to the familiarity hypothesis, only faces that are subsequently
remembered should show significant pattern similarity between pre-
sentations. Furthermore, we would expect this similarity to be present
in the more downstream regions: FFA and especially aIT. However,
2 We use the term “familiarity” in the colloquial sense to refer to memory strength in
general, rather than a specific memory process that is distinct from recollection. The cur-
rent research makes no claim regarding single- vs. dual-process accounts of recognition
memory.
under the alternate hypothesis faces should show significant pattern
similarity between presentations regardless of subsequent memory
performance, and this similarity should be stronger in more upstream
regions: FFA and especially OFA.

Potential support for the familiarity hypothesis comes from recent
research that found greater pattern similarity between repetitions of
words thatwere subsequently remembered relative to the similarity ob-
served between repetitions of forgotten words (Xue et al., 2010).3 The
researchers further argued that their finding provided evidence against
the encoding variability hypothesis, which states that repeatedly expe-
rienced items are better remembered if the repetitions occur in varied
contexts (i.e., with different preceding items), as opposed to all repeti-
tions occurring in the same context (Bray et al., 1976; Martin, 1968;
Melton, 1970). Although they did not explicitly manipulate the context
in which spaced items were presented, Xue and colleagues equated
greater pattern similarity across repetitions with decreased encoding
variability. As such, when they observed that items with lower pattern
similarity exhibited worse subsequent memory performance, they con-
cluded that this contradicted the encoding variability hypothesis.

Given that the context across spaced repetitionswas never the same
in the Xue et al. study, the relationship between neural pattern similar-
ity, memory, and context has yet to be fully explored. To that end, we
added a secondary question to the current experiment: Does degree of
encoding variability influence subsequent memory via altering the de-
gree of similarity between presentations? We manipulated encoding
variability by controlling the temporal contexts inwhich faces appeared
across repetitions (Howard and Kahana, 2002; Sederberg et al., 2008;
Turk-Browne et al., 2012). This manipulation allowed us to test directly
whether encoding variability in the traditional sense is related to subse-
quent memory. If we found a significant relationship, we would then
test whether the effect is mediated by the degree of pattern similarity
in face-sensitive regions. However, if we found context to be unrelated
to memory behaviorally, then we would then drop the mediation anal-
ysis and focus instead on our primary question:What is the relationship
between subsequent memory and face-specific information, irrespec-
tive of context?

Materials and methods

Subjects

Twenty-sevenOhio State communitymembers (11 female, all right-
handed, mean age 22.3 years) participated in the main experiment and
a functional localizer task. All subjects had normal or corrected-to-
normal visual acuity, provided informed consent, and received mone-
tary compensation. The study protocol was approved by the Institution-
al Review Board for Human Subjects at the Ohio State University.

Stimuli

Face stimuli were drawn from a pool of 496 color photographs of
nonfamous male (243) and female (253) faces. We created this pool
by combining images from two sources: The Center for Vital Longevity
Face Database (Minear and Park, 2004), and the FEI face database
(Thomaz and Giraldi, 2010). We cropped and adjusted individual im-
ages so all stimuli would have equal size and brightness. All faces
were forward-facing, from the shoulders up, with neutral expression
and various hair styles (see Fig. 1). All faces appeared before a white
background. A separate set of faces–along with sets of scenes, objects,
and scrambled objects–was also used in the functional localizer task.
Using separate pools of faces for each task prevented any additional
3 In fact, Xue et al. (2010) did show greater pattern similarity for remembered faces in a
separate experiment. However, the experiment using face stimuli did not support trial-
level analyses, so they could not assess whether or not representations for individual faces
were more similar across repetitions when subsequently remembered.



Fig. 1.Overview of experimental design. (A) Faces were presented one at a time, for 1.2 s, with a randomly varied interstimulus interval. Each target face occurred twice. (B) Each presen-
tation of a given target face occurred in either the same context (low encoding variability) or in different contexts (high encoding variability). Same-face similaritywas computed between
a first-presentation target (red square) and its identical second presentation (dark-blue square). Different-face similarities were computed between the first-presentations and non-iden-
tical second presentations with matching genders and encoding variability (light-blue square).
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exposures to our target stimuli before the surprise memory test (see
below). A Christie digital projector displayed images at 60Hzwith a res-
olution of 1280 × 1024 onto a screen behind the scanner bore. Partici-
pants viewed images with a mirror attached to the head coil.

