
PyEPL: A Cross-Platform Experiment-Programming Library

Aaron S. Geller
Department of Psychology
University of Pennsylvania

Ian K. Schleifer
Volen National Center for Complex Systems

Brandeis University

Per B. Sederberg
Department of Psychology

Princeton University

Joshua Jacobs
Neuroscience Graduate Group

University of Pennsylvania

Michael J. Kahana
Department of Psychology
University of Pennsylvania

Date: November 1, 2006

Abstract

PyEPL (the Python Experiment-Programming Library) is a Python library
which allows cross-platform and object-oriented coding of behavioral exper-
iments. It provides functions for displaying text and images onscreen, as
well as playing and recording sound, and is capable of rendering 3D virtual
environments for spatial-navigation tasks. It is currently tested for Mac OS
X and Linux. It interfaces with Activewire USB cards (on Mac OS X) and
the parallel port (on Linux) for synchronization of experimental events with
physiological recordings. In this article we first present 2 sample programs
which illustrate core PyEPL features. The examples demonstrate visual stim-
ulus presentation, keyboard input, and simulation and exploration of a sim-
ple 3D environment. We then describe the components and strategies used
in implementing PyEPL.

The proliferation of personal computers (PCs) during the past three decades, and
their ability to control both input and output devices, have made them the standard tool
for experimentation in the psychological laboratory. Unlike the early days of the PC, when
researchers had to write their own low-level code to control experiments, there now exist
numerous software tools that enable researchers with relatively modest programming skills

PYEPL: A CROSS-PLATFORM EXPERIMENT-PROGRAMMING LIBRARY 2

to develop sophisticated experiments. Broadly speaking, these tools either take the form
of function libraries used in conjunction with scripting languages (e.g., the Psychophysics
Toolbox used with the Matlab scripting language; Brainard, 1997, Pelli, 1997) or they
take the form of graphical experiment-creation tools that allow users without any formal
programming skills to develop experiments (e.g., the E-Prime1 package sold by Psychology
Software Tools, Inc.).

PyEPL (pronounced ′p̄ı–ē–pē–el) is an experiment-programming library, written for,
and mostly in, the Python programming language. It uses only cross-platform software
components and thus may be used on both Mac OS X and Linux. PyEPL offers several
advantages over existing programming libraries and graphical development tools (Table 1).
PyEPL adds facilities for recording vocal responses, and for the creation of desktop-based
virtual-reality experiments, to the standard suite of tools commonly available in other pack-
ages (e.g., timing, stimulus control, response acquisition, etc.). PyEPL also offers tools for
synchronizing behavioral and electrophysiological data. Additional features include screen-
refresh synchronization, automated logging of experimental events, and management of
participant data-hierarchies. Finally, the Python language itself may be considered an ad-
ditional feature. Python has a very simple syntax, which makes programming minimally
daunting for the novice but provides advanced software-engineering features, such as inher-
itance and polymorphism, for the initiate.

Table 1: Features of interest provided by several experiment-generation packages and scripting
languages.

Package Platform Sound recording Sync-pulsing VR

E-Prime 1.1 Windows2 no yes3 no
PsyScope X Build 454 Mac OS X5 no yes no

SuperLab 4.0 Windows2, Mac OS X5 yes3 yes3 no
PsyScript6 Mac OS 9 yes yes no

Psychophysics Toolbox Windows, Mac OS X5 no yes3 no

1See MacWhinney et al. (2001).
2Versions: 95 and later.
3Functionality exists via third party hardware and/or software.
4See Cohen et al. (1993).
5Also runs on Mac OS 9 and earlier.
6See Bates and D’Olivero (2003).

We acknowledge support from NIH grants MH55687, MH61975, MH62196, NSF (CELEST) grant SBE-
354378, as well as the Swartz Foundation. We thank Jacob Wiseman for his work on the installation system.
The PyEPL project grew out of earlier C/C++ libraries developed by Michael Kahana, Daniil Utin, Igor
Khazan, Joshua Jacobs, Marc Howard, Abraham Schneider, Daniel Rizzuto, Jeremy Caplan, Kelly Addis,
Travis Gebhardt, and Benjamin Burack. Correspondence concerning this article may be addressed to Michael
Kahana (kahana@psych.upenn.edu).

