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This paper extends earlier work on spatialmodeling of fMRI data to the temporal domain, providing a framework
for analyzing high temporal resolution brain imagingmodalities such as electroencapholography (EEG). The cen-
tral idea is to decompose brain imaging data into a covariate-dependent superposition of functions defined over
continuous time and space (whatwe refer to as topographic latent sources). The continuous formulation allows us
to parametricallymodel spatiotemporally localized activations. Tomake group-level inferences, we elaborate the
model hierarchically by sharing sources across subjects. We describe a variational algorithm for parameter esti-
mation that scales efficiently to large data sets. Applied to three EEG data sets, we find that the model produces
good predictive performance and reproduces a number of classic findings. Our results suggest that topographic
latent sources serve as an effective hypothesis space for interpreting spatiotemporal brain imaging data.

© 2014 Elsevier Inc. All rights reserved.
Introduction

Brain imaging techniques like electroencephalography (EEG) and
magnetoencephalography (MEG) offer a time-resolved window onto
the neural correlates of cognitive processing. In this paper, we propose
a new statistical model that characterizes the spatiotemporal distribu-
tion of neural signals and their relationship to experimental covariates.
The essential innovation of this model is the decomposition of the data
into parameterized functions defined over continuous space and time—
whatwe term topographic latent sources.1 These functions provide a par-
simonious and interpretable characterization of the data. Aswe demon-
strate below, they can also be used to decode mental states from brain
activity with higher accuracy than many currently used methods. We
refer to our model as topographic latent source analysis (TLSA).

Our work builds on a previous version of TLSA for functional mag-
netic resonance imaging (fMRI) data developed by Gershman et al.
(2011). TLSA decomposes fMRI data into latent sources defined over
3D image volumes, but does not model the time course of event-
blei@cs.princeton.edu
rberg.1@osu.edu

source reconstruction forMEG
problem is to find the current
aper, we are focused on model-
their precise anatomical local-
related brain activity (but see Manning et al., 2014). In light of the
poor temporal resolution of fMRI data, this is of little consequence for
many experiments. However, for MEG and EEG the time course is of
fundamental interest, necessitating the spatiotemporal model devel-
oped in this paper. The basic design principle underlying TLSA is the
same for fMRI and MEG/EEG: the brain pattern is decomposed into a
covariate-dependent superposition of topographic latent sources. In
the case of spatiotemporal data, the latent sources are defined over
both space and time.

In addition to extending TLSA to the spatiotemporal domain, this
paper presents a new algorithm for Bayesian parameter estimation. In
our previous paper (Gershman et al., 2011), we used Markov chain
Monte Carlo methods (Robert and Casella, 2004) to approximate the
posterior over parameters with a set of samples. However, these
methods scale poorly with data set size, sometimes requiring days to
run. Here, we develop an efficient variational inference algorithm
(Attias, 2000; Jordan et al., 1999) that can analyze large data sets in mi-
nutes. We have made Matlab (Mathworks Inc., Natick, MA) software
implementing this algorithm available online.2

In the remainder of this paper, we describe spatiotemporal TLSA and
our inference algorithm. We also describe how mental state decoding,
neural reconstruction, and classical hypothesis testing can be carried
2 https://github.com/sjgershm/tlsa_matlab.
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Fig. 1.Model schematic. (A) Matrix factorization representation of the generative process. (B) Construction of a spatiotemporal latent source.

3 We use the gamma distribution parameterized in terms of shape ν and scaleρ.
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out in this framework. We then apply TLSA to three EEG data sets and
compare it to several alternative models. Our empirical results suggest
that for this data set, TLSAprovides superior predictive power compared
to these alternatives, demonstrating its usefulness as a tool for analyzing
spatiotemporal brain patterns.

Materials and methods

In this section, we describe the generative model underlying TLSA
and present an approximate inference algorithm for inverting the gen-
erative model given data. We then explain how classical hypothesis
testing can be applied to the parameter estimates, as well as how the
model can be used to decode experimental covariates (e.g., mental
states) from brain activity. Finally, we describe the three data sets ana-
lyzed which we analyzed, and the alternative algorithms to which we
compared TLSA.

Terminology

We first introduce some basic terminology and notation. In order to
preserve flexibility in how the data are represented, we assume that
brain patterns can be described by a set of neural “features.” For exam-
ple, the voxel is a standard feature for fMRI data.We represent EEG data
in terms of features that are conjunctions of electrodes and time points
within a trial. Thus, an EEG feature might correspond to an electrode's
signal measured at a particular time point. Alternatively, one could use
spectral features, such as the power in a frequency band at a particular
electrode and time point.

Let C be the number of covariates (experimental parameters, stimuli,
or tasks),N be the number of observations (e.g., trials), K be the number
of latent sources, S be the number of participants, and V be the number
of neural features (e.g., electrodes and time points within a trial epoch).
The model consists of the following variables:

• Xs ∈ ℝN × C, the design matrix containing each covariate's time series
for subject s.

• Ws ∈ ℝC × K, theweight matrix encoding how each covariate loads on
each source. Weights are analogous to coefficients in a regression
analysis.
• Fs ∈ ℝK × V, the matrix of basis pattern for each latent source. Each
basis pattern represents the latent source function evaluated at all
the feature locations (see below for more details).

• Ys ∈ ℝN × V, the pattern of neural activity at each observation.
• Rs ∈ ℝV × D, the location matrix, specifying, in D-dimensional coordi-
nates, the location of each neural feature. For EEG data, the location
corresponds to the Cartesian 3D coordinates of the electrode and a
particular time point within the trial (thus, D = 4). In practice, we
also normalize the coordinates to [0, 1].

We will use lowercase letters to denote scalar elements of a matrix
(e.g., xsnc denotes the element in row n and column c of matrix Xs).
Bold lowercase letters denote vectors (rows or columns of a matrix).