Procedure

Functional localizer
Participants completed a functional localizer task based on previous

work (Epstein andKanwisher, 1998). This task,which consisted of three
4 min and 24 s runs, enabled us to functionally define ROIs, indepen-
dently of our main experiment. Consistent with similar tasks used by
others (Epstein and Kanwisher, 1998), each localizer run alternated be-
tween blocks of scenes, faces, objects and scrambled objects. Each block
contained 16 stimuli, all from the same category. Each stimuluswaspre-
sented for 500ms, followed by an ISI of 500ms. Blockswere arranged in
a pseudorandom fashion. A block of each category would appear once,
in random order, followed by 12 s of fixation. This occurred 3 times
per run, with the category blocks arranged in a different order each
time. To keep participants engaged during the localizer, they were
instructed to detect immediate repetitions of stimuli. In each block,
two stimuli were randomly chosen to be repeated immediately. Partic-
ipants indicatedwhen they detected an immediate repetition via button
press. All responses in the scanner were made using a Current Designs
fiber-optic response pad.

Main task
The main scanner task consisted of four runs, each lasting 8min and

48 s. Each run consisted of 96 faces, presented one at a time for 1.2 s,
with a randomly jittered inter-stimulus interval (ISI) between 2.3 s
and 5.3 s (see Fig. 1A). To keep participants engaged in the task, they
were instructed to indicate whether each face was male or female. Par-
ticipants indicated their response via the response pad.

The main task featured a structure identical to work published pre-
viously, yet with different stimuli (Smith et al., 2013). Each target face
appeared twice, with between 5 and 20 other faces occurring in be-
tween the first and second presentations (see Fig. 1B). Consistent with
previous research (Smith et al., 2013; Turk-Browne et al., 2012) and
theoretical work on temporal context (Howard and Kahana, 2002;
Sederberg et al., 2008), we denoted the two faces that preceded each
target as the “context” in which each target presentation occurred.
Faces making up the high encoding variability (high-EV) condition
were preceded by different context faces on their first and second pre-
sentations. That is, each face occurred in a unique temporal context on
both presentations. In contrast, faces making up the low encoding vari-
ability (low-EV) condition were preceded by the same context faces on
their first and second presentations. However, different low-EV face
pairs appeared in different contexts.

Across all runs, each participant viewed 16 targets in the high-EV
condition and 16 targets in the low-EV condition, with each target
being presented twice. Importantly, these stimuli were completely
novel to the participants. They had no training or previous exposure
to them prior to the study and only minimal familiarization–two
presentations–during the scanner task.

Participants were not informed of the organization of the stimulus
lists, nor were they informed that some faces were “target” stimuli.
They were simply told that they would see a sequence of faces, that
some of them may be repeated, and that they should indicate the
gender of each face as quickly and accurately as possible. Additional fill-
er faces were interspersed throughout each run, consistent with similar
paradigms used previously (Smith et al., 2013). These faces were either
presented once or twice to obscure the organizational structure of the
target stimuli, but they had no bearing on the hypotheses in question
here.

Recognition memory task
Following the last structural scan, participants exited the scanner

and completed a recognition memory task on a laptop in an adjacent
testing room. They were shown all of the target and comparison faces
for all four conditions (96) and 20% of the context faces (38), along

Image of Fig. 1
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with an equal number (134) of lures and askedwhether or not each face
appeared in the study task. Again, faces were presented one by one for
1.2 s and subjects had the same amount of time to make a decision.
Subjects were given four response options: “sure old,” “old,” “new,” or
“sure new”, with each corresponding to a different keyboard key. Partic-
ipants indicated their decisions with a single keypress.

MRI data acquisition

MRI data were acquired with a 3 T Siemens Trio scanner and a 12-
channel matrix head coil at the Center for Cognitive and Behavioral
Brain Imaging (CCBBI) at the Ohio State University. For the main
encoding task, functional images were obtained with a T2-weighted
EPI sequence: TR = 2200 ms, TE = 26 ms, field of view = 250 ×
220 mm [read × phase], flip angle = 75°, thickness = 2.7 mm
(2.5 × 2.5 × 2.7 mmvoxels). 41 oblique axial slices were collected in in-
terleaved order. 237 volumes were acquired.

For the functional localizer scans, T2-weighted images were obtain-
ed with the following parameters: TR = 3000 ms, TE = 28 ms, field of
view = 250 × 220 mm [read × phase]; flip angle = 80°; thickness =
2.5mm(2.5 × 2.5 × 2.5mmvoxels). 47 oblique axial sliceswere collect-
ed in interleaved order. 85 volumes were acquired.

For each subject, we used the high-resolution T1-weighted anatom-
ical scan to align all functional scans. 160 sagittal slices were collected,
with a thickness of 1 mm (1 × 1 × 1 mm voxels).

Data processing

Preprocessing
Processing of both functional and anatomical MRI images was car-

ried out with a combination of AFNI (Cox, 1996) and FSL (Jenkinson
et al., 2012; Smith et al., 2004). FSL's brain extraction tool (Jenkinson
et al., 2005) was applied to the T1-weighted structural images to isolate
voxels containing brain tissue.

