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Abstract

The successor representation was introduced into reinforcement learning by Dayan (1993)

as a means of facilitating generalization between states with similar successors. Although

reinforcement learning in general has been used extensively as a model of psychological

and neural processes, the psychological validity of the successor representation has yet to be

explored. An interesting possibility is that the successor representation can be used not only

for reinforcement learning, but for episodic learning as well. Our main contribution is to

show that a variant of the Temporal Context Model (TCM; Howard and Kahana, 2002), an

influential model of episodic memory, can be understood as directly estimating the successor

representation using the temporal difference learning algorithm (Sutton and Barto, 1998).

This insight leads to a generalization of TCM and new experimental predictions. In addition

to casting a new normative light on TCM, this equivalence suggests a previously unexplored

point of contact between different learning systems.

KEYWORDS: successor representation, temporal context, temporal difference learning,

free recall
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1 Introduction

Many learning problems have in common the goal of inferring properties of temporally

extended sequences, a much thornier computational problem compared to simply predicting

what will happen next. For example, a standard task in reinforcement learning (RL; Sutton

and Barto, 1998) is to estimate the expected discounted future return (cumulative reward).

Similarly, there is a sense in which understanding natural language involves predicting

future words: Evidence suggests that people anticipate long-distance dependencies between

words (Altmann and Kamide, 1999; Kamide et al., 2003). Perhaps less obviously, episodic

memory also involves a predictive component: Plans and scripts retrieved from memory

represent predictions about future events (Schank, 1982; Atance and O’Neill, 2001; Schacter

et al., 2007).

An important—and computationally tractable—class of such learning problems arises

when the environmental dynamics are specified by a Markov chain (a key assumption in

RL theory; see Sutton and Barto, 1998) and the property to be inferred has a particular

functional form that we describe below. Markovian dynamics arise when the next state of

the environment depends only on the current state—that is, the state transition distribution

is memoryless. In this case, calculations are greatly simplified by using an estimate of the

expected discounted number of times each state j is visited following a visit to state i. The

matrix of these expected discounted visitations was introduced by Dayan (1993) into RL as

the successor representation (SR), and subsequently more fully explored by White (1995).

The SR is essentially identical to the fundamental matrix in the theory of Markov chains

(Kemeny and Snell, 1976).1 One simple and effective way to estimate the SR is using

temporal difference (TD) learning (Dayan, 1993; White, 1995), an error-driven learning

algorithm that incrementally updates an estimate of the SR based on sample paths.

1It is also closely related to the inverse Laplacian in graph theory. See Mahadevan and Maggioni (2007)
for discussion in the context of RL.
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In this paper, we move beyond RL to show how the SR can function as a common

computational substrate for multiple forms of learning. In particular, we draw a formal

connection between TD learning of the SR and an influential model of episodic memory,

the Temporal Context Model (TCM; Howard and Kahana, 2002; Howard et al., 2005;

Sederberg et al., 2008; Polyn et al., 2009; Socher et al., 2009), resulting in a generalized

form of TCM. The SR interpretation of TCM makes explicit its connections to normative

models: TCM (in its generalized form) is a TD algorithm for estimating the SR. This new

interpretation in terms of the well-understood SR allows us to generate several novel

experimental predictions.

The rest of this paper is organized as follows. In section 2 we formally specify the

problem to be solved and provide a mathematical description of the SR. Section 3 presents

a TD algorithm for learning the SR. In section 4, we describe TCM and show that it is

equivalent to (and a special case of) TD learning of the SR. Then in section 5 we explore

the empirical implications of the model. Finally, in section 6 we discuss our model in the

wider context of work on memory-based predictions and error-driven learning in the brain.

2 Markov chains and the successor representation

Consider a discrete, finite state space S = {1, . . . , S} and a state variable s ∈ S that evolves

in discrete time according to a first-order Markov chain: P (sn+1 = j|sn = i) = Tij. We refer

to T as the transition matrix. We are interested in calculating functions of the following

form:

F(i) = E

[
∞∑
p=0

γpφ(sn+p+1)

∣∣∣∣sn = i

]
, (1)
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where γ ∈ [0, 1] is a discount factor and φ : S → R is an emission function. Different

choices of φ lead to different characterizations of the Markov chain. For example, if φ(s)

specifies the reward received upon entering state s, then F(s) corresponds to the expected

discounted future return, or value, the standard target of RL (Sutton and Barto, 1998).