PYEPL: A CROSS-PLATFORM EXPERIMENT-PROGRAMMING LIBRARY 3

Usage

Here we present some of the main aspects of experiment coding in PyEPL, by exam-
ining two simple experiment programs.

Sample Experiment 1: EasyStroop

The first sample experiment demonstrates the use of PyEPL for simple (screen) output
and keyboard input. Specifically, it does the following:

1. Shows the instructions to the participant;
2. Presents a textual stimulus on screen; this is a single trial of a forced-choice Stroop

task, so the participant must choose between two possibilities for the text’s color;
3. Waits for the participant’s response;
4. Decides whether the response was correct, and gives correct/incorrect feedback

with the response time.
We first present the Python code and then explain it. Note at the outset, though,

that lines beginning with “#” are comments and are ignored by the Python interpreter.
Also note that line numbers are provided for convenience and are not part of the code.

1 #!/usr/bin/python

2

3 # get access to pyepl objects & functions

4 from pyepl.locals import *

5

6 # create an experiment object:

7 # parse command-line arguments

8 # & initialize pyepl subsystems

9 exp = Experiment()

10

11 # Create a VideoTrack object for interfacing

12 # with monitor, and a KeyTrack object for

13 # interfacing with keyboard

14 vt = VideoTrack("video")

15 kt = KeyTrack("key")

16

17 # reset the display to black

18 vt.clear("black")

19

20 # create a PresentationClock object

21 # for timing

22 clk = PresentationClock()

23

24 # open the instructions file

25 instructions = open("instruct.txt")

26 # show the experiment instructions

27 instruct(instructions.read(), clk=clk)

28

PYEPL: A CROSS-PLATFORM EXPERIMENT-PROGRAMMING LIBRARY 4

29 # create the stimulus

30 stim = Text("green", color="red")

31

32 # create a ButtonChooser object

33 # to watch for specific keys

34 bc = ButtonChooser(Key("R"), Key("G"))

35

36 # request a 1-second delay

37 clk.delay(1000)

38

39 # delay, then present the test cue,

40 # and process the participant’s response

41 ts, b, rt = stim.present(clk=clk,

42 duration=5000,

43 bc=bc)

44

45 # time the response

46 response_time = rt[0]-ts[0]

47 # score the response

48 if b==Key("R"):

49 feedback = Text("Correct! %d ms"

50 % response_time)

51 else:

52 feedback = Text("Incorrect! %d ms"

53 % response_time)

54

55 # give feedback for the default duration

56 flashStimulus(feedback, clk=clk)

57

58 # wait for final display to finish

59 clk.wait()

The Experiment Class. The first nontrivial line of the script is line 9, which creates
an instance of the Experiment class. The Experiment class manages three functions which
pertain to all experiments. Our simple example relies only on the first of these: creating
and maintaining a directory structure for each participant. The experiment program is run
by invoking the Python interpreter on the experiment script from the command line, and
the participant label is passed to PyEPL as a command-line parameter. For example, if the
script above is saved in a file called easyStroop.py, it could be run from the command-line
with the command: python easyStroop.py -s sub001. The Experiment object processes
the flag -s sub001 and creates a data directory for participant sub001.

The second function served by the Experiment class is that of parsing the experi-
ment’s configuration file. To facilitate their modification, global experiment variables are
typically separated into a separate file called config.py. The experimenter sets global vari-
ables in config.py as a series of Python assignments, as in: numTrials=12. Upon creation,

PYEPL: A CROSS-PLATFORM EXPERIMENT-PROGRAMMING LIBRARY 5

an Experiment instance parses the configuration file and makes the settings available to the
experiment program. Maintaining global variables in a separate file has the additional ben-
efit of modularizing the experiment. That is, a specific configuration file can be associated
with a specific session for a specific participant. Thus, even if config.py should change
over time, the settings used for each participant are known, because the current version
of the configuration file is copied into the data directory for the participant for whom the
experiment is being run.

The third function served by the Experiment class is that of managing experimental
state. As described in greater detail below, under Implementation, PyEPL provides functions
to facilitate interruption and resumption of experiments. These functions are provided by
the Experiment class in the methods saveState and restoreState.