For functional scans, we began by discarding thefirst two volumes of
each functional run. Functional runs were preprocessed and analyzed
using AFNI (Cox, 1996). Processing then followed standard AFNI proto-
cols (Cox, 2012) and included despiking the time series, aligning the
runs together and correcting for head motion. The functional localizer
data were then smoothed using a 4 mm FWHM Gaussian kernel. Be-
cause our primary analyses involved patterns of activation, we did not
smooth the main task data. Finally, all functional data were scaled to
have amean of 100 as part of AFNI's standard data analysis (Cox, 2012).

Modeling the BOLD response
For both functional tasks, we modeled the neural response to each

stimulus by fitting canonical hemodynamic response functions (HRFs),
convolved with a square function equal to the stimulus duration, in a
general linear model (3dDeconvolve in AFNI) (Ward, 2002) for each
participant. Each HRFwas estimated by fitting its amplitude (i.e. one re-
gressor per HRF) to the data. The result of normalizing our data to have a
mean of 100 is that the regression coefficients are equivalent to esti-
mates of percent signal change (Ward, 2002).

For the functional localizer, separate canonical HRF regressors were
entered for every stimulus category (face, scene, object and scrambled
object), convolved to a .5 s square function, representing stimulus dura-
tion. The resulting statistical maps were similar if we used a single 16 s
regressor for each category block.

For the main task, all hemodynamic responses were convolved to a
1.2 s square function, representing stimulus duration. We modeled the
hemodynamic response to each target face presentation with its own
regressor, using the least-squares all method (Rissman et al., 2004).
This produced 64 single-trial regressors (2 presentations for each of
16 targets in both the high-EV and low-EV conditions). Extracting esti-
mated BOLD response for these individual trials allowed us to find pat-
terns of activation associated with each individual presentation.
Conventional condition regressors were used to model all non-
target stimuli. We estimated a single hemodynamic response for each
type of context and filler face. This resulted in 20 additional regressors
(16 for context faces and 4 for filler faces). This was done to improve
the stability of the estimates of the 64 trials of interest.We also included
6 motion parameters, which were estimated during preprocessing. Fi-
nally, we included 4 polynomial regressors to remove slow changes in
the BOLD signal (i.e. due to drift in the magnetic field). This procedure
resulted in 94 total regressors for the main encoding task.

Note that even though our task is a rapid-presentation, event-
related design, the spacing between our target stimuli is consider-
able (mean: 76.6 s, SD: 21.7 s). Thus, we effectively have a slow-
presentation, event-related design where our regressors of interest are
concerned, with BOLD responses due to non-target stimuli accounted
for with stable condition regressors.

Participants' resulting coefficient maps were transformed to their
own high-resolution T1-weighted anatomicals. Registration between
functional and anatomical maps was performed using FSL's linear volu-
metric registration tool (Jenkinson and Smith, 2001; Jenkinson et al.,
2002). Coefficient maps in anatomical space were used for all ROI
analyses.

Regions of interest
We used the functional localizer to define regions of interest (ROIs)

for our main analysis. Consistent with previous research (Anzellotti
et al., 2013), we used a faces N scenes contrast to obtain a statistical
map of face selectivity. Left and right fusiform face areas (FFAs) were
identified separately for each subject. Contrasts were clusterized,
using 20 voxels as the minimum cluster size. This ensured that all
ROIs had at least 20 voxels in functional space, providing ROIs of suffi-
cient size to extract reliable signal from our task data.

The process for selecting ROIs involved three steps: First, for each
hemisphere, we focused on a broad anatomical region that coincides
with established FFA location (e.g. the fusiform gyrus). Then we set an
initial threshold equivalent to p= .0001. If no clusters survived this ini-
tial thresholdwe did not define anROI for that subject and region. Final-
ly, if a cluster was found, we decreased the p-value until the cluster
shrank to 20 voxels, or as close to 20 as possible without breaking up.
All ROIs were between 20 and 40 2.5 × 2.5 × 2.7 mm voxels in size.

ROIs were then transformed into each subject's high-resolution ana-
tomical space. We then created a mask out of the 200 most significant
1 × 1 × 1 mm voxels in anatomical space. This allowed us to reliably
identify anatomical landmarks and ensured that ROIs would align
with our task data,whichwere also transformed to anatomical space. Fi-
nally, we combined–when possible–left and right hemispheres into a
singlemask for each ROI. This was done becausewe did not have specif-
ic hypotheses regarding hemisphere and we wanted to keep the num-
ber of statistical comparisons to a minimum.

This process enabled us to create OFA and FFA cluster in 26 of 27 par-
ticipants. We were also able to create a parahippocampal place area
(PPA) (Epstein and Kanwisher, 1998) ROI in 26 of 27 participants by fol-
lowing the same process but reversing the statistical contrast to be
scenes N faces. We use PPA as a control region in the following analyses
to ensure that we do not get face-specific activation in regions not
known to be sensitive to faces.