A felicitous property of Markov chains is that such functions can be calculated analyti-

cally:

F(i) =
S∑

j=1

Mijφ(j), (2)

where M is the successor representation (SR), which encodes the expected discounted

future visitations of each state j along trajectories originating in state i:

Mij = E

[
∞∑
p=0

γpδ(sn+p+1, j)

∣∣∣∣sn = i

]

= E[δ(k, j) + γMkj|sn = i]

=
∑
k

Tik[δ(k, j) + γMkj] (3)

where δ(·, ·) is the Kronecker delta function whose value is 1 if its arguments are equal

and 0 otherwise, and k indexes all of the possible states that can follow i. The recursive

expression is analogous to Bellman’s equation for value functions in RL (Bellman, 1957;

Sutton and Barto, 1998). An important difference between the SR and the transition matrix

is that the latter only looks at the next state, whereas the SR predicts visitations within an

extended future window whose effective size is determined by γ.
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3 Temporal difference learning of the successor represen-

tation

We have seen that the SR renders calculation of a certain class of functions (e.g., expected

discounted future return) a linear operation, but how is it learned? Although the SR can

be calculated directly from the transition matrix, an agent would still have to learn the

transition matrix and then perform an expensive matrix inversion. Here we consider a

temporal difference (TD) learning algorithm (Sutton, 1988) that estimates M directly from

sample paths (see White, 1995, for more information). The basic idea behind this algorithm,

which we refer to as TD-SR, is to minimize the discrepancy (predicion error) between

predicted and observed visitation counts.

At each timepoint n, a transition sn → sn+1 is observed. For example, in verbal memory

experiments (as we describe in the next section), sn might represent a word item presented

on trial n. The “eligibility” en(sn) of state sn is boosted, while the eligibility of other states

is decayed:

en(i) =

 γλen−1(i) if i 6= sn

γλen−1(i) + 1 if i = sn,
(4)

where λ ∈ [0, 1] is a trace decay parameter and e0(i) = 0. The eligibility trace vector stores

a short-term memory of which items were recently experienced; in dynamical systems

terminology, it can be viewed as a leaky integrator. Intuitively, the observed transition will

have a greater effect on updating predictions for more eligible states. Large values of λ

allow states to be eligible for longer periods of time. When λ = 0, only the most recently

visited state is eligible for updating.

Using M̂ to denote the SR estimate, each component M̂ij is updated according to a TD
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rule:

M̂ij ← M̂ij + α
[
δ(sn+1, j) + γM̂sn+1,j − M̂snj

]
en(i), (5)

where α ∈ [0, 1] is a learning rate, and the term in brackets is the prediction error, the

discrepancy between the predicted and observed transition. To understand intuitively why

this update rule converges to M, notice that the recursive definition of the SR (Eq. 3)

implies a consistency condition between the SR for successive states. Specifically, it implies

that when M̂ = M we can decompose the expectation of the prediction error as follows:

E[δ(k, j) + γMkj −Msnj|sn = i] = E[δ(k, j) + γMkj|sn = i]−Mij = 0. (6)

The prediction error thus stochastically signals the extent to which this consistency con-

dition has been violated by a transition. If the prediction error is positive, then M̂ij has

underestimated future visitations and is therefore increased; in contrast, if the prediction

error is negative, then M̂ij has overestimated future visitations and is therefore decreased.

As an example, consider the sequence

A B B B B A C

where A,B and C denote states. Assuming that M̂ij is initialized to 0, there will be a

positive prediction error after observing the transition from A→ B, which (according to

Eq. 5) will strengthen the M̂AB association. In addition, the eligibility trace en(A) = 1 after

the first transition, and the eligibility of A subsequently decays slowly after each following

transition. For each B → B transition, MAB continues to be strengthened, despite not
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observing any more A→ B transitions:

∆M̂AB = α
[
1 + γM̂BB − M̂AB

]
en(A) > 0. (7)

The prediction error will always be greater than zero after B → B transitions because the

proximal association M̂BB is strengthened more than the distal association M̂AB. When the

A→ C transition is observed, the prediction error will be negative:

∆M̂AB = α
[
0 + γM̂CB − M̂AB

]
en(A) = −αM̂ABen(A) < 0. (8)

The prediction error is negative in this case because M̂CB is still 0 upon the first observed

A → C transition, whereas M̂AB > 0. This example illustrates an important property of

the TD-SR algorithm: changes in the association between two items do not depend solely

on direct transitions between them. We shall exploit this property when we present new

experimental predictions in Section 5.

