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Abstract—Brain Computer Interfaces (BCI) decode electroen-
cephalography (EEG) data collected from the human brain to
predict subsequent behavior. While this technology has promising
applications, successfully implementing a model is challenging.
The typical BCI control application requires many hours of
training data from each individual to make predictions of
intended activity specific to that individual. Moreover, there are
individual differences in the organization of brain activity and
low signal-to-noise ratios in noninvasive measurement techniques
such as EEG. There is a fundamental bias-variance trade-off
between developing a single model for all human brains vs. an
individual model for each specific human brain. The Robust
Shared Response Model (RSRM) attempts to resolve this trade-
off by leveraging both the homogeneity and heterogeneity of
brain signals across people. RSRM extracts components that are
common and shared across individual brains, while simultane-
ously learning unique representations between individual brains.
By learning a latent shared space in conjunction with subject-
specific representations, RSRM tends to result in better predictive
performance on functional magnetic resonance imaging (fMRI)
data relative to other common dimension reduction techniques.
To our knowledge, we are the first research team attempting
to expand the domain of RSRM by applying this technique to
controlled experimental EEG data in a BCI setting. Using the
openly available Motor Movement/ Imagery dataset, the decoding
accuracy of RSRM exceeded models whose input was reduced by
Principal Component Analysis (PCA), Independent Component
Analysis (ICA), and subject-specific PCA. The results of our
experiments suggest that RSRM can recover distributed latent
brain signals and improve decoding accuracy of BCI tasks when
dimension reduction is implemented as a feature engineering step.
Future directions of this work include augmenting state-of-the art
BCI with efficient reduced representations extracted by RSRM.
This could enhance the utility of BCI technology in the real world.
Furthermore, RSRM could have wide-ranging applications across
other machine-learning applications that require classification of
naturalistic data using reduced representations.

Index Terms—Brain-computer interface, Electroencephalogra-
phy, Machine learning

I. INTRODUCTION

Brain Computer Interfaces (BCI) have garnered a lot of
attention in the worlds of technology, data science, medicine,
and neuroscience [14, 15]. Many recent strides in BCI technol-
ogy have led to astonishing new possibilities in brain research

and development [10]. A critical function of any BCI system
is the ability to decode data collected from the human brain to
predict subsequent behavior, which can be used for prosthetics
and epilepsy research [5, 1]. Successfully deploying a model
that predicts human behavior from data generated by the brain
is difficult to do well, given it requires both computational
speed and high accuracy. The typical BCI application requires
many hours of training data from each individual to make
accurate predictions specific to that individual. Moreover, there
are individual differences in the organization of brain activity
and low signal-to-noise ratios in noninvasive measurement
techniques such as EEG.

Even though individuals have different spatial topographies
with respect to brain activation, a common analytical assump-
tion in neuroscience research is that all spatial features are
anatomically aligned. This assumption imposes a structure
such that all brain activation across individuals operates in a
similar location in space [4]. This assumption extends beyond
anatomical alignment into temporal dynamics and syntheti-
cally engineered features. However, averaging topographies
across subjects has not shown much promise in accuracy for
training individual models [13]. To account for this limitation,
a different approach is to align features based on “function”
rather than space [8]. We would like to have a method that can
map different functional topographies from individuals into a
common shared latent space. The shared response modeling
framework was designed to accomplish this task of achieving
proper functional alignment across individuals [3].

A. Prior work on shared response modeling

The Robust Shared Response Model (RSRM) is a latent
variable model that projects a collection of time series into a
compressed feature space [13]. In order to learn representa-
tions common between brains under a specific task protocol,
RSRM extracts components that are shared across individuals.
RSRM and its close variants [Shared Response Model (SRM)]
were initially developed for applications with functional mag-
netic resonance imaging (fMRI) data under tasks that involve
temporally synchronized naturalistic stimuli [3, 11]. SRM
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demonstrated superior performance on applications to fMRI
data over other common dimension-reduction methods such as
Principal Component Analysis (PCA) and Independent Com-
ponent Analysis (ICA). RSRM was able to successfully extract
both common features between subjects and unique features
within subjects despite different functional topographies in the
raw data space [13]. The key difference between RSRM and
SRM is that SRM only maps to a shared feature space, and
does not directly model individual differences. Experimental
results for RSRM in comparison to the SRM showed that
the RSRM performed slightly better than the SRM as well
as trained faster in time segment matching and classification
[13].