We were unable to functionally localize an anterior temporal
face area inmore than a small fraction of our participants. This was like-
ly due to signal loss in the ventral anterior temporal lobe, a known issue
(Devlin et al., 2000; Visser et al., 2009). As an alternative, we created an
anatomically defined 400-voxel (1 mm3 voxels) anterior inferior tem-
poral lobe ROI (aIT) masks for each participant, using the Harvard–
Oxford atlas distributed by FSL (Jenkinson et al., 2012; Smith et al.,
2004) as a reference. We treat this analogue as a substitute for a func-
tionally defined aIT.

The use of participant-specific ROIs obviated the need for trans-
forming any data to a standard, across-participant space. Therefore,
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we perform this second transformation on our ROImasks only to aggre-
gate ROIs across participants for graphical purposes (see Fig. 2). This
anatomical-to-standard space transformation was accomplished with
FSL nonlinear volumetric registration tool (Andersson et al., 2007).
ROIs are aligned to the Montreal Neurological Institute (MNI-152)
atlas provided by FSL (Mark Jenkinson et al., 2012; Smith et al., 2004).

Calculating face-specific information

To investigate the presence of face-specific information, we used
each participant's masks to extract a pattern of neural activity at each
ROI for each target presentation. We then used a trial-level variant of
correlation analysis (Haxby et al., 2001; Xue et al., 2010). Specifically,
for each subject we correlated activity for each first-presentation target
with activity for every second-presentation target. This produced two
types of correlations: “same-face” correlations between each first pre-
sentation and the identical second presentation, and “different-face”
correlations between each first presentation and all non-identical sec-
ond presentations.We then applied a Fisher z-transformation to all cor-
relations, converting them to similarity values on the interval (−∞, ∞).

The same-face similarities reflect the dependency or overlapping
information between the neural representations of first and second pre-
sentations of identical faces. The different-face similarities are impor-
tant because collectively they quantify the amount of overlapping
information between neural representations of first-presentation faces
to other non-identical faces on average. In other words, different-face
similarities let us estimate the amount of overlapping information that
is due to the stimulus category of faces.We use these different-face sim-
ilarities to estimate the amount of information in the same-face similar-
ity values that can be attributed to representing the same exact face
rather than the same stimulus category. Specifically, for each first pre-
sentation, we created a vector of face-specific similarity values by
subtracting each different-face similarity from the same-face similarity:

fi ¼ si−di ¼ si−di1; si−di2;…; si−din½ �; ð1Þ

where si is the scalar same-face similarity between ith first presentation
Fig. 2. Functional and anatomical ROIs. Superposition of every subject's FFA (red), OFA
(green) and PPA (blue), along with aIT (violet) in MNI standard space.
and its identical second presentation, di is the vector of different-face
similarity values between the ith first presentation and all non-
identical second presentations, din is the scalar different-face similarity
between the ith first presentation and nth different-face second presen-
tation, and fi is the resulting vector of face-specific similarity values.

The different-face similarity values are meant to control for any
pattern similarity that is not due to specific faces. Therefore, we avoid
using different-face similarities that may be low due to systematic
differences between first and second presentations. Past research has
shown that full multivariate techniques can be used to distinguish
representations of male and female faces (Kriegeskorte et al., 2007).
In searching for face-specific information in face-sensitive regions,
we did not want our results to be due to gender differences between
faces. Similarly, we only use different-face similarity values when the
same-face and different-face targets have the same gender. Additional-
ly, we only use different-face similarity values when the different-face
targets occur in the same encoding variability condition as the same-
face target. Finally, we only use different-face similarity values when
the subsequent memory performances of the same-face targets and
different-face targets match.

The eligible different-face similarities were used to calculate face-
specific similarity values according to Eq. (1). We use these resulting
values as the dependent variable in our neural analyses.

Mixed-effects regression

To test the competing hypotheses that face-specific information is
either dependent on subsequent memory or not, we fit our data with
a mixed-effects regression model. We performed a separate analysis
for each of our four ROIs. Our predictor variable of interest is an indica-
tor variable for whether or not each target face was recognized during
the memory test. If this recognition term is significant in a given
model, it would indicate that face-specific information is contingent
on familiarity in that ROI. In contrast, a significant intercept term
would indicate that face-specific information occurs in a given ROI re-
gardless of familiarity. Additionally, we wanted to rule out the possibil-
ity that any effect, or lack of effect, could actually be due to the spacing
between faces or overall activation within ROIs. We included two nui-
sance regressors to control for these issues.

First, we needed to control for the variation in lag between the first
and second presentations. Autocorrelation is a known feature of fMRI
time-series data. In general, when two presentations are closer to one
another in time, the neural patterns they evokemaybemore similar re-
gardless of the actual evoked neural activity. Thus, the lag between
the first and second presentations is a potential source of variance we
must account for. More specifically, because our face-specific similarity
values are the difference between two values–same-face similarity and
different-face similarity–we needed to account for the relationship be-
tween same-face lags and different-face lags.