Generative model

The observed neural data is assumed to arise from a covariate-
dependent superposition of K latent latent sources (Fig. 1A):

Ys ¼ XsWsFs þ ϵs ð1Þ

whereϵsnv∼N 0; τ−1
s

� �
is a Gaussian noise term and τs∼ Gamma(ν, ρ) is

the noise precision.3 The basis patternmatrix is constructed by evaluat-
ing a parameterized spatial basis function ϕ(⋅; ω) at the measured fea-
ture locations Rs = {rsv}:

f skv ¼ ϕ rsv;ωskð Þ; ð2Þ

where ωsk ∈ ℝM is a vector of parameters for source k.
Of particular interest are basis functions that are spatially and tem-

porally localized. In our earlier work on fMRI (Gershman et al., 2011),
we used a radial basis function, parameterized by ω = {μ, ψ}:

ϕ r;ωð Þ ¼ exp − jjr−μjj2
ψ

( )
; ð3Þ
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where μ ∈ [0, 1]D is the source center and ψ N 0 is a width parameter.
We can extend this basis function to the spatiotemporal domain by
distinguishing spatial (μa, ψa) and temporal (μt, ψt) parameters:

ϕ r;ωð Þ ¼ exp − jjra−μajj2
ψa − jjrt−μ t jj2

ψt

( )
; ð4Þ

where ra is the spatial component of the neural feature location, and rt is
the temporal component (note that μt and rt are scalars, since time is
one-dimensional). The spatiotemporal basis function can be understood
as the product of spatial and temporal “receptive fields.” This construc-
tion is illustrated in Fig. 1B.

We extend this generative model hierarchically to model sharing of
latent sources across subjects, while still allowing within-subject varia-

tion. To do this, we specify a group-level “template,” ω0k∼N ω;Λ−1
0

� �
.

This template captures the spatiotemporal structure of the latent source
that is conserved across subjects. The corresponding subject-level pa-
rameters for each individual subject are then assumed to arise from a

stochastic deformation of the group-level parameters: ωsk∼N
ω0k;Λ

−1
� �

. Thus, a given source is identifiable in all subjects, but the

precise shape of this source is allowed to vary between subjects. The
amount of variation is controlled by the precision matrix Λ.

Because the covariance structure of the subject-level parameters is
generally unknown,we introduce a prior onΛ. For simplicity, we assume
that Λ is diagonal: Λ= diag(λ1,…, λM), with λm ∼ Gamma(β, β). When
β → 0, the coupling between subjects disappears, and each subject is
modeled independently (i.e., non-hierarchically). In the analyses re-
ported below, we compare the hierarchical (β N 0) and non-
hierarchical (β = 0) models. In the non-hierarchical setting, the
group-level parameters have no meaning, and therefore we treat this
as a special case by placing the group-level prior directly over the

subject-level parameters: ωsk∼N ω;Λ−1
0

� �
.

Inference

The goal of inference is to compute the posterior over the latent var-
iables θ = {τ, ω, W} given data {X, Y}:

p θjX;Yð Þ ¼ Z−1p Yjθ;Xð Þp θð Þ; ð5Þ

where the normalizing constantZ ¼ ∫
θ
p Yjθ;Xð Þp θð Þdθ is also known as

the marginal likelihood (or model evidence). For brevity, we leave the
dependence on hyperparameters β;Λ;Λ0;ω;ν;ρf g implicit.

Since the normalizing constant of the posterior (Z) is intractable, we
must resort to approximations. In previous work (Gershman et al.,
2011), we described a Monte Carlo algorithm for approximating
Eq. (5) with a set of samples. However, this algorithmwas prohibitively
slow for large data sets, and introduced additional variability into the
parameter estimates (due to the inherently stochastic nature of the al-
gorithm). In this section, we describe a variational inference algorithm
(Jordan et al., 1999) for deterministically approximating the posterior.

The basic idea of variational inference is to approximate the posterior
p(θ|X, Y) with another distribution q(θ) whose parameters we optimize
to minimize a divergence measure between the two distributions. The
standard divergence measure used for this purpose is the Kullback–
Leibler (KL) divergence:

KL q θð Þjjp θjX;Yð Þ½ � ¼
Z

θ
q θð Þ ln q θð Þ

p θjX;Yð Þdθ: ð6Þ

The KL divergence is equal to 0 when the two distributions are the
same. However, we cannot directly minimize KL[q(θ)||p(θ|X, Y)] with
respect to q(θ), because it requires computing the intractable posterior.
Instead, we can equivalently maximize a lower bound on the log mar-
ginal likelihood, lnZ:

ℒ q½ � ¼ Eq lnp Y; θjXð Þ½ � þℋ q½ �; ð7Þ

whereEq �½ � is the expectation with respect to q andℋ[q] is the entropy
of q. ℒ[q] is related to the KL divergence by the equality

lnZ ¼ ℒ q½ � þ KL q θð Þjjp θjX;Yð Þ½ �: ð8Þ

Thus, maximizing ℒ[q] is equivalent to minimizing KL[q(θ)||p(θ|
X, Y)]. Importantly, ℒ[q] does not require computing the intractable
posterior.

We assume a “mean-field” approximation in which q factorizes into
a set of component distributions:

q θð Þ ¼ ∏
i
qi θið Þ; ð9Þ

where i indexes a subset of the parameters. In this paper, we consider
the following factorization:

q θð Þ ¼ ∏
m
q λmð Þ� ∏

k
q ω0kð Þ

� �
∏
s
q τsð Þq Wsð Þ∏

k
q ωskð Þ

� �
:

�
ð10Þ

To keep the notation simple, we have omitted the subscript indexing
each q-distribution, allowing it to be specified by context.

Maximization of ℒ[q] proceeds by coordinate ascent, iteratively
updating each q-distribution while holding the others fixed. If each q-
distribution is in the conjugate-exponential family, the updates take
the following form:

lnq0i θið Þ ¼ Eq lnp Y; θð jXÞjθi½ � þ const: ð11Þ

In other words, the updates proceed by iteratively taking the expec-
tation of the complete data log probability under the factorized posteri-
or while holding all q-distributions except qi fixed. The complete set of
update equations are described in Appendix A.

One impediment to applying the coordinate ascent updates is that
the q-distributions for the source parameters ω are not generally in
the conjugate-exponential family, due to the non-linearity induced by
ϕ. Following the work of Chappell et al. (2009), we use a linearization
of the likelihood that allows us to obtain closed-form updates (see
Appendix B). The cost of this approximation is that ℒ[q] is no longer
a strict lower bound on lnZ. However, linearization often works quite
well in practice (Braun and McAuliffe, 2010; Chappell et al., 2009;
Friston et al., 2007; Gershman et al., 2012), and we confirm this empir-
ically below.