The Track Classes. On lines 14 and 15 the program instantiates two kinds of Track
objects. Tracks, which lie at the center of the PyEPL programming philosophy, entail
two concepts. The first is that any experimental quantity that varies over the course of
an experiment (i.e., all input and output) should be monitored both comprehensively and
without explicit coding by the experimenter. This is a demand for convenient logging
of both stimulus presentations (output) and participant responses (input). The second
concept entailed in the Track philosophy demands that the convenient logging reside inside
the stimulus-presentation classes (in the case of output) or the responses-processing classes
(in the case of input).

Thus, when on line 14 the program creates a VideoTrack instance it is doing two
important things. First, it sets up the interface by which PyEPL puts images onscreen.
That is, it enables a specific mode of stimulus presentation. Second, it prepares PyEPL to
log the visual stimulus presentations as they occur. Similarly, when on line 15 the program
creates a KeyTrack instance, it does two distinct things. It is instructs PyEPL both to listen
for and record any keyboard inputs.

The only explicit use of either of our Track objects in the program occurs on line 18,
where the VideoTrack instance is used to clear the screen. However, all screen output and
all keyboard input is mediated by the above-mentioned Track objects.

The PresentationClock Class. For the class of psychology experiments consisting
of a list of stimulus presentations, two kinds of intervals need to be specified. The first is
the duration of the stimulus presentation, and the second is the duration of empty time
between stimuli, or interstimulus interval (ISI). A third kind of interval, during which the
program waits for a participant’s response, will be considered later, because this duration
is not controlled by the experiment program. The PresentationClock class is critical for
specifying known durations, that is, the first two kinds of intervals.

PresentationClocks occur both implicitly and explicitly in several parts of the pro-
gram. Here we consider its use on lines 37 and 41 of the program, which constitutes its most
straightforward application. A PresentationClock instance contains the system time and
provides the delay method to introduce ISIs into a program. The delay call (for example,
on line 37) does not actually cause a delay. Instead, it simply increments the time contained
by the PresentationClock instance; it is thus a simple addition and takes less than 1 ms
to execute. Then, when the PresentationClock is passed as an argument to a presentation
function (as it is on line 41), PyEPL waits to execute the function until the system time

PYEPL: A CROSS-PLATFORM EXPERIMENT-PROGRAMMING LIBRARY 6

is greater than or equal to that contained by the PresentationClock. This arrangement
greatly improves ISI timing, as it decouples presentation times from program execution
latencies. Because ISI delays are executed both as part of the presentation function and
in terms of system time stamps (as opposed to offsets relative to prior presentations), they
are not affected by the execution-time of any code between the call to delay and the call
to the presentation function.

Because no delay is introduced before the call to flashStimulus on line 56, the use
of a PresentationClock on that line is not entirely straightforward. In this instance, we
take advantage of the fact that presentation functions not only use PresentationClocks
for timing but also update them in the course of executing. flashStimulus increments
the PresentationClock to reflect the duration of the stimulus presentation (in this case
by 1000 ms, the default duration), but does not block execution for the full duration.
Therefore, if the call to flashStimulus were the last call before the end of the program,
the termination of the program would prematurely cut off the stimulus. We prevent this
by calling clk.wait, which actually blocks execution until the actual time catches up with
the time on the PresentationClock.

The use of clk on line 27 is similar, in that the PresentationClock does not con-
strain the visual presentation. Here the instruct function displays the instructions for
the experiment to the participant. These are shown onscreen indefinitely, in a pager envi-
ronment capable of scrolling backward and forward through the instruction text. Instead
of controlling this presentation, the PresentationClock is passed as an argument so that
it has a fresh timestamp once the program leaves the instruct function. Consider the
following example: A participant begins the experiment at time t (and therefore the clk

reads approximately t), and spends 30 s reading the instructions. Unless the time in clk

is updated after instruct has returned, the call to delay will not work at all. This is
because it will increment a “stale” time value: that is, the time in clk will be incremented
from t to t + 1, but the current time is approximately t + 30. Because the current time
exceeds that contained in clk, no delay will occur. Thus, even output functions that are
not constrained by PresentationClocks accept them as arguments and increment them by
the duration of the output. Passing a PresentationClock into these functions keeps its
time stamp fresh–that is, useful for timing control later in the experiment.