The learning algorithm presented here can be easily generalized to states associated

with feature vectors (White, 1995). In this case, the successor representation encodes the

expected discounted visitations to future features rather than states. That is, Mij encodes

the expected discounted number of times feature j will be active following a visit to state i.

4 The Temporal Context Model

TCM was originally designed to describe the associative processes that underlie episodic

memory and applied to human behavior in free recall experiments (for extensions of the

TCM framework to semantic learning, see Howard et al., 2011; Shankar et al., 2009). In a

free recall experiment, participants study a list of items presented sequentially and are then

asked to recall the items in any order. Thus, “states” in this setting correspond to list items
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(usually words).

We will first briefly review some of the basic empirical findings from free recall experi-

ments motivating TCM (for a comprehensive review, see Kahana et al., 2008). Then we

formally describe the model and its relationship to TD learning of the SR.

4.1 Empirical background: free recall and episodic memory

One of the most important observations about free recall is that although the task itself does

not demand temporal ordering of responses (unlike serial recall), human recall behavior

appears to recapitulate the temporal structure of the study-list. In particular, Kahana (1996)

measured recall contingencies: If the previously-recalled item was studied at serial position

j, what is the probability that the next-recalled item will be from serial position j+ lag? This

measure, known as the lag conditional response probability (CRP), revealed two properties

of free recall dynamics:

• The temporal contiguity effect: transitions tend to occur between items that were

presented in nearby serial positions in the study-list.

• The asymmetry effect: forward transitions are more frequent than backward transitions.

In addition, Kahana (1996) demonstrated a temporal contiguity effect in conditional

response latency: inter-response times tend to increase as a function of lag. A recent

meta-analysis by Sederberg et al. (2010) confirmed that these properties of free recall are

robust across numerous studies (Figure 1). Moreover, the size of the temporal contiguity

effect predicts recall performance across subjects.

The key principle underlying TCM that allows it to explain these findings is the con-

struct of temporal context: a slowly changing representation of recently experienced items.

When an item is experienced at time step n + 1, the association between that item and

currently-active contextual features (from time step n) is strengthened; next, the context
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vector is drifted incrementally towards the just-presented item’s representation. This con-

ceptualization of temporal context as a recency-weighted average of experienced items

distinguishes TCM from earlier models of memory that posited randomly fluctuating context

representations (Estes, 1955; Anderson and Bower, 1972; Mensink and Raaijmakers, 1988).

During memory retrieval, the current state of the context vector is used as a retrieval cue.

Items are sampled from memory according to how well the context cue (at test) matches

the context that was associated with the item at study. When an item is retrieved at test,

the context vector is updated using the features of the retrieved item and also the context

that was associated with that item at study; the latter update can be construed as mentally

”jumping back in time” to the moment when the just-retrieved item was studied. The

updated context is then used to cue for more items. This combination of contextual cuing

and temporal context reinstatement can account for the temporal contiguity effect, based on

the principle that items studied close in time will have similar temporal contexts. When an

item is retrieved, reinstated temporal context associated with that item will (symmetrically)

match the contexts that were associated with items studied before and after the just-retrieved

item, making it more likely that these items will be recalled. The asymmetry effect arises

from the fact that (at study) the context vector is updated with item information when that

item was presented. When the features of that item are used as a retrieval cue, the temporal

context for subsequently-studied items will include the retrieved item’s features, but the

temporal context for preceding items will not include these features. Thus, during recall the

forward-asymmetric cue of the just-retrieved item and the bidirectional cue of its reinstated

context combine to produce the ubiquitous pattern of recall transitions captured by the

conditional response probability in Figure 1. To date, TCM is the only published model

that has been shown to fit the contiguity and the asymmetry effect of the CRP without the

addition of a special mechanism that was devised explicitly to fit the shape of the curve.
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Figure 1: The lag-CRP. Graph of the conditional response probability as a function of serial
position lag, averaged across nine delayed free recall studies. Reproduced from Sederberg
et al. (2010).