Hypothesis testing

After fitting themodel to data, we are often interested in testing null
hypotheses of the formH0 :∑ c = 1

C ηcwck=0,where [η1,…, ηC] is a con-
trast vector. We adopt a standard mixed-effects approach to this prob-
lem by first calculating the contrast ∑C

c¼1ηcŵsck for each subject and
source (where ŵ denotes the posterior mean estimator of ω), and
then performing a t-test across subjects for each source separately.
The resulting p-values can be corrected for multiple comparisons (e.g.,
using false discovery rate or Bonferroni correction). Compared to con-
ventional mass-univariate analysis, the number of comparisons is dra-
matically smaller for TLSA, since in general K ≪ V. Thus, hypothesis
testing on latent sources can potentially improve sensitivity.

Note that in order for this analysis to give sensible results, the
sources must be aligned across subjects. This will happen naturally
when we employ the hierarchical model (i.e., when β N 0). However,
for the non-hierarchical model (β = 0) there is no constraint on the
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source parameters to be similar across subjects, and hence comparing
the weight matrices across subjects is meaningless.

Decoding and reconstructing brain patterns

Given new neural data y, we are often interested in the conditional
distribution over the covariates x that gave rise to it (Friston et al.,
2008). This decoding problem arises, for example, in experiments
where the model has been trained on trials for which the covariates
are known, and then used to infer the unknown covariates on the re-
maining trials. Bayes' rule specifies how the desired conditional distri-
bution should be computed:

p xjyð Þ∝p yjxð Þp xð Þ: ð12Þ

Here we have implicitly conditioned on the training data. As can be
seen from this equation, Bayesian decoding requires a prior on covari-
ates, p(x). However, TLSA, in its basic form described above, does not
specify a distribution over covariates. This distribution is likely to vary
substantially from experiment to experiment, and therefore we will
not attempt a general specification. Instead, we choose computationally
expedient priors that allows us to perform Bayesian decoding analyti-
cally. To keep things simple, we define the likelihood term p(y|x)
using the expected values of the latent variables under the variational
posterior, θ̂ ¼ Eq θ½ �.

In the case of real-valued covariates, we choose p(x) to be multivar-
iate Gaussian, with parameters equal to the samplemean x0 and covari-
ancematrixΣ0 of the training data, collapsing across subjects. Given this
prior, the posterior over covariates is also Gaussian:

p xjyð Þ ¼ N x; x̂; Σ̂
� �

ð13Þ

Σ̂
−1 ¼ Σ−1

0 þ τ̂AA⊤ ð14Þ

x̂ ¼ x0Σ
−1
0 þ τ̂yA⊤

� �
Σ̂
−1

; ð15Þ

where A ¼ Ŵ F̂ and τ̂ is the estimated precision (see Appendix A). We
have suppressed the subject index here for notational convenience.

For discrete covariates, these will typically belong to a finite set,
small enough that we can exhaustively enumerate all possible values
of x. Analogous to the strategy for the continuous case, we can use the
sample proportions of each covariate from the training data to construct
a prior p(x). Bayesian decoding is then straightforward to implement,
since the normalization constant in Bayes' rule is (typically) a tractable
summation.

We can also ask the converse question (the reconstruction prob-
lem): Given covariates x, what is the conditional distribution over neu-
ral data y? This distribution is multivariate Gaussian with mean
ŷ ¼ xŴ F̂ and covariance τ̂−1I. In other words, we simply run TLSA in
“forward mode” with the estimated parameters to predict what the
neural data should look like on a particular trial.

Implementation details

For all our analyseswith TLSA, we use the following hyperparameter
settings (unless specified otherwise): β = 0.01, ν = 1, ρ = 1. Because
we normalize the feature coordinates to [0, 1], the parameters of the ra-
dial basis function only take meaningful values in [0, 1]. In order to rec-
oncile thiswith theGaussianprior onω, we use a logit transformation to
mapω to real values.We setωm ¼ 0 for the source centers (correspond-
ing to the center of the space–time volume) andωm ¼ 0:1 for the source
widths. For the prior precision matrix, we setΛ0 ¼ 1

10I. Unless otherwise
indicated, we ran the variational inference algorithm for 200 iterations.
We have found that the results of TLSA are remarkably robust to varia-
tions in these parameters, and we give some examples of this robust-
ness in the Results section.

The variational inference algorithmwill typically converge to a local
optimum. It is therefore sensitive to the initial values of the parameters.
We use a simple initialization procedure that consists of the following
steps:

1. A grand average pattern (averaging over subjects and trials) is con-
structed, normalized to have a maximum value of 1. Although
covariate-specific information is lost in this average, it will still cap-
ture gross patterns of regional activity.

2. A single source is centered at the maximum of the average pattern,
with its width initialized to the prior mean.

3. The basis pattern for the newly created source is subtracted from the
average pattern, and the average pattern is then renormalized.

4. Steps 2 and 3 are repeated until the parameters of all K sources are
selected.

This procedure is designed to place sources in regions of the pattern
that are not yet accounted for by existing sources. Note that the only pa-
rameters being initialized here are the source parameters (ω); the other
parameters are automatically set by the updates described inAppendixA.

EEG data sets

In this paper, we analyze two previously unpublished EEG data sets
(a standard visual oddball experiment and an item recognition data set)
as well as a data set from the 3rd Brain–Computer Interface (BCI) com-
petition (del Millán, 2004).

Oddball data
Ten participants between 18 and 41 years of age were recruited

from the university community at The Ohio State University. All partic-
ipants were right-handed and spoke and read English fluently. Partici-
pants provided written consent in accordance with requirements of
the local IRB and were paid $10/h for their time. Data from participants
for whom there were excessive motion artifacts, recording noise, or ex-
perimenter error (n = 4) were not included in the analyses, leaving
data from 6 participants for the analyses reported below.