To accomplish this we created a lag–log-ratio term, which we will
explain further:We begin by calculating the same-face lags, the spacing
between first presentations and their identical second presentations,
and the different-face lags, the spacing between first presentations
and non-identical second presentations. We then log-transform both
types of lags. Finally we subtract the different-face log–lags from the
same-face log–lags:

lri ¼ log l si
� �

− log ldi
� �

¼ log
l si
l di1

 !
; log

l si
l di2

 !
;…; log

l si
l din

 !" #
; ð2Þ

where li
s is the lag between the first and second presentations of the ith

face, lid is the vector of lags between the ith first presentation and all
different-face second presentations, lind is the scalar lag between the
ith first presentation and the nth different-face second presentation,

Image of Fig. 2


Fig. 3. Subsequent memory performance as a function of encoding condition. Bars show
mean proportion of faces recognized during the memory test for faces that occurred
under high encoding variability (dark green) and low encoding variability (light green).
For a reference, the mean proportion of once-presented items that were subsequently re-
membered is shown in gray. Error bars reflect standard errors. The solid red line indicates
themean proportion of lures thatwere incorrectly judged as having been seen previously,
with dashed red lines indicating standard error.
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and lir is the resulting vector of lag–log-ratios. Note that these values are
the log of the ratio between same-face lags over different-face lags.

The resulting lag–log-ratios have three useful properties. Firstly,
they combine both same-face and different-face lags into a single
value, keeping the complexity of our inferential models to a minimum.
Secondly the ratio preserves the relative difference in spacing between
same-face pairs and different-face pairs. Finally, the log transformation
provides an intuitive and interpretable zero point. That is, when the
same-face lag equals the different-face lag, the resulting lag–log-ratio
value is zero. Thus, this lag-ratio variable quantifies uneven lag between
same- and different-face similarity values. As an additional safeguard
against autocorrelation, we discarded pairings where the lag between
the first and second presentation was less than 30 s.

We also wanted to ensure that any face-specific pattern similarity
was not due to, or obscured by, changes in overall level of activation
from first to second presentations. This repetition modulation (RM)
has already been shown to covary with familiarity (Eger et al., 2005),
so we created a nuisance regressor to partial out any covariation be-
tween subsequent memory and face-specific similarity that is shared
with RM. We follow a similar approach to our calculation of lag–log-
ratios above. First we calculate the mean difference in activation
between first and second presentations (RM) for same-face and
different-face pairings. We then log-transform these RM values. Finally,
we take the difference between all same-face log-RMs and all the corre-
sponding different-face RMs:
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RM between the ith first presentation and the nth different-face second
presentation, and mr

i is the resulting vector of RM–log-ratios. These
values quantify the relative difference in RM between same- and
different-face pairings, such that the valueswould be zerowhen the rel-
ative difference was zero.

We include both lag–log-ratio and RM–log-ratio as nuisance regres-
sors in our statistical model; however, we have no hypotheses
concerning these variables. Therefore, we avoid making inferences
about them, and do not report statistics or significance in this paper.

Finally, ourmodel included three random effects terms: Firstly, indi-
vidual brainsmay differ in the degree towhich they exhibit face-specific
similarity. Therefore, we treated participant as a random effect. This
allowed us to account for any variation in face-specific similarity that
may be due to the particular participants in our sample. Additionally,
some faces may tend to evoke more distinct neural responses than
others. To control for any differences in face-specific similarity due to
stimulus distinctiveness, we treated each same-face target and each
different-face target as random effects.

Determining degrees of freedom formixed effects regressionmodels
is not straightforward. Instead, parametric statistical inference requires
an estimation of the degrees of freedom (Kenward and Roger, 1997). To
circumvent this estimation,we performed non-parametric permutation
tests to ascertain the p-values for each of our comparisons of interest
(Ernst, 2004). For eachROI analysis,we performed 10,000 permutations
of the dependent data by randomly flipping the sign of the similarity
difference. We then calculated two-tailed p-values based on the null
distribution of t-values for each regression term of interest. Finally, to
correct for multiple comparisons we used a Benjamini–Hochberg
correction (Genovese et al., 2002) to keep the false discovery rate
at α = 0.05 across all tests. For significant results, we provide the raw
p-values, followed by corrected p-values in parentheses.
Results

Behavioral results

Participants responded correctly on 93.1% of all trials of the gender
categorization task during encoding. We defined incorrect responses
as those where the participant provided the wrong gender or failed to
make a response within the 1.2 s the face was on the screen. Only face
pairs where the participant responded correctly during both encoding
presentations were included in subsequent neural similarity analyses.
This ensured that differences in similarity were not due to a lack of at-
tention to the faces.