The ButtonChooser Class. Although the KeyTrack instance created on line 15 is
necessary for processing keyboard input and sufficient for logging of all keystrokes, the
keystrokes themselves are not available to the experiment program without further coding.
That is, a PyEPL experiment with just a KeyTrack will record keystrokes but will not be
aware of them as they occur in order to respond to them. The program must explicitly
expose the keystroke events by creating an object to listen for them. The ButtonChooser

object created on line 34 does just this. The ButtonChooser groups a specific set of keys
that may then be monitored as potential stimulus responses. In the example program, the
keys R and G are potential responses and are grouped in a ButtonChooser called bc. When
bc is passed as an argument to the present function, as it is on line 43, the stimulus is
presented only until one of the keys in bc is pressed or until the duration passed as the
duration argument elapses.

As seen on line 41, the present function returns a list of 3 values when used to elicit

PYEPL: A CROSS-PLATFORM EXPERIMENT-PROGRAMMING LIBRARY 7

Figure 1. Stimulus and feedback screens from Sample Experiment 1.

a keyboard response. The first element of the list is the time of stimulus presentation, the
second is the Key of the response, and the third is the time of response. This is how an
experiment is made interactive with keyboard input in PyEPL.

Experiment Output and Logs. By default, PyEPL runs in full-screen mode (Fig. 1).
As mentioned in the section on Tracks, all screen and keyboard events are automatically
logged. Thus, for example, after the experiment has run, the file key.keylog (generated
automatically by the KeyTrack) contains the following:

1133749093393 0 B Logging Begins

1133749104225 1 P RETURN

1133749104337 0 R RETURN

1133749106225 0 P R

1133749106337 1 R R

1133749090086 0 E Logging Ends

The first column of the log contains the time of each event. The second column
contains imprecision values for the time stamps in the first column. The motivation for,
and implementation of, recording imprecision values is described in the Implementation
section, under Timing. The third column codes a key-down event with a P (press) and a
key-up event with an R (release). The fourth column gives the kind of key event.

Sample Experiment 2: TinyCab

This program is a stripped-down version of the virtual-navigation task employed by
Ekstrom et al. (2003). The program does the following:

1. Simulates a trivial 3D environment, with a floor, four walls, and sky;
2. Simulates navigation of the environment as the participant drives around it with

a joystick;

PYEPL: A CROSS-PLATFORM EXPERIMENT-PROGRAMMING LIBRARY 8

3. Presents a sprite (a 2D image always facing the user) at a specific location in the
environment;

4. Quits when the participant drives into the sprite.

Again, we present the code and then explain it. Because this experiment is sub-
stantially more complex than the preceding one, our exposition emphasizes the high-level
organizing concepts. We begin with an overview of the program and its underlying strategy.

The programming paradigm differs substantially between Sample Experiments 1 and
2. Whereas Experiment 1 completely specifies a finite sequence of stimuli and their dura-
tions, Experiment 2 merely simulates a virtual environment, which is left to the participant
to explore. The paradigm therefore shifts from enumerating a stimulus sequence to con-
figuring the virtual environment and the participant’s possible interactions with it. With
this configuration done, we start PyEPL’s renderLoop function to allow those interactions
to occur–in principle indefinitely.

The organization of our program is as follows:

1. Preliminaries (lines 1–16)
2. Configuration of the environment (lines 20–70)
3. Configuration of the avatar (lines 73–89)
4. Configuration of the Eye (lines 92–95)
5. Navigating the environment (lines 99–111)

1 #!/usr/bin/python

2

3 # import PyEPL

4 from pyepl.locals import *

5

6 # create the experiment object

7 exp = Experiment()

8

9 # create the video track

10 video = VideoTrack("video")

11

12 # create the virtual-reality track

13 vr = VRTrack("vr")

14

15 # create the joystick track

16 joystick = JoyTrack("joystick")

17

18 # ’done’ remains false until the avatar hits

19 # the sprite

20 done = False

21

22 # add the sky to the environment

23 vr.addSkyBox(Image("sky.png"))

24

25 # add the floor and walls to the environment

PYEPL: A CROSS-PLATFORM EXPERIMENT-PROGRAMMING LIBRARY 9

26 vr.addFloorBox(x = 0, y = 0, z = 0,

27 xsize = 50.0,

28 ysize = 7.0, zsize = 50.0,

29 floorimage=Image("floor.png"),

30 wallimage=Image("wall.png"))

31

32 # set some gravity

33 vr.setGravity(x = 0.0, y = -0.1, z = 0.0)