Stimuli consisted of X's or O's presented in a large font at the center
of the screen. The task was simply to specify if the stimulus was an X or
O by pressing J or K on the keyboard with the right hand as quickly and
accurately as possible following each stimulus onset. Which key
corresponded to an X or O response was counterbalanced across blocks
in order to eliminate any keyboard response artifacts. The experiment
consisted of 1 practice and 8 experimental blocks with 40 stimuli each
(32 common and 8 rare). A custom program written using the Python
experiment programming library (PyEPL; (Geller et al., 2007)) and run-
ning on a desktop computer with a 24 in. LCD display was used to gen-
erate the study lists for each participant, control the timing of the tasks,
present the stimuli, and record participant responses.

Item recognition data
Twenty-three participants between 18 and 30 years of age were re-

cruited from the university community at The Ohio State University. All
participants were right-handed and spoke and read English fluently.
Participants providedwritten consent in accordancewith requirements
of the local IRB and were paid $10/h for their time. Of the participants,
12 were selected for the present analysis because they exhibited good
behavioral performance and did not have excessivemotion artifacts, re-
cording noise, or experimenter error.

Stimuli consisted of lists of words presented one at a time in a large
font at the center of the screen. Eachword presentation lasted 1.6 swith
a 0.3 to 0.7 s jittered interstimulus interval. Participants were told to re-
member the words for a subsequent recognition memory task that oc-
curred after each of the study-lists. Each study list comprised 36
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unique items, split evenly into weak and strong conditions. Weak items
were presented once on the study list, whereas strong items were pre-
sented three times, once in each third of the list. The recognition task
that followed each list tested memory for each studied word along
with the same number of matching lures, giving rise to 72 total test
items per list, in random order. Participants indicated whether the test
word was old or new by pressing the J or K key on the keyboard with
their right hand as quickly and accurately as possible following each
stimulus onset. Participants had 1.8 s to make their response, followed
by a 0.4 to 0.8 s jittered interstimulus interval. The experiment consisted
of 13 study/test blocks. For the analyses presented here we compared
correctly recognized strong items, which were presented three times
during the study list, and correctly rejected lures, whichwere not previ-
ously presented, to illustrate the canonical parietal old/new effect (Rugg
and Curran, 2007).

Mental imagery data from the BCI competition
This data set was taken from the publicly available data sets collect-

ed as part of the 3rd Brain–Computer Interface (BCI) competition.4 A
complete description of the data set can be found in del Millán (2004).
Three participants performed three different tasks over the course of 4
sessions: (1) Imagination of repetitive self-paced left-handmovements,
(2) imagination of repetitive self-paced right-handmovements, and (3)
generation of words beginning with the same random letter. Partici-
pants were not provided with feedback. EEG signals were recorded
with BioSemi system using a 32-channel cap (sampling rate: 512 Hz).

Preprocessing
EEG data from 96 (oddball data) or 64 (item recognition data) chan-

nelswere recorded on a Brain Products, Inc., ActiCHamp systemwith ac-
tive electrodes, digitized at 1000 Hz, rereferenced to linked mastoids,
and then high-pass filtered 0.25 Hz with a zero-phase distortion
Butterworth filter. Eye-movement artifacts were corrected using a
wavelet independent components analysis method (WICA) that has
proven to be quite robust at removing eye artifacts without introducing
spurious correlations between the electrodes (Castellanos andMakarov,
2006). After these preprocessing steps, the item presentation events
were separated into distinct non-overlapping epochs and baseline
corrected to the average of the 250ms prior to visual stimulus onset. Fi-
nally, the datawere z-scoredwithin each subject and feature separately.
Data from 0 to 900ms post-stimuluswere used in the analyses reported
below.

For the spatial component of the neural feature location (ra), we
used the 3D Cartesian coordinate of each electrode. For the temporal
component (rt), we used the time (in milliseconds) of each measure-
ment. All features were separately normalized to the [0, 1] range.

For themental imagery data, we used the precomputed power spec-
tral density (PSD) features provided by the BCI competition. The raw
EEG potentials were first spatially filtered by means of a surface
Laplacian. Then, the PSD in the 8–30 Hz band was estimated every
62.5 s (i.e., at a sampling rate of 16 Hz) over the previous second of
data with a frequency resolution of 2 Hz. The PSD features were provid-
ed for the 8 centro-parietal channels C3, Cz, C4, CP1, CP2, P3, Pz, and P4.
The resulting EEG data is a 96-dimensional vector (8 channels × 12 fre-
quency components).

Alternative models

The alternative models we consider in this paper are summarized as
follows:

• Gaussian naive Bayes (GNB): each class-conditional distribution over
neural features is modeled as a multivariate Gaussian.

• Shrinkage linear discriminant analysis (SLDA): similar to GNB, each
4 http://bbci.de/competition/iii/.
class-conditional distribution is modeled as a multivariate Gaussian,
using optimal shrinkage of the covariance matrix as suggested by
Schäfer et al. (2005). Classification is performed by projecting the
neural input onto a separating hyperplane:

t ynð Þ ¼ ynw−ϵ; ð16Þ

where w is a V × 1 weight vector and ϵ is a threshold parameter. Ob-
servation n is assigned to one class if t(yn) N 0, and to the other class if
t(yn) b 0. This algorithm has been shown to achieve state-of-the-art
performance in brain–computer interface applications (Blankertz
et al., 2011).

• L2-regularized logistic regression: logistic regression with a weighted
penalty on the L2 norm of the regression coefficients. We set the reg-
ularization parameter to 0.01, but the resultswere not sensitive to this
choice.

• Bilinear discriminant component analysis (BDCA; Dyrholm et al., 2007):
discriminant analysis that finds a separating hyperplane in a subspace
projection of the neural data. The discriminant function is bilinear in
the spatial and temporal components of the data, with Gaussian pro-
cess priors enforcing smoothness (over space and time) of the param-
eter estimates. BDCA uses the same discriminant function as SLDA, but
regularizes it differently. Let W denote the reorganization of w into a
matrix where rows index electrodes and columns index time points.
BDCA assumes that W is the product of two low rank matrices, W =
UV⊤, where (following Dyrholm et al.) we set the rank to be 1. Thus
U and V are row vectors, with each component of U corresponding
to an electrode, and each component of V corresponding to a time
point. By placing Gaussian process priors on these vectors, the esti-
mate ofw is regularized in a spatiotemporally local fashion. We opti-
mize the hyperparameters of the Gaussian processes (which control
the spatial and temporal smoothness of W) using nested cross-
validation.