The mean reaction time for completed trials was 647.1 ms (SD =
158.1 ms). By means of a mixed effects regression analysis, we looked
for evidence that thefirst presentation of a facewould facilitate the gen-
der judgment response for the secondpresentation of the same face.We
did not find evidence of overall repetition priming (mean = 4.03 ms,
SD = 41.48 ms), t = 0.37, p = 0.701. We also found no difference in
repetition priming between target faces that were subsequently re-
membered vs. forgotten, t = 0.82, p = 0.411, or between faces learned
under high vs. low encoding variability, t = −0.15, p = 0.883. Finally,
the interaction of subsequent memory and encoding variability also
did not produce repetition priming, t = −0.58, p = 0.558.

Turning to the recognition test, we calculated hit rates and false-
alarm rates for each subject. The mean hit rate for all target items was
51.6% (SD = 16.5%), with a corresponding mean false-alarm rate of
35.9% (SD= 14.0%). As expected, given the use of unfamiliar faces, per-
formance on the memory task was poor, yet, on average, participants
performed above chance. For a comparison, the mean hit rate for non-
target, once-presented faces was 41.6% (SD= 12.18%). As would be ex-
pected, a paired samples t-test revealed a significant boost in memory
performance for twice-presented items, t(26) = 4.17, p b 0.001. Addi-
tionally, hit rates for once-presented items were significantly higher
than false-alarm rates for lures, t(26) = 2.45, p = .021.

Fig. 3 shows thememory performance for target trials split by condi-
tion. We find a mean hit rate of 50.9% (SD= 18.9%) for faces presented
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twice in the same context (low-EV), and amean hit rate of 52.3% (SD=
17.4%) for those presented in different contexts (high-EV). A paired-
samples t-test did not detect a significant difference between condi-
tions, t(26) = −0.47, p = 0.642. Thus, at least in this experiment, var-
iability in encoding context does not appear to be related to memory
performance. Because encoding variability is unrelated to memory per-
formance, we forego investigating whether this (null) relationship is
mediated by neural similarity. We collapse across encoding variability
conditions for the remainder of our analyses, focusing instead on a po-
tential relationship between similarity and subsequent memory.4

At test, mean reaction time for target probes was 860.9 ms (SD =
160.4ms). Amixed effects regression analysis revealed that participants
were significantly faster to incorrectly judge target probes as ‘new’
(mean = 834.1, SD = 174.9) than to correctly judge them as old
(mean = 881.8, SD = 144.8), t = 2.68, p = 0.006. No difference in re-
action times was found between target probes that occurred under
high or low encoding variability, t = 0.65, p=0.534. Additionally, reac-
tion time was not affected by the interaction of test judgment and
encoding variability, t = −0.28, p = 0.772.
Fig. 4. Average similarity between face repetitions. Bars show similarity between first
presentation targets and either (dark blue) same or (light blue) different second presenta-
tions, split by memory performance. (A) FFA shows significant face-specific information–
greater similarity between identical faces than between different faces of the same
gender–only for faces that are subsequently remembered. The difference in face-specific
similarity between remembered and forgotten faces is also significant. (B) aIT shows the
same pattern, although the difference in face-specific information is no longer signifi-
cant after correcting for multiple comparisons. † p b 0.05 uncorrected, * p b 0.05 corrected,
** p b 0.01 corrected.
Neuroimaging results

For each of our four ROIs, we tested for a baseline effect of face-
specific similarity. We also tested for a difference in face-specific simi-
larity between forgotten and remembered faces. Finally, we tested
whether face-specific similarity was present for subsequently remem-
bered faces. This resulted in a total of 12 tests across ROIs. Faces that
participants judged as “old” or “sure old”were defined as remembered,
while forgotten faces were those that participants judged as “new” or
“sure new.”5 We conducted these tests using a linear mixed-effects re-
gression procedure,which let us control for nuisance regressors (lag be-
tween presentations and repetitionmodulation), as well as participant-
specific and stimulus-specific effects. We controlled for multiple com-
parisons using a Benjamini–Hochberg correction (Genovese et al.,
2002) to keep the false discovery rate at α = 0.05. Corrected p-values
are shown in parentheses for significant results.

In FFA, no baseline effect of face-specific similarity was found, t =
0.11, p N 0.91. However, face-specific similarity was greater for subse-
quently remembered faces relative to forgotten faces, t = 3.29, p =
0.001 (.007). Furthermore, significant face-specific similarity was
found for remembered faces alone, t = 2.57, p = 0.012 (0.046) (see
Fig. 4A).

In aIT, no baseline effect of face-specific similarity was found, t =
0.85, p N .35. Once again, face-specific similaritywas greater for remem-
bered than forgotten items; however, this finding did not survive
correction formultiple comparisons t=1.99, p=0.045 (0.135). Never-
theless, we did find significant face-specific similarity for remembered
faces, t = 2.39, p = 0.007 (0.043) (see Fig. 4B).