Temporal context effects manifest themselves in other ways, as well. For example, the

recency effect refers to the observation that subjects tend to initiate recall with items that

were presented at the end of the study-list (Deese and Kaufman, 1957); interposing a

distractor task between study and test dramatically reduces this effect (Howard and Kahana,

1999). As with the contiguity effect, TCM explains the recency effect in terms of associations

between the items and the drifting temporal context: the temporal context at test is more

similar to items in late serial positions than to items in early serial positions. The distractor

task attenuates this similarity by perturbing the context vector away from the end-of-list

context, decreasing the overlap of the test context with the context bound to the items on

the list. This explanation of recency effects is consistent with the principle of temporal

distinctiveness posited by many previous models (e.g., Glenberg and Swanson, 1986; Brown

et al., 2007): recall of an item depends on its relative recency to other list items, not its

absolute recency. The temporal context vector provides a mechanistic implementation of

this abstract principle.
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4.2 Formal description of TCM

We shall focus on the encoding operations of TCM. The two key components of TCM

are the context vector tn and the matrix of item-context associations, M. Our notation is

deliberately suggestive: as we will show, TCM’s learning rule for the item-context association

matrix is equivalent to TD(λ) learning of the SR.

The context vector tn encodes a slowly-changing representation of temporal context,

operationally defined as a superposition of recently experienced items. Formally, tn is

updated as follows:

tn = ρtn−1 + fn, (9)

where fn is an “item vector” typically assumed to be a binary unit vector with a fni = 1 if

item i is experienced at time n, and 0 otherwise.2 The parameter ρ ∈ [0, 1] determines the

drift rate of the context vector. In TCM, the context vector is used to cue memory retrieval,

such that items experienced in a similar context are more likely to be retrieved; we will

not discuss the recall operations further in this paper (see Howard and Kahana, 2002;

Sederberg et al., 2008).

The item-context associations are updated using an outer-product Hebbian learning

rule:

M̂ij ← M̂ij + αfn+1,jtni (10)

where α is a learning rate parameter. This learning rule serves to bind the new item fn+1 to

the context that was present when it was experienced tn. This learning rule is equivalent

to TD(λ) learning of the SR in the special case that items are only presented once. To see

2In addition, a scaling operation is typically performed to constrain the context vector to be of unit length.
For simplicity, we omit this step. See Howard and Kahana (2002) for more details.
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this, notice that if M is initialized to all zeroes, then upon the first presentation of item i

the second and third terms in the prediction error part of Equation 5 (γM̂sn+1j − M̂snj) will

be equal to 0 (if items are only presented once, then neither the current item sn nor the

following item sn+1 will have been presented previously, so M̂ will not have been updated

for these items). Thus, in this case the TD update reduces to:

M̂ij ← M̂ij + αδ(sn+1, j)en(i), (11)

which corresponds to Equation 10 with the eligibility trace mapping onto the context vector

(en(i) = tni) and the delta function mapping onto the item vector (δ(sn+1, j) = fn+1,j). The

dependence on ρ, λ and γ is left implicit in these equations; equivalence between the two

updates is obtained when ρ = λγ. In other words, the context drift rate ρ correspondingly

governs the decay rate of the eligibility trace. In the more general case (in which items are

presented more than once), the TD and Hebbian updates diverge, since the second and

third terms in the prediction error are no longer 0. Specifically, TD replaces δ(sn+1, j) with

δ(sn+1, j) + γM̂sn+1,j − M̂snj. In essence, the Hebbian update rule is purely correlational,

whereas the TD update rule is error-driven.

While the TD-SR algorithm provides insight into the normative rationale of TCM, it does

not offer guidance in the setting of parameters, since λ and γ are considered idiosyncratic

properties of the agent (but see Doya, 2002). Experimentally, a number of individual

differences have been correlated with these parameters, such as age (Wingfield et al., 1998)

and working memory capacity (Unsworth, 2007).
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5 New experimental predictions

Previous applications of TCM to free recall data have focused on paradigms where each

item only appeared once at study (but see Howard et al., 2009); as noted above, the TD and

Hebbian models generate identical predictions in this situation. Other free recall studies

have presented items repeatedly at study (e.g., to investigate spacing effects; Kahana and

Howard, 2005), but none of these studies manipulated successor relationships in a manner

that would allow us to tease apart the models. In this section, we discuss how to construct

an experiment that predicts qualitatively different outcomes given TD vs. Hebbian learning.