34

35 # add an infinite-plane impassible barrier

36 # for the floor

37 vr.addPlaneGeom(a = 0.0, b = 1.0, c = 0.0,

38 d = 0.0, mu = 0.0)

39

40 # add infinite-plane impassible barriers

41 # for the walls (so the avatar

42 # can’t travel through them)

43 vr.addPlaneGeom(a = -1.0, b = 0.0,

44 c = 0.0, d = -14.99,

45 mu = 0)

46 vr.addPlaneGeom(a = 1.0, b = 0.0, c = 0.0,

47 d = -14.99, mu = 0)

48 vr.addPlaneGeom(a = 0.0, b = 0.0, c = 1.0,

49 d = -14.99, mu = 0)

50 vr.addPlaneGeom(a = 0.0, b = 0.0, c = -1.0,

51 d = -14.99, mu = 0)

52

53 # add a sprite at 10.0, 0.0, 10.0

54 vr.addSprite(x = 10.0, y = 0.0, z = 10.0,

55 image = Image("sprite.png"),

56 xsize = 3.0, ysize = 5.0)

57

58 # when the avatar hits the sprite,

59 # this function will be called

60 def hitTheSprite():

61 global done

62 done = True

63

64 # add a permeable invisible sphere in the

65 # same place as the sprite

66 vr.addSphereGeom(x = 10.0, y = 0.5,

67 z = 10.0,

68 radius = 2.2,

69 permeable = True,

70 callback = hitTheSprite)

PYEPL: A CROSS-PLATFORM EXPERIMENT-PROGRAMMING LIBRARY 10

71

72 # create the subject’s avatar

73 av = vr.newAvatar("subject_avatar",

74 eyeheight = 1.0,

75 radius = 0.5)

76

77 # create an axis which will control

78 # the avatar’s turn speed

79 turning = JoyAxis(0, 0) * 0.0009

80

81 # create an axis which will control

82 # the avatar’s forward speed

83 forward = ScaledAxis(JoyAxis(0, 1),

84 -0.0025, -0.009)

85

86 # set the avatar’s forward and

87 # turn speed controls

88 av.setControls(forward_speed = forward,

89 yaw_speed = turning)

90

91 # create the eye object

92 eye = av.newEye("subject_view")

93

94 # set the eye’s field of view to 60.0 degrees

95 eye.setFOV(60.0)

96

97 # show the eye view so that it fills

98 # the whole screen

99 video.show(eye, 0, 0)

100

101 # this function will be called by PyEPL as part

102 # of the render loop. When it returns False,

103 # the render loop will finish

104 def checkStillGoing(t):

105 global done

106 global video

107 video.updateScreen()

108 return not done

109

110 # Start the render loop

111 video.renderLoop(checkStillGoing)

Preliminaries. The first section of the experiment resembles the beginning of Sample
Experiment 1: The purpose of the Experiment and VideoTrack instances are identical to
those in that example. In this experiment, we also instantiate a VRTrack (line 13) to gain

PYEPL: A CROSS-PLATFORM EXPERIMENT-PROGRAMMING LIBRARY 11

access to the PyEPL VR application programming interface (API), and a JoyTrack (line
16) to enable joystick input.

Environment. Currently, only square environments are supported by PyEPL. To make
these environments moderately plausible, we circumscribe these virtual worlds with a visible
and impassible barrier, i.e., a square wall. Together with the sky (rendered as a large box
overhead) and the ground (or floor), these boundaries are the first main category that needs
to be configured in our environment.

This is done in two steps. First (on lines 23–30), we describe the barriers’ appearance.
Then (on lines 37–51) we give them virtual physical properties– specifically, the property
of impassibility.

The other kind of object requiring configuration in our experiment is the sprite (see
Fig. 2). In contrast to the boundaries, whose rendering includes both scaling to convey
proximity and deforming to convey orientation, the sprite is rendered only to convey dis-
tance; its display does not vary with orientation and always faces the Eye (concerning which,
see below).

Figure 2. Screen shot of Sample Experiment 2, showing sprite (person with hand extended).

The interface for sprite configuration parallels that for the walls. Its visual component
is set up first (lines 54–55), followed by its (virtual) physical properties (lines 60–70). The
sprite configuration, however, has an added wrinkle, in that the program must do something
should the participant’s avatar (concerning which, see below) collide with it: It must quit.
To arrange this, we create a function to be called just in case of such a collision, and register
it with the PyEPL VR module (line 70).