Of these models, only GNB models the conditional distribution p(Y|
X). Logistic regression and BDCA model the conditional p(X|Y). This
means that logistic regression and BDCA cannot be used for tasks in-
volving the distribution of neural data, such as the reconstruction task.

For all themodels above, the set of featureswas the concatenation of
neural activity across all time points and electrodes. The sampling rate
was the same as used by TLSA (see previous section for details).

Results

In this section, we evaluate the predictive accuracy of TLSA on the
oddball, item recognition and mental imagery EEG data sets and com-
pare it to several alternative models. We then illustrate how TLSA can
be used for classical hypothesis testing.

Prediction performance

In the prediction task for the oddball data set, our goal is to decode
whether a trial was rare or common; for the item recognition data set,
our goal is to decodewhether a trial was old or new. To evaluate predic-
tive performance on held-out data, we used a cross-validation proce-
dure in which we broke each subject's data into 6 sets of trials, fitting
the models to 5 of the sets and testing on the 6th. For the oddball
data, each training set contained 40 trials from each condition, and
each test set contained 200 common trials and 40 rare trials. For the
item recognition data, the training and test sets contained an irregular
number of old and new items (on average, there were slightly over
twice as many new items as old items). We repeated this procedure
so that each set appeared once as the test set. We found that we could
improve the performance of TLSA by averaging all the training trials
within each condition, reducing X to two rows. Averaging in this way,

http://bbci.de/competition/iii/
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Fig. 2.Prediction results. Top row shows results for the oddball data set; bottom row shows results for the item recognition data set. (A, C)Mental state decoding accuracy quantifiedby the
area under the receiver operating curve (AUC). Higher values indicate better performance. (B, D) Brain pattern reconstruction performance quantified by mean squared error. Error-bars
represent standard error of the difference between TLSA and GNB across subjects.

5 We found that SLDA produced dramatically different performance depending on the
shrinkage method, but no method performed consistently well across both data sets.
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a common technique inmultivariate decoding analyses of event-related
fMRI (Yang et al., 2012), is helpful in reducing noise.

Decoding performance was quantified using the area under the re-
ceiver operating curve (AUC), which quantifies the degree to which a
classifier is able to distinguish between two classes. Higher values of
AUC indicate better performance; anAUCof 0.5 indicates chance perfor-
mance. Reconstruction performance was quantified using the mean
squared error (MSE)

MSE ¼ 1
NV

XN
n¼1

XV
v¼1

ysnv−ŷsnvÞ2;
�

ð17Þ

where ŷsnv denotes the model prediction. Lower values of MSE indicate
better performance.

We initially restricted our comparison to TLSA and GNB, since the
latter is the only generative model among the alternatives and hence
can be compared on both prediction and reconstruction. Our prediction
results (Fig. 2) indicate the superior performance of TLSA compared to
GNB. Consistent with our earlier work on fMRI data (Gershman et al.,
2011), the hierarchicalmodel (β= 0.01) does not seem to performbet-
ter than the non-hierarchicalmodel (β=0) inwhich each subject is an-
alyzed separately. However, as we mentioned above, the hierarchical
model is essential for drawing group-level inferences, since it ensures
identifiability of sources across subjects.

Another pattern evident in Fig. 2 is that the results are relatively in-
sensitive to the number of sources, as long as this number is greater
than 10. This is reassuring, because it means that one need not fit
manymodels with different numbers of sources in order to find the op-
timal model. The caveat, of course, is that this conclusion is data-
dependent; other, more complex data sets may require a larger number
of sources. In the remainder of this article, we restrict our attention to
the hierarchical model (β= 0.01) with K = 40.

We next evaluated the sensitivity of our results to changes in the
number of iterations of the variational inference algorithm. As shown
in Fig. 3, prediction performance is essentially the same with as few as
50 iterations, but falls off with fewer. This indicates that TLSA can pro-
duce a reasonable approximation of the posterior in roughly the same
amount of time that it takes to fit a mass-univariate generalized linear
model, the standard workhorse of brain imaging analysis.

Fig. 4 shows a comparison of TLSA with the three discriminative
models described in the Materials and methods section: L2-regularized
logistic regression, SLDA, and BDCA. Note that we do not compare re-
construction performance, which is outside the scope of the discrimina-
tive models (they do not model the distribution of neural data). Our
results demonstrate that for the oddball data set, the mental state
decoding accuracy of TLSA is second only to SLDA, whereas for the
item recognition data set, TLSA is second only to BDCA. TLSA is the
only model that performs consistently well across the two data sets.5

This is noteworthy given that these models are designed to directly
model the conditional distribution over covariates given neural data,
and hence are ideally suited to mental state decoding.

How well does TLSA capture the spatiotemporal statistics of neural data?

In contrast to conventional mass-univariate analyses, TLSA builds a
spatiotemporal model of neural data from a set of basis functions. We
chose these, for simplicity, to be radial basis functions. Howwell do su-
perpositions of these functions capture the spatiotemporal statistics of
the EEG data?

Oneway to investigate this question is to analyze the spatiotemporal
correlation structure of the residuals (i.e., the neural activity after
subtracting the model predictions). Both TLSA and GNB predict that
these residuals should be uncorrelated (white) Gaussian noise. We
can test this prediction by looking at the covariance of the residuals be-
tween two neural features as a function of their spatiotemporal dis-
tance. If the residuals are independent, this function will be a straight
line (i.e., the correlation will be insensitive to distance). Alternatively,
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Fig. 3. Prediction performance is insensitive to the number of iterations of the variational inference algorithm. Top row shows results for the oddball data set; bottom row shows results for
the item recognition data set. (A, C)Mental state decoding accuracy quantified by the area under the receiver operating curve (AUC). (B, D) Brain pattern reconstruction error. Error-bars
represent standard error of the difference between TLSA and GNB across subjects.
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if there exists unmodeled spatiotemporal structure, the covariance
function will (typically) be a monotonically decreasing function of
distance.