Notably, there does not seem to be any prior work applying
the shared response modeling framework to domains outside
of fMRI. This paper presents new experiments that suggest
RSRM is a useful dimension reduction technique in the context
of decoding brain signals using EEG. We have reason to
hypothesize that directly modeling individual differences using
RSRM instead of SRM could lead to better performance in
EEG environments. The aim of this paper is to investigate the
utility of RSRM for EEG interfaced movement control appli-
cations. We will begin with a brief mathematical description
of RSRM. Then we will describe simulations to demonstrate
recovery of latent time-series signals using RSRM. Finally,
we will discuss our empirical application of RSRM to model
EEG data.

II. METHODS

A. RSRM notation and formulation

Let N be the number of subjects, v the number of features,
k the number of latent components, and t the number of
events. The following expression is the primary equation for
the RSRM [13] (see Figure 1 for the model design as applied
to EEG).

X(i) = W(i)R + S(i) + E(i), i = 1 . . . N (1)

where (i) is the indexer for each individual subject and
• X(i) ∈ Rvi×t is the data matrix.
• W(i) ∈ Rvi×k is the matrix mapping from the observed

subject space to the shared latent space.
• R ∈ Rk×t is the shared-response matrix.
• S(i) ∈ Rvi×t is the non-shared matrix unique to each

individual subject.
• E(i) ∈ Rvi×t is an additive noise matrix specific for each

subject.
Equation (1) is then estimated by solving the following opti-
mization problem:

min
S(i),W(i),R

N∑
i=1

1

2
||X(i) −W(i)R− S(i)||2F + λi||S(i)||1 (2)

s.t.
W(i)T W(i) = I, ∀ i = 1 . . . N.

Equation (2) is a non-convex optimization problem, but we
can estimate subsets of the model using convex optimization
techniques and then combine the results at the end. Using
Block Coordinate Descent, we can partition the variables
into blocks and optimize each block while fixing the other
blocks constant. In RSRM, each individual mapping from the
latent space W(i), each individual non-shared/unique matrix
S(i), and the shared response model R is a block. Because
optimizing each of these blocks while keeping the other
blocks constant is a convex problem, we can approximate the
global optimum with a greedy solution. This is an iterative
optimization procedure by which we apply the three following
routines defining the block coordinate descent.

First, we solve for W(i) by using the Procrustes method [6]

W(i) = U(i)V(i)T (3)

where U(i)V(i)T is achieved through singular value decom-
position (SVD)

U(i)Σ(i)V(i) = (X(i) − S(i))RT . (4)

Second, we solve for S(i) using a soft shrinkage penalty

S(i) = Shrink(X(i) −W(i)R, λ) (5)

where the amount of shrinkage is determined by λ. More
specifically, soft shrinkage is applied to D(i) ∈ Rvi×t

s = Sλi
(d) =

{
(|d| − λi)sign(d), if |d| > λi

0 otherwise,
(6)

where the individual residual D(i) is

D(i) = X(i) −W(i)R. (7)

In other words, soft shrinkage of D(i) is equal to S(i). Last,
we solve for R with

R =
1

N

N∑
i=1

W(i)T (X(i) − S(i)). (8)

We can specify the shrinkage parameter λ to balance how
much is shared (R) by all subjects and how much is unique to
each subject (S(i)). As λ→∞, the model is equivalent to the
deterministic solution where S(i) → 0. As λ → 0, there will

Fig. 1. Visual depiction of the matrices that represent the RSRM. For this EEG
application, features are an array of time-frequency values over each channel.
Components (k) are the latent vectors extracted by RSRM. The translation
of this model from fMRI to EEG data was not trivial, given their respective
temporal and spatial resolution limitations. Note that dropping the additive
noise matrix E(i) makes this an approximate solution.
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be no shared response between individuals and all portions
are unique to each individual (S(i) → X(i)). Additionally, we
can specify the number of components we want our model
to compute. This is analogous to selecting the number of
components in PCA.