Avatar. The avatar is the participant’s virtual body, fixing him or her in a specific
location and endowing him or her with specific traits, such as velocity and mass, and
potentially an appearance (although not in our example). From a programming point of
view, the avatar is a data structure that contains these traits (minimally, the virtual location
and velocity) and continually updates their values based on input from the participant. This

PYEPL: A CROSS-PLATFORM EXPERIMENT-PROGRAMMING LIBRARY 12

experiment demonstrates creating an avatar (line 73) and configuring it for joystick control
(lines 79-89).

Eye. The final component of the VR system that needs to be set up is the Eye. The
Eye is essentially the virtual camera; it picks a specific view of the environment and renders
it on screen. To provide the feeling of exploring the virtual environment, the Eye in our
experiment follows the avatar. That is, the view on screen is updated to reproduce what
is viewable at the current position of, and in the current direction of, the participant. An
Eye need not be fixed with an avatar, however; it is possible, for example, to render the
environment as seen from a fixed position, as in a bird’s-eye view.

The Eye is fixed on the avatar by calling the avatar’s newEye method on line 92, and
its field of view is set on line 95.

Starting the Navigation. The final step in the program is to start the navigation. This
has two parts: displaying the initial view from the Eye (line 99), and calling the renderLoop
function to start the simulation. On line 111, the renderLoop is started, with the function
checkStillGoing as an argument. On each iteration of the renderLoop PyEPL calls the
function that the loop was given (checkStillGoing in this case); if the function returns
True, the simulation continues. In our experiment, checkStillGoing inspects the global
variable done, which records whether the participant’s avatar has collided with the sprite.

Logs. Just as in Sample Experiment 1, the Track instances used in Experiment
2 provide automated and comprehensive logging. The JoyTrack creates a log called
joystick.joylog, which records the (x, y) displacement of every joystick manipulation.
More importantly, the VRTrack creates a log called vr.vrlog, which records the virtual-3D
coordinates of the avatar at each iteration of the renderLoop, as well as its virtual yaw,
pitch, and roll.

Implementation

Timing

Timing is perhaps the most basic aspect of any experiment-programming library. It
is essential for controlling the duration of stimulus presentation, for measuring the response
latencies, and for synchronizing behavioral and physiological measurements. Because oper-
ating systems on nearly all PCs perform multitasking, accurate timing presents a serious
challenge to the experimenter. These problems are exacerbated by an interpreted language
such as Python, which can never be as fast as a compiled language.

In PyEPL we address the timing problem in two ways. The first strategy is to optimize
critical code by writing it in C. The second is to provide an estimate of the precision of
all measured event times by associating a lag value with each event. We describe both
strategies here.

To minimize any extra latency in timing due to code interpretation, critical sections
of PyEPL are implemented as compiled code invoked by the interpreter. Two software
layers participate in this strategy. First, the main libraries that PyEPL uses to interact
with hardware are all C code. These include SDL, the Simple DirectMedia Layer (2005),

PYEPL: A CROSS-PLATFORM EXPERIMENT-PROGRAMMING LIBRARY 13

which PyEPL uses to manage both manual input (keyboard, mouse, and joystick) and video
output, and RtAudio (Scavone, 2005), which manages audio input and output (see Fig. 3).

The second layer of compiled software are PyEPL functions which frequently interact
with the preceding layer. The most important of these is the pollEvents function, which
monitors manual inputs. PyEPL uses PyGame’s (2005) event loop to manage hardware
inputs. User inputs such as keystrokes or joystick manipulations are available as PyGame
events, and PyEPL continually checks for these and logs them.

The pollEvents function also exemplifies the second strategy mentioned above, pro-
viding a precision estimate for event times. Using the PyGame event loop is a powerful
tool for simplifying experiment code, especially for programs such VR tasks which receive
continual user inputs. This technique comes with a potential degradation in timing accu-
racy, however.7 The problem is that PyGame’s event functions provide only the kind of
events that have occurred (e.g., “key F depressed”) but not the time at which they occurred.
Timing events that are registered in PyGame’s event-loop thus depends on rapid, continual
checking for these events.