There are two key differences between the TD and Hebbian learning rules that can be

exploited to generate differential predictions. The first is that TD is error-driven, whereas

Hebbian learning is purely associative. What this means is that TD will only update the

SR if there is a discrepancy between what it predicts and what it observes. In contrast,

the Hebbian rule will continue to strengthen the association between item and contextual

features even if there is no prediction error. It is worth noting that, from a neurobiological

point of view, Hebbian learning of this sort can lead to instabilities that have disastrous

consequences for a memory system (Brown et al., 1990). Furthermore, error-driven

learning has played a key role in theoretical explanations of a wide variety of animal

learning phenomena, such as blocking and conditioned inhibition (e.g., Rescorla and

Wagner, 1972), and signatures of state-based prediction errors have been recently observed

neurally and behaviorally (Gläscher et al., 2010). The second key difference between the

TD and Hebbian learning rules is that the TD rule also learns to predict discounted future

states given an observed transition (via the γ term in Eq. 5). For example, in cases where

a previously experienced item (call it item X) is repeated after a novel item (call it item

Y), the TD learning rule will learn associations between item Y and the successors of X

(i.e., items that have followed X in the past), whereas the Hebbian rule will not form these

14



I->A I->B A->B
Associative Weights

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

As
so

ci
at

iv
e 

St
re

ng
th

TD
Hebb

Figure 2: New experimental predictions. Graph of TCM simulations that dissociate the
Hebbian and TD learning rules. See text for details.

associations.

To illustrate the two predicted differences between TD and Hebbian learning, we

simulated a free recall paradigm with lists containing a repeated sub-sequence (AB):

AB C DAB E FAB G H IA,

where the letters indicate the study-words (the bold is added only for explanatory emphasis).

As shown in Figure 2, both the TD and Hebbian learning rules predict almost the same

associative strength stored in M̂ from I → A, which we can use as a baseline for the

subsequent comparisons. As described above, repeating the AB sub-sequence forms a strong

association from A to B, but the Hebbian learning rule grows without bounds with each

repetition, which gives rise to an associative strength from A→ B that is much larger for

the Hebbian than the TD learning rule. We simulated recall3 for the list described above

3See Sederberg et al. (2008) for details of the recall mechanism in TCM. In short, the current state
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with both the TD and Hebbian learning rules and counted the number of A→ B transitions

(i.e., the number of times the model recalled A and then retrieved B on the following recall).

Because recall in the model is a stochastic process, we ran the simulation 2000 times and

averaged the results. The ratio of total A → B recall transitions for the Hebbian learning

rule vs. the TD learning rule was 1.258, confirming that the larger association in M̂ is

proportional to recall and translates into a higher A→ B transition probability at test.

Although the A→ B association is smaller for the TD learning rule, it still has an effect on

other associations. When A is repeated after I, the fact that A predicts B factors into the TD

learning rule such that an I→ B association is learned in addition to the I→ A association

(see the middle column of Figure 2). In our simulations, this association manifested as a

relative increase in I → B transitions during recall, with the TD learning rule producing

6.31 times more I→ B transitions than the Hebbian learning rule.

6 Discussion

The main contribution of this work is a demonstration of how seemingly disparate forms

of learning may rest on a common representational foundation. Starting from a generic

prediction problem in Markov chains, we presented a learning algorithm (TD-SR) for solving

this problem (see also Dayan, 1993; White, 1995) and then established its equivalence to

TCM, a well-known model of episodic memory. In addition to providing new insight into the

normative basis of TCM (which was developed as a purely descriptive mathematical model),

this equivalence led to a new error-driven learning rule and several new experimental

of context is multiplied by the learned context-to-item association matrix, giving rise to a distribution of
item strengths that are used to drive item-specific accumulators. The one difference between the present
simulations and the Sederberg et al. (2008) simulations is that we replaced the leaky competitive accumulator
(Usher and McClelland, 2001) with the linear ballistic accumulator (LBA; Brown and Heathcote, 2008) for
computational speed. The LBA samples two random numbers for each candidate item per simulated recall
(one for the noise in the accumulator slope, one for noise in the accumulator offset) and uses these numbers
to compute how long it will take each item to cross the retrieval threshold; the first item to cross threshold is
recalled.
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predictions that have yet to be tested.