B. Experiment 1: Simulation methods

In order to get an intuitive sense that RSRM works for EEG-
like time series, we simulated data with known parameters and
attempted to recover them through visualization of the latent
shared space. For this simulation, we translated the extant
Python RSRM code [9] into the R programming language,
both for other R programmers to use and to check the robust-
ness of implementations using different numerical libraries.
Sine-waves with specific frequencies f are a simple surrogate
for simulating EEG time-series signals. Given RSRM is greedy
and there are no guarantees that it will return the globally
optimal solution, we predicted output that visually matches
our prior expectation, rather than searching for a specific point
estimate for f . This is because multiple signals will likely be
embedded into the same latent space and will not be perfectly
separated. Alternatively, one could compute a Fast Fourier
transformation of the latent vector to estimate its power at
specific frequencies.

The simulation incorporated signals from 32 electrodes and
100 different individuals. We randomly sampled two different
deterministic sine-wave signals [10 Hz, 25 Hz] across elec-
trodes. Different individuals had randomly sampled locations
of the signals across the scalp to test if RSRM could effectively
recover signals that were not spatially aligned. We perturbed
these sine-wave signals by adding Gaussian noise generated
by N ∼ (µ = 0, σ = 4). Let A be amplitude, θ phase angle
offset, and t ∈ RN represent time. Sine-waves were generated
with the following expression

A sin(2πft + θ) (9)

fixing A = 1, θ = 0, and N = 1000. We attempted to
recover all instances of f in the latent shared response space.
We fit exactly two components to test if the two recovered
latent vectors resembled the two true signal distributions. We
experimentally manipulated λ values [0, 100000] to test its
role in modeling shared latent spaces.

C. Experiment 2: Empirical application methods

1) Dataset description: In order to test the application
of RSRM on our EEG data, we used the openly available
EEG Motor Movement/Imagery Dataset [12]. We chose this
dataset as a benchmark because it includes data from a large
number of individuals (relative to other openly available EEG
datasets), and the specific tasks are directly related to solving
motor movement problems using BCI. This dataset contains
12 two-minute task-related runs (i.e., recordings) for each
individual. Each person performed four different tasks under
three separate runs. The four tasks are:

1) Open and close left vs. right fist

2) Imagine opening and closing left vs. right fist
3) Open and close both fists vs. both feet
4) Imagine opening and closing both fists vs. both feet

Each task includes two motor movements of interest with
at least 21 trials for each motor movement (see Figure 2).
Thus, each task allows us to make 42 predictions for each
individual subject, which results in 4410 classification labels
for each task.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (s)

−6

−4

−2

0

2

4

µV

EEG (64 channels)

Fig. 2. Example evoked difference waveform of one of the motor movement
tasks: imagining closing fists vs. imagining closing feet. The majority of the
visually distinguishable signals in the time domain occur in the 200-1000 ms
range and are spatially distributed across the brain.