We analyzed the residuals for TLSA and GNB fit to the oddball and
item recognition data, using the same cross-validation procedure de-
scribed above: The trials were divided into 6 subsets, the models were
fit to 5 of the subsets, and then the residuals of the 5th subset were an-
alyzed by fitting a third-order polynomial to the residuals as a function
of squared distance in the coordinate system defined by R. Fig. 5 shows
the results of the residual analysis. The covariance function for TLSA in
the oddball data is nearly straight, indicating that themodel is capturing
most of the spatiotemporal structure of the data that isn't just noise. In
contrast, the covariance function for GNB is monotonically decreasing,
indicating that it is failing to model some of the spatiotemporal
Fig. 4. Comparison against discriminative models. Error-bars represent standard error of
the mean.
structure. The story is different for the item recognition data set,
where the covariance was generally stronger compared to the oddball
data, declining at about the same rate for both TLSA and GNB. Thus,
our analyses provide mixed evidence for the claim that TLSA is able to
capture the spatiotemporal structure of EEG data better than GNB.
One explanation for this discrepancy is thatwhen covariance is stronger
overall (as in the item recognition data set), it is harder to attain a flat
covariance function with either model.
Hypothesis testing illustrations

In this section, we illustrate how TLSA can be used to do hypothesis
testing by replicating the analysis of two widely replicated event-
related potentials: the P300 in the oddball paradigm, and the parietal
old/new effect in the item recognition paradigm.

The P300 event-related potential, a positive-going deflection over
parietal cortex with a typical latency of 300–500 ms post-stimulus
(Squires et al., 1975), is revealed by the contrast rare–common;we rep-
licated this effect in our oddball data (Fig. 6A). For TLSA, we constructed
the rare–common contrast for each source (withK=40) and computed
a p-value based on a paired-sample t-test across subjects. Fig. 6B shows
the unthresholded contrast pattern, and Fig. 6C shows the thresholded
contrast pattern (i.e., the contrast based on the 3 sources that passed
the significance threshold of p b 0.05, uncorrected). The thresholded
contrast pattern shows fewer loci of activation compared to the mean
contrast in Fig. 6A, because these other loci did not survive thresholding.
These TLSA contrast analyses show a cleaner extraction of the parietal
old/new effect compared to the conventional ERP.

We next examined the parietal old/new effect, a positive-going de-
flection over parietal cortex with a typical latency of 400–500 ms
post-stimulus (Rugg and Curran, 2007). This waveform is revealed by
the old–new contrast, an effect we replicated in our item recognition
data (Fig. 7A). Fig. 7B shows the unthresholded contrast pattern, and
Fig. 7C shows the thresholded contrast pattern (i.e., the contrast based



Fig. 5. Covariance function of residuals. The x-axis represents Euclidean distance between features, and the y-axis represents average covariance between pairs of features separated by a
particular distance. Oddball data set (left). Item recognition data set (right).

98 S.J. Gershman et al. / NeuroImage 98 (2014) 91–102
on the 7 sources that passed the significance threshold of p b 0.05, un-
corrected). As with the P300, the TLSA contrast shows a cleaner extrac-
tion of the parietal old/new effect compared to the conventional ERP.

These results demonstrate that TLSA is able to effectively recover
standard event-related potential findings; the difference from conven-
tional analyses is that we are applying hypothesis tests to the latent
sources rather than to individual electrodes and timewindows, dramat-
ically reducing the number of hypothesis tests.

Performance on BCI competition data with spectral features

Our final analysis applies TLSA to a publicly available dataset from the
3rd BCI competition (del Millán, 2004). As described in the Materials and
A

B

C

Fig. 6. Analysis of the P300 in the oddball data set. (A) Event-related potential: grand average
contrast. Electrodes are indicated in the legend. The right panel shows the grand average time
lines represent the rare condition. (B) Topography and time course of the rare–common contras
by using the latent sources to predict the data at each electrode and time point. (C) Same as in
methods section, the experiment involved 3 different mental imagery
tasks, and the challengewas to decodewhich of these 3 tasks a participant
was engaging in. Our goal in analyzing this data set is to demonstrate that
TLSA can yield classification results that are competitive with state-of-
the-art algorithms.

In addition, we show that TLSA can be applied to spectral features,
simply by replacing spatiotemporal basis functions with spatiospectral
basis functions; no modification of the underlying generative model or
algorithm is required. In this setting, rt represents one of 12 frequency
bands in the 8–30 range, and (μt, ψt) are parameters of a spectral source
in frequency space. Note thatwe are not computing the PSD of the latent
sources, but rather modeling the PSD of the data as a linear superposi-
tion of latent sources defined in a spatiospectral feature space.
topography at 400 ms post-stimulus (left) and time course (middle) of the rare–common
course for each condition separately; dashed lines represent the common condition, solid
t using latent sourceswithout thresholding. The topography and time courses are obtained
(B), but using only sources that passed a significance threshold of p b 0.05.
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Fig. 7. Analysis of the parietal old/new effect in the item recognition data set. (A) Event-related potential: grand average topography at 550ms post-stimulus (left) and time course (mid-
dle) of the old–new contrast. Electrodes are indicated in the legend. The right panel shows the grand average time course for each condition separately; dashed lines represent the common
condition, and solid lines represent the rare condition. (B) Topography and time course of the old–new contrast using latent sources without thresholding. The topography and time
courses are obtained by using the latent sources to predict the data at each electrode and time point. (C) Same as in (B), but using only sources that passed a significance threshold of
p b 0.05.
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The data set consists of PSD features for 8 central electrodes, com-
puted every 62.5 s. Following the BCI competition guidelines, we
trained themodel on the first 3 sessions and evaluated it on the 4th ses-
sion (3488 time points per participant, on average). The classification
results are shown in Fig. 8. In general, both hierarchical and non-
hierarchical versions of TLSA perform better than chance, although the
hierarchical version appears to do better with 40 latent sources. As a
comparison, we show the performance of the algorithm that won the
Fig. 8. Performance on the mental imagery data set from the BCI competition The x-axis
shows the number of latent sources used by TLSA. Results are shown separately for the hi-
erarchical model (β = 0.01) and the non-hierarchical model (ta = 0). The dashed line
shows chance performance on the 3-way classification, and the red line shows perfor-
mance of the winning algorithm (filled region shows the standard error across
participants).
BCI competition, which uses a distance-based discriminant analysis
(Galán, Oliva, & Guárdia6). This comparison shows that the classification
accuracy of TLSA is comparable to the state-of-the-art.
Discussion

Wehave developed a statisticalmodel forMEG and EEG that decom-
poses spatiotemporal brain patterns into topographic latent sources.
These sources naturally capture the statistical structure of activation
patterns that are smooth and localized in space and time (or frequency,
in the case of spectral data). Our application of TLSA to three EEG data
sets demonstrated the predictive power of our approach: TLSA was
able to consistently decodemental states and reconstruct brain patterns
with high accuracy. We also illustrated how TLSA can be used for classi-
cal hypothesis testing, while avoiding the explosion ofmultiple compar-
isons that attend standard mass-univariate analyses (this is true as long
as the number of sources is less than the number of neural features,
which is almost always the case).