The idea that memories are based (at least in part) on predictions about the future

resonates with recent neuroscientific work suggesting a close connection between remem-

bering the past and envisioning the future (Schacter et al., 2007; Hassabis and Maguire,

2009). For example, when subjects are asked to imagine a future situation related to a

cue, many of the same brain regions are active as when subjects recall autobiographical

memories (Addis et al., 2007; Szpunar et al., 2007). Damage to this network, particularly

the hippocampus, impairs both autobiographical memory and episodic future thinking (Has-

sabis et al., 2007). These observations are paralleled by findings from rodent physiology

showing that hippocampal cells encode predictions about future spatial locations (Lisman

and Redish, 2009). The SR formalizes the relationship between memory and prediction

in terms of item-context associations that encode predictions about the future. Retrieving

an association from memory thereby corresponds to activating a prediction. From this

perspective it makes sense why the same network would be involved in both episodic

memory retrieval and episodic future thinking.

A number of computational theories have attempted to explain how episodic memory

and prediction arise from the same hippocampal circuitry (e.g., Levy et al., 2005; Byrne et al.,

2007); of particular relevance is the work of Zilli and Hasselmo (2008), who showed how

episodic memories stored in the hippocampus could facilitate long-term reward prediction

for Markov chains. An interesting question for future work is how the computations

posited by the TD-SR algorithm might be implemented neurally. Howard et al. (2005) have

proposed a detailed mapping of TCM onto medial temporal lobe structures (including the

hippocampus); given the equivalence between (generalized) TCM and TD-SR, it may be

sufficient simply to replace the Hebbian learning rule used by Howard et al. (2005) to

model plasticity at hippocampal synapses with the TD rule described above.

At the circuit level, the architecture of the hippocampus seems well-suited to the task of
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computing the prediction error required by TD-SR. In particular, the CA1 sub-field receives

input from entorhinal cortex (EC) both directly (via the perforant path) and indirectly

(via the dentate gyrus-CA3-CA1 pathway). If one assumes that the successor prediction is

formed through recurrent dynamics in CA3, this prediction could be compared to sensory

input arriving at CA1 directly from EC. This view of CA1 as the locus of prediction error

computation is consistent with earlier proposals characterizing CA1 as a “comparator”

whose output represents a novelty (mismatch) signal (e.g., Lisman and Otmakhova, 2001;

Vinogradova, 2001; Kumaran and Maguire, 2007). One implication of our theory is that the

direct EC inputs should not be purely sensory—they should partially reflect future successor

predictions (the Msn+1j term in the prediction error), which might be realized through

feedback from CA3 to EC (Jones, 1993).

Beyond the hippocampus, there is evidence that other brain areas might encode item

representations in terms of their successors. For example, Sakai and Miyashita (1991)

recorded cells in the anterior temporal cortex that preferentially responded to one stimulus

and gradually increased their firing rate during a delay interval when cued with a paired

associate of the preferred stimulus. Functionally similar cells have been recorded in the

lateral prefrontal cortex by Rainer et al. (1999). These findings are consistent with the use

of a prospective or predictive code in a number of different brain regions, but it is still an

open question whether they support the particular SR formalism we have proposed.

Once the affinities between RL and episodic memory models have been recognized, a

number of variations become salient. For example, Sutton (1995) observed that the SR

learns a representation of states at a single time-scale; he proposed a generalization in which

learning occurs at multiple time-scales by mixing together models with different temporal

horizons. Sutton’s work served as the precursor to later theories of hierarchical RL, in which

values can be defined over temporally abstract sequences of states and actions (Sutton et al.,

1999). Recent studies have suggested that such temporal abstractions operate in the brain
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during decision-making tasks (Botvinick et al., 2009; Ribas-Fernandes et al., 2011). There

are hints that episodic memory may also operate at a mixture of time-scales (Mozer et al.,

2009). These possibilities leave fertile ground for future work at the intersection of RL and

episodic memory.
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