InOFA, an upstream face-sensitive region that is generally believed to
process face components, we found no baseline effect of face-specific
similarity, t = 0.58, p N 0.57. Furthermore, we found no effect of subse-
quent memory on face-specific similarity, t = −1.16, p N 0.23. Finally,
we found no evidence of face-specific similarity for remembered faces,
t =−0.33, p N 0.74.
4 Although our encoding variability manipulation did not produce a memory effect, we
performed additional analyses to see if encoding variability influenced the amount of face-
specific information present in any ROI. We found no significant relationship between
encoding variability and the amount of face-specific similarity. Thus, degree of encoding
variability did not predict either variable of interest.

5 For each ROI, we also performed identical regression analyses using participants' con-
fidence ratings. The outcome of these analyses qualitatively paralleled our results using
hits and misses: Higher confidence was significantly and marginally related to greater
face-specific similarity in FFA and aIT, respectively. No relationship was found in OFA or
PPA.
As expected, our control region—the scene-selective PPA—similarly
showed no baseline effect of face-specific similarity, t = −0.37,
p N 0.69, and no effect of subsequentmemory on face-specific similarity,
t= 0.89, p N .36. PPA also showed no face-specific similarity for remem-
bered faces, t = 0.33, p N 0.74.

In support of the familiarization hypothesis, we found that memory
performance was a significant predictor of face-specific similarity in
downstream face-sensitive regions. We found no evidence of face-
specific information in OFA, which is consistent with the idea that
subsequent memory for faces—not their individual features—is an
important moderator.

Discussion

The present results demonstrate that downstream face-processing
regions, such as the FFA and aIT, contain unique face-specific infor-
mation after minimal familiarization. We find no evidence of such
face-specific information for faces that participants are unable to subse-
quently recognize. This was unlikely to be due to participants not
attending to those stimuli because we only included faces in our analy-
ses that the participants successfully categorized as male or female
within 1.2 s. We also find no evidence of face-specific information in
anearly face-selective region (OFA) or in a control region that is not spe-
cifically sensitive to faces (PPA).

Our finding is consistent with recent research (Cowen et al., 2014)
that reconstructed face stimuli from patterns of activation in the fusi-
form gyrus. These reconstructed faces were subjectively (i.e. according
to participant ratings), but not objectively (i.e. according to Euclidean
distance), similar to the face stimuli that elicited those patterns of acti-
vation. However this research focused on comparing face reconstruc-
tions rather than the actual distributed neural representations elicited
by each face presentation. We, therefore, feel that the present research
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complements these previous findings. Furthermore, the previous re-
search (Cowen et al., 2014) did not discuss the role of familiarity. Our re-
sults suggest that future work into the reconstruction of faces based on
neural activity may benefit from the inclusion of a subsequent memory
test.

We used subsequent memory as an index of the strength of
encoding into memory across both presentations of a face; however,
the mechanism that drives this encoding–similarity relationship has
not yet been explained. One possibility is a reactivated-trace account
proposed previously (Xue et al., 2010). According to this account,
memory is most improved when the same trace of a stimulus is
reactivated on subsequent presentations. Thus, greater face-specific
similarity actually reflects this stable reactivation, which gives rise to
strongermemory encoding during eachpresentation of a given face. Im-
portantly, the currentfindings suggest that this reactivation refers to the
representation of the face itself, rather than the face and its context as it
has been previously discussed (Xue et al., 2010). This account is also
consistent with recent evidence demonstrating that the fusiform gyrus
is involved in memory encoding for pictorial stimuli (Garoff et al.,
2005; Kim, 2011).

A second possibility is a feedback account where patterns in face
areas reflect online perceptual processing that is associated with
enduring memory representations in other regions, such as the hip-
pocampus (Buzsáki and Moser, 2013; Eichenbaum, 2000, 2004) or
regions that have been implicated in person memory, such as the ante-
rior paracingulate cortex or amygdala (Gobbini andHaxby, 2007). These
memory representations may feed back to and alter the perceptual
representations in upstream areas such as the FFA during the second
presentation of a face. Thus, the stronger a memory representation is
after a first presentation, the more that memory representation may
influence a subsequent perceptual representation to be like the first.
This feedback account is also consistent with previous research that
found greater similarity between the encoding and retrieval representa-
tions of scenes that were subsequently remembered vs. forgotten. This
increased similarity was further shown to bemediated by hippocampal
activity (Ritchey et al., 2012).

The critical difference between these accounts is the directionality of
the flow of information. According to the reactivated-trace account,
stimulus information moves from perceptual regions to memory re-
gions. The more similar the perceptual information is across two pre-
sentations of a face, the more stable the memory representation for
that face will be. In contrast, according to the feedback account, infor-
mationmoves bidirectionally between perceptual andmemory regions.
This creates a dynamical system whereby better encoding during the
first presentation facilitates reactivation of the original pattern during
the second presentation. Consequently, the former account posits that
subsequent memory is a function of perceiving face-specific informa-
tion. The latter account posits that the perception of and memory for
face-specific information influence each other.