An important contribution of this paper is the development of an ef-
ficient variational inference algorithm. For multi-subject data sets with
tens of thousands of features and hundreds of covariates, this algorithm
typically takes less than 15 min to run on a laptop computer. The algo-
rithm can be applied generically to MEG/EEG and fMRI data (simply by
modifying the basis function), and permits the use of any differentiable
basis function.7We are thus in a position to begin applying TLSA to larger
and more complex data sets.
6 http://bbci.de/competition/iii/results/martigny/FerranGalan_desc.pdf.
7 First-order differentiability is required in order to implement the linearized likelihood

described in Appendix B.

http://bbci.de/competition/iii/results/martigny/FerranGalan_desc.pdf
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Related work

Dimensionality reduction methods have a long history in EEG
analysis (Lotte et al., 2007; Makeig et al., 2004). Unsupervised
methods, such as independent component analysis (Makeig et al.,
1997; Vigário et al., 2000), find projections of the neural data onto
a low-dimensional subspace, but ignore covariate information. This
runs the risk of finding projections that are not useful for decoding
mental states. An alternative approach is to search for discriminative
projections of the data (e.g., Lobaugh et al., 2003; Müller-Gerking
et al., 1999). The discriminative dimensionality reduction method
most related to TLSA is BDCA (Dyrholm et al., 2007), which we de-
scribed earlier. This method finds a discriminating hyperplane that
is the product of two low-rank matrices, corresponding to spatial
and temporal dimensions of the neural data. BDCA imposes smooth-
ness on these matrices using Gaussian process priors, analogous to
how TLSA imposes smoothness on the basis pattern matrix using to-
pographic latent sources.

TLSA can be viewed as a method for supervised dimensionality
reduction based on a generativemodel of the neural data. In contrast,
discriminative models are limited by the fact that they do not model
the distribution of the neural data; consequently, they cannot be
used for tasks such as reconstructing neural data from covariates.
More generally, modeling the distribution of the neural data is useful
for exploratory data analysis, where researchers might want to in-
vestigate questions about the spatiotemporal statistics of neural sig-
nals, rather than conditioning on them for the purposes of mental
state decoding.

Another distinguishing characteristic of TLSA is its unit of analy-
sis, namely topographic latent sources. None of its parameters are di-
rectly connected to the neural features, which means that features
can be removed or modified (e.g., the time series can be down-
sampled) without changing the underlying model. Most models of
MEG and EEG data take as their unit of analysis to be the neural fea-
tures themselves, typically by fitting parameters (e.g., regression
weights) to these features. Thus, the neural features cannot be
changed without constituting a new model. Furthermore, any infer-
ences about spatially or temporally extended regions of activation
require post hoc analysis of the feature-specific parameters. In con-
trast, TLSA models these regions of activation directly.

Limitations and future directions

It is important to keep in mind that while TLSA is a generative
model, it does not express the true physical process giving rise to
EEG signals. In particular, scalp topography arises from intracranial
current sources, produced by the superposition of post-synaptic po-
tentials. The mapping from dipoles to EEG signals can be captured by
a lead field, which models passive conduction of the electric field. In-
stead of modeling the spatiotemporal statistics of the EEG activity di-
rectly (as in TLSA), an alternative approach would be to model the
underlying current sources, using the lead field as part of the likeli-
hood function. Haufe et al. (2011) have pursued this approach,
using radial basis functions to describe the current sources. We
could potentially extend this approach to modeling spatiotemporal
current sources.

A similar idea can be applied to modeling spectral features of EEG
data. One approach, developed by Dähne et al. (2014), is to first decom-
pose the raw EEG data into its electrical sources, and then compute
spectral features of these sources (rather than of the raw data). They
show that this approach is able to recover the underlying brain activity
with a high signal-to-noise ratio. In principle one could define a version
of TLSA that modeled the spectral features extracted by the approach of
Dähne et al. (2014).

As we have developed it, TLSA is modular in the sense that any
differentiable basis function can be used in combination with our
inference algorithm. This means that it is possible to explore more
complex families of latent sources, such as deformable volumetric
primitives (e.g., Terzopoulos et al., 1988) or splines (Wahba,
1990). It is an interesting empirical question whether these more
complex families will outperform the simpler radial basis functions
used in this paper. We conjecture that by using more complex
sources, the neural data can be well-modeled with a smaller number
of sources.

Another potentially useful extension of TLSA is to place a Bayesian
nonparametric prior over the source weights. This would allow us to
model uncertainty in the number of sources (K), and thereby auto-
matically infer K from the data. For example, we have explored
using the beta process (Paisley and Carin, 2009; Thibaux and
Jordan, 2007) as a prior on Ws. However, posterior inference with
this model is substantially more expensive compared to TLSA with
a fixed number of sources. It remains an open question whether
the use of nonparametric priors is of sufficient practical value to
merit the computational costs. Our results suggest that, at least for
the EEG data sets analyzed in this paper, the predictive performance
of TLSA is largely insensitive to K.

Conclusion

Capturing the intricate spatiotemporal statistics of neural signals
continues to be a challenging problem. TLSA departs frommost models
by fitting parameterized continuous functions to the data. These func-
tions provide a low-dimensional and interpretable description of the
data. The effectiveness of this approach, both for prediction and hypoth-
esis testing, suggests that TLSA is a promising addition to the neuroim-
aging tool kit.
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Appendix A. Variational inference algorithm

In this section, we derive the complete variational updates. We
use “hat” notation (e.g., ν̂s) to denote variational parameters, but
in some cases we will also use this notation to denote the expected
value of a parameter under the variational posterior, θ̂ ¼ Eq θ½ �.