A full benchmark of a PyEPL system, including measuring the hardware latencies of
all input and output devices, along the lines of the BlackBox Toolkit (Plant et al., 2004)
is beyond the scope of this paper. Furthermore, it would obscure the fact that PyEPL is
a cross-platform software package, capable of running on diverse hardware and operating
systems. What we can present is an overview of the notion of software timing, the manner
in which PyEPL monitors for imprecision due to its own execution.

PyEPL compensates for the potential inaccuracy in its event-loop by recording the
time elapsed between pollEvents calls, which defines the maximum error in their time
stamp. The time stamps thus take the form of ordered pairs (t, ε) where t is the time of the
previous iteration of the event-loop, and ε is the time since the previous iteration and the
current one. Any events discovered by PyEPL are thus guaranteed to have occurred between
t and t+ ε. For 153584 key events recorded during a typical experiment on a Mac G5 tower
running OS 10.3 with Python 2.3, we observed a mean ε of .96 ms. By comparison, the
Matlab Psychophysics Toolbox running on the same machine had a mean ε of 4.1 ms for
keystrokes.

A similar error estimate is provided for output events. In general, output functions
in PyEPL do not block; that is, execution proceeds to the program’s next line as soon as the
particular function has started running. This makes possible a timing-precision estimation
as follows: Any output operation (such as drawing to the screen or playing a sound) is
preceded and followed by checking the system time. These two time stamps again define
an interval inside which the output function is known to have run.

Screen-Refresh Synchronization

To provide maximum timing precision of visual stimulus onset PyEPL makes use of
double-buffering and vertical-blanking loop (VBL) synchronization functionality provided
by the OpenGL library.8 Double-buffering allows PyEPL to draw the next screen before
it is necessary to show it, and then simply flip the new screen to the display when it is
ready. With OpenGL, the screen flip can be made to wait until the next vertical blank

7See, e.g., http://www.pygame.org/docs/tut/newbieguide.html, §11.
8In implementing this we have drawn on work by Straw (2006).

PYEPL: A CROSS-PLATFORM EXPERIMENT-PROGRAMMING LIBRARY 14

� � �

� � � � � �

� � 	 � �

 � � � � � � �
� � � � �

� � � � � � � �
� � � � � �

� � � � � �

�

� � � � � �

� � � � � � � � � � � �
 � � � ! � " � �

� � ! �
� � � $

� � � � � % & �
 � � � ! � " � �

� � �
� � � $

� � � � � � � �

Figure 3. The software infrastructure of PyEPL and its hardware interfaces. The leftmost boxes
describe three system layers: Python, C, and hardware. SDL is the Simple DirectMedia Layer,
a cross-platform library for hardware management. The rightmost boxes describe the system for
sync-pulsing via an ActiveWire card, which is only done on Mac OS X. On Linux, PyEPL accesses
the serial port via the kernel.

before it executes. This ensures that the entire screen is updated at once and that PyEPL

knows when that update has occurred. Consequently, when synchronization to the VBL is
activated in PyEPL, the experimenter can know (within 1 ms) when a stimulus is presented
to the participant.

When synchronized to the vertical refresh, screen updates are assumed to have sub-
stantial delays (on a 60 Hz monitor, up to 16.6 ms). Thus, they constitute an exception
to the time-stamping regime described above; instead of returning time stamps both from
before and after the screen update has run, only the post-update time stamp is returned.
The time of this stamp is known to be approximately 1 ms after the actual time of the
update.

Synchronization Pulsing

Given the widespread interest in the neural substrates of cognition, the desire to con-
join behavioral cognitive tasks with electrophysiological measures is natural. We will take
electroencepalographic, or EEG, recordings as an example. In order to precisely character-

PYEPL: A CROSS-PLATFORM EXPERIMENT-PROGRAMMING LIBRARY 15

ize the behavioral import of a particular segment of EEG, however, it is necessary to know
with maximal precision when, with respect to the behavioral paradigm, a given electrophys-
iological signal was observed. This requires a mechanism that allows the experimenter to
interconvert two kinds of time stamps: those associated with physiological signals on the
one hand, and those associated with behavioral events on the other.

PyEPL achieves this synchronization by sending intermittent, brief pulses to the
recording equipment throughout the behavioral task. By recording when the pulse was
sent (as recorded by PyEPL) and observing when the pulse was received (as recorded by the
EEG equipment), one can easily compute the mapping to interconvert the two sets of time
stamps.