The current findings do not clearly support either account over
the other. However, the lack of repetition priming for subsequently re-
membered faces is perhaps more consistent with the reactivated-trace
account. The feedback account claims that information stored in mem-
ory facilitates perceptual representations. Hence, the hypothesis could
be made that such feedback would also facilitate gender discrimination
judgments, as evidenced by shorter response latencies on second pre-
sentations. The lack of any such priming could be viewed as minor evi-
dence against the feedback account. Nevertheless, future work will be
required to fully explain the neural mechanisms underlying the current
findings.

An alternate explanation for the current results is that attention, not
memory encoding per se, is the mechanism that produces face-specific
similarity. Specifically, faces observed under greater attention may be
encoded with greater fidelity. This may also produce more distinctive
representations of those faces in face-sensitive regions. Greater atten-
tion during encoding also facilitates subsequent memory (Chun and
Turk-Browne, 2007; Turk-Browne et al., 2013). While we are agnostic
with regard to potential attention-based mechanisms at this time,
future research could use eye-tracking and pupillometry to provide
quantitative indices of attentional focus and cortical arousal to help
shed light on this hypothesis.

A more extreme characterization of this mechanism is that the lack
of face-specific similarity for forgotten items is due to a complete lack
of attention during forgotten trials. Specifically, face areas will not rep-
resent stimuli if a participant's eyes were closed or looking away. This
would also hampermemory performance for faces, producing a correla-
tion. However, our neural analyses only used face pairs that were cor-
rectly categorized by gender during both presentations. Performing
this task accurately requires at least some degree of attention. Thus,
the current results are likely not driven by an absence of attention dur-
ing subsequently forgotten trials.

Furthermore, the current results suggest that attention alone
may not be sufficient to produce face-specific information. If
attention were the sole mechanism at work, we would expect face-
specific similarity in OFA precisely because we used the same image
for both presentations of our target faces. The OFA principally repre-
sents lower-level features of faces (Haxby et al., 2000; Liu et al., 2009;
Pitcher et al., 2007, 2011), so greater attention should also yield greater
representational fidelity of those features in FFA. That is, the low-level
features are the same, so attention to those features could have pro-
duced “features-specific” information in OFA. We found no evidence
of face-specific similarity for familiar faces in OFA. This is consistent
with earlier research that found no effect of familiarity in OFA when
using univariate methods (Davies-Thompson et al., 2009). Our null re-
sult in OFA suggests that something more than attention is necessary
to produce face-specific information in FFA and aIT.

Another potential explanation is that both face-specific simi-
larity and memory are driven by the features of our stimuli. That is,
some faces may be more visually distinctive than others. Greater
distinctiveness could produce both greater face-specific similarity
and better memory performance. By including face labels as a random
factor in our statistical analyses, we were able to control for varia-
tion in similarity that was attributable to the varying distinctiveness
of different faces. However, this procedure does not control for
within-participant variation in face distinctiveness. That is, a par-
ticular face may not be seen as distinctive by the entire sample, but
could be particularly distinctive for a given participant. This distinctive-
ness could still affect that participant's memory and neural response
pattern.

The present results are limited by the difficulty in imaging the ante-
rior temporal lobes (Devlin et al., 2000; Visser et al., 2009). If we had
been able to reliably extract functionally-localized anterior temporal
face areas from our participants, we may have found stronger or differ-
ent effects in that region. Nonetheless, the fact that our atlas-based aIT
results followed the same pattern as the FFA results is evidence that fa-
miliarity may serve the same function in both regions. fMRI protocols
optimized to image the anterior temporal lobes may provide better
functional localization for future work.

Although the current work relied on repetitions of identical images
of the target faces, future researchmay benefit from including alternate
images of the same face (e.g. from different viewpoints) for first and
second presentations. Previous work has demonstrated that the FFA
and aIT contain patterns that discriminate highly familiar identities,
even if alternate images are used for the same face (Anzellotti and
Caramazza, 2014). This image-invariant representation of identity has
been shown with respect to variations in viewing angle (Anzellotti
et al., 2013; Natu et al., 2009) and emotional expression (Nestor et al.,
2011). However, each of these studies relied on identities that were
highly familiar to participants due to training or previous experience.
Future work should investigate the extent to which image variation
(e.g. head rotation, morphing along a dimension, or different expres-
sions) affect representations for untrained identities.
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Conclusion

These results begin to elucidate how the face-processing network
comes to represent individual faces. Face-specific information is detect-
able in FFA and aIT, but not OFA, on a trial level. Extensive training of the
stimuli before or during scanning is not required to elicit this face-
specific information. However, we only detect face-specific information
for faces that were subsequently recognized. Thus, these results impli-
cate the development of familiarity as being directly related to the
emergence of face-specific information in ventral-stream face regions.
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