A.1. Update for λm

For this update we need to calculate:

lnq0 λmð Þ ¼ Eq lnp Yð jθ;XÞjλm½ � þ β−1ð Þ lnλm−
λm

β
þ const: ð18Þ

It can be shown that q′(λm) is a Gamma distribution:

q0 λmð Þ ¼ Gamma λm;β þ SK
2

; ζ̂
−1
m Þ;

�
ð19Þ

where

ζ̂m ¼ β−1 þ 1
2

XS
s¼1

XK
k¼1

ω̂sm−ω̂0mð Þ2: ð20Þ
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A.2. Update for ω0k

For this update we need to calculate:

lnq0 ω0kð Þ ¼ −1
2

XS
s¼1

Eq ωsk−ω0kð Þ⊤Λ ωsk−ω0kð Þjω0k

h i
−1

2
ω0k−ωð Þ⊤Λ0 ω0k−ωð Þ þ const:

¼ −1
2

XS
s¼1

Eq ωskjω0k½ �−ω0k

� �⊤
Λ Eq ωskjω0k½ �−ω0k

� �
−1

2
ω0k−ωð Þ⊤Λ0 ω0k−ωð Þ þ const:

ð21Þ

It can be shown that the updated q-distribution forω0k is a Gaussian:

q0 ω0kð Þ ¼ N ω0k; ω̂0k; Σ̂0kÞ;
�

ð22Þ

where

Σ̂
−1
0k ¼ SΛþ Λ0 ð23Þ

ω̂0k ¼ Σ̂0k Λ0ω þ Λ
XS
s¼1

ω̂sk

 !
; ð24Þ

and ω̂sk ¼ Eq ωskjω0k½ � is derived below.

A.3. Update for ωsk

For this update we need to calculate:

lnq0 ωskð Þ ¼ Eq lnp Yð jθ;XÞjωsk½ �−1
2
Eq ωsk−ω0kð Þ⊤Λ ωsk−ω0kð Þjωsk

h i
þ const:

ð25Þ

Using the linearization of the likelihood (Eq. (35)), it can be shown
that q′(ωsk) is a multivariate Gaussian (Chappell et al., 2009):

q0 ωskð Þ ¼ N ωsk; ω̂sk; Σ̂sk

� �
; ð26Þ

where

Σ̂
−1
sk ¼ τ̂s J

⊤
sk Jsk þ Λ ð27Þ

ω̂sk ¼ Σ̂sk τ̂s J
⊤
sk Jsk eωsk þ y�s−ŷ�s
� �þ Λω̂0k

h i
ð28Þ

and eωsk represents the value of ω̂sk from the previous iteration. τ̂s is
defined below.

A.4. Update for τs

For this update we need to calculate:

lnq0 τsð Þ ¼ Eq lnp Yð jθ;XÞjτs½ � þ ν−1ð Þ lnτs−
τs
ρ
þ const: ð29Þ

Using the linearization of the likelihood (Eq. (35)), it can be shown
that q′(τs) is a Gamma distribution (Chappell et al., 2009):

q0 τsð Þ ¼ Gamma τs; ν̂s; ρ̂sÞ;
� ð30Þ
where

ν̂s ¼ ν þ NV
2

ð31Þ

ρ̂−1
s ¼ ρ−1 þ 1

2
Es þ

1
2

XK
k¼1

Tr Σ̂sk J
⊤
sk Jsk

� �
; ð32Þ

where Es ¼ ∑N
n¼1jjyns−ŷnsjj2 is the summed squared error and

ŷns ¼ xnsŴs F̂s is the predicted brain pattern. Under the approximate
posterior, the expectation of τs is τ̂s ¼ ρ̂sν̂s.

A.5. Update forWs

We choose q Wsð Þ ¼ δ Ws; Ŵs

h i
, where δ[⋅,⋅] is the delta function

whose value is 1 if its arguments are equal, and 0 otherwise. By placing
an infinitely broadprior onWs, such asp Wsð Þ ¼ limσ2

w→∞N Ws;0;σ2
wI

� �
,

the optimal setting of Ŵs is the maximum likelihood estimate. This is
equivalent to solving the following linear system:

ðXs⊗ F̂sÞvec Wsð Þ ¼ vec Ysð Þ ð33Þ

where⊗ denotes the Kronecker product and vec(⋅) denotes the opera-
tion that reshapes a matrix into a column vector. This linear system can
be solved efficiently with matrix factorization methods (e.g., the LU de-
composition), without explicitly constructing the Kronecker product.

Appendix B. Linearized likelihood

Conditional on θ̂, the log-likelihood is given by:

lnp Yjθ̂;X
� �

¼
XS
s¼1

XN
n¼1

lnp ynsjθ̂;xns

� �
¼ − SNV

2
ln2π−

XS
s¼1

τs
2
Es þ

1
2

ln τ̂s:
ð34Þ

Note that Es is implicitly a function of θ̂s.
Due to the fact that ϕ(⋅; ω) is generally a non-linear function of ω,

the Gaussian prior we placed on ω will not be conjugate to the likeli-
hood, and hence all expectations involvingωwill be analytically intrac-
table at the subject-level. We can obtain a linearized approximation by
using a first-order Taylor series expansion around the posterior mode
ω̂sk (which for a Gaussian is also the mean). Expressing the predicted
brain patterns Ŷs as a function of ωsk, the linearized approximation is:

Ŷs ωskð Þ≈Ŷs ω̂skÞ þ Jsk � ωsk−ω̂skÞ;ðð ð35Þ

where Jsk is the NV × M Jacobian matrix of partial derivatives with re-
spect to ωsk:

Jsk½ � nvð Þ;m ¼ ∂ŷnvs ωskð Þ
∂ω msð Þ

j
ωsk¼ω̂sk:

ð36Þ

Under this linearization, the likelihood is a linear-Gaussian function
of ω, and thus we obtain a closed-form variational update (see
Appendix A). Using this linearization means that the variational lower
bound on the log marginal likelihood (Eq. (7)) no longer strictly holds.
In practice we find that the algorithm converges reliably to good solu-
tions (in the sense of visual inspection and predictive performance),
though we cannot guarantee that such solutions represent local optima
of the lower bound.
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