2) EEG Pre-processing Workflow: The Raw EEG Motor
Movement/Imagery Dataset was pre-processed using the MNE
and pyprep Python software libraries [7, 2]. First, we loaded
the data and added channel location coordinates. Next, we
applied a band-pass filter [infinite impulse response (IIR)
Butterworth model; high-pass cutoff: 1 Hz, low-pass cutoff:
50 Hz] to smooth the brain signals. Bad channels were
automatically identified by low signal-to-noise ratios, near
zero-variance recordings, and large deviations from nearby
spatial regions. Then an average reference was applied to
the data, which subtracts the average signal across the brain
to improve signal-to-noise ratios across electrodes. Then we
spatially interpolated all identified bad channels to preserve the
dimensionality of the dataset across individuals. We segmented
the data into 3 second trials with a 200 ms baseline relative to
stimulus onset, which cued the individual to perform the task
of interest. We then realigned the task events such that each
individual had the same sequence of trial type for each task.
This was necessary because fitting RSRM requires a temporal
synchronization with respect to classification labels, while
EEG experiments typically randomize the onset of specific
events. For the final feature engineering step, we decomposed
the signals into a time-frequency representation using Morlet
wavelets. From this decomposition, we generated 12 families
of frequencies logarithmically spaced between 3 Hz and 45
Hz. We averaged these time-frequency representations across
400 ms time-windows strictly to keep the data input at a man-
ageable size for our unsupervised learning experiments. We
reshaped the data such that the time-frequency representations
for each channel were encoded as rows of the data matrix,
and the specific events were encoded as the columns of the
matrix.
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3) Experimental Design: In order to test the capacity of
RSRM to effectively represent relevant brain signals in a
reduced space, we systematically varied the dimensionality of
the reduced space and compared decoding performance with
other traditional dimension-reduction techniques. We used the
BrainIAK software library in Python for fitting RSRM [9].
The unsupervised learning techniques employed were RSRM,
PCA, ICA, and within-subject PCA. For RSRM, each indi-
vidual had its own matrix X(i) ∈ R6144×42, later transposed
and concatenated after applying RSRM fit and transformation
methods. For within-subject PCA, each individual matrix was
the transpose of the initial RSRM matrices and were trained
independently for each subject. For PCA and ICA, each of
these individual matrices were concatenated into one single
matrix X ∈ R4410×6144. For each model, we reduced the
original feature representation into a specified number of
components k. Then we trained a support vector machine
classifier with a radial basis function kernel to decode one
class from the other for each task. We chose not to tune
the hyper-parameters C and γ because our primary research
question concerned the relative accuracy of each dimension-
reduction technique, rather than optimizing performance for
each model configuration. We estimated model performance
by using leave-one-run-out cross-validation. For each task,
there were three runs which resulted in three folds. Thus, we
trained each model on 28 events from each subject and then
tested them on the remaining 14 subject events until we had
predictions for all 42 events for each subject. Because of this
validation scheme, we were constrained by RSRM to fit at
most 28 latent components (k << v given that v = 6144).
For RSRM, λ was held constant at 2.5 and the model was run
with 2 iterations. We chose a low number of iterations such
that the model training time would be as short as possible.

III. RESULTS

A. Experiment 1: Simulation results

Using 10 Hz and 25 Hz sine-wave signals perturbed by a
stochastic distribution N ∼ (µ = 0, σ = 4), we generated a
raw collection of time-series signals. We fit RSRM to these
raw signals to test its ability to recover the deterministic sig-
nals. We were able to capture the majority of the deterministic
sine-wave distribution, which represents the true signal without
noise, within two components of the RSRM given a high value
of λ (Figure 3). This gives us confidence that this modeling
procedure may prove to be useful for application in EEG.

B. Experiment 2: Empirical application results

After validating the potential utility of RSRM for EEG-
like data structures, we compared the performance of RSRM
to PCA, ICA, and within-subject PCA for classification tasks
within the Motor Movement/ Imagery Dataset. We observed
that RSRM demonstrated superior performance for all 4 tasks,
yielding significantly higher decoding accuracy (see Figure
4 and Table I). Statistical comparisons only include RSRM
in relation to within-subject PCA, because PCA and ICA
performed much worse than RSRM given most values of
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Fig. 3. First two RSRM components captured from noisy sine-wave signals.
As predicted, When λ was very low, the model learned almost no shared
information across individuals. Thus, the left side of the figure is only
capturing an idiosyncratic and stochastic distribution across subjects. When
λ is very high, the model prioritizes shared information across individuals
over unique information. This is why the first two components are primarily
capturing the deterministic signal in the distribution, namely 10 Hz (top-
right) and 25 Hz (bottom-right). For non-simulated applications, λ is a
hyperparameter that can be tuned to balance this trade-off.

k. This pattern of results is consistent with the previous
literature in fMRI [3]. This suggests that RSRM is a useful
feature engineering step for EEG processing pipelines, when
the dimensionality of the input space needs to be reduced.

IV. DISCUSSION

A. Summary

The primary purpose of this research was to investigate
whether a robust shared response model can effectively factor
common and unique EEG signals between the brains of differ-
ent individuals into a reduced feature space. When applied to
a relatively simple machine learning classification model, the
data pre-processed by RSRM was able to predict significantly
above chance and was able to outperform all other dimension
reduction techniques that we tested. The results suggest that
RSRM captured aspects of the shared feature space above
and beyond standard dimension reduction techniques typically
used in neuroscience.

B. Limitations and Future Directions

The primary limitation of this experiment was the relatively
low values of accuracy on each of the four tasks. We believe
this is due to our leave-one-run-out cross-validation scheme,
which constrained us to training the RSRM on only 28
events for each subject. Based on the patterns in Figure 4,
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Fig. 4. Primary results from Experiment 2. RSRM outperforms on all four tasks relative to other standard dimension reduction techniques that were tested
(chance decoding performance = 0.50). Here, we are analyzing relative accuracy between these methods, rather than trying to maximize accuracy with one
single model configuration. The crucial accuracy difference is when the number of components is 28. Additionally, the RSRM latent representation improves
performance at lower values of k. Importantly, it appears that increasing k would likely increase the differences in performance between RSRM and the other
three techniques. Note that PCA and ICA require k >> 28 to reach the current performance level of RSRM from this experiment (fixing k = 28 for RSRM).

TABLE I
PAIRED t-TESTS COMPARING RSRM TO WITHIN-SUBJECT PCA ACROSS ALL NUMBER OF COMPONENTS

Task t df p
Open and close left vs. right fist 6.73 27 < .001

Imagine opening and closing left vs. right fist 6.78 27 < .001
Open and close both fists vs. both feet 6.15 27 < .001

Imagine opening and closing both fists vs. both feet 4.05 27 < .001

the accuracy looks as though it would likely increase as
additional components computed by RSRM are added. We
also did not fine-tune any specific classifier for any given
model configuration, as we wanted to be able to make direct
comparisons across each model instance. Finally, there are
likely more principled ways to feature engineer the data before
fitting RSRM to EEG. For example, we averaged the Morlet
wavelet decomposition time-frequency representations over
400 ms time-windows, which only provides a crude estimate
and may in fact conflate multiple independent processes into
one single vector.

We plan on running future experiments on different datasets
with enough components for the accuracy to stabilize, in
conjunction with more sophisticated feature engineering and

supervised learning. In fact, RSRM could be particularly
beneficial to deep learning frameworks whose training requires
large amounts of data. Applying RSRM to artificial neural
networks would allow combining datasets across individuals
for training. Future work will expand these experiments to
predicting more than two classes, as well as attempting to
decode brain signals in a streaming real-time application.
Despite these stated limitations, we argue that this work
contributes toward the cumulative science of designing better
BCI systems.

C. Conclusions

Training BCIs on EEG data is challenging due its rela-
tively low signal-to-noise ratio. The typical BCI application
requires building a new decoding model for each patient
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due to the unique anatomical and functional topographies
between patients’ EEG signals. This research attempted to
tackle these problems by applying RSRM, which is known
to work well with fMRI data, and adapt it to function with
scalp EEG data. We found that RSRM as a feature engineering
step outperformed PCA, ICA, and within-subject PCA across
four different motor movement tasks. A key attribute of
RSRM is its ability to reduce dimensionality in the data,
which leads to a significant reduction in model training time
as well as a reduction in training data needed to build a
sufficient model. This has the ability to have a meaningful
impact on patients’ lives who require a BCI for performing
specific tasks. Furthermore, RSRM could have wide-ranging
applications across other machine-learning applications that
require decoding/classification of naturalistic data using re-
duced representations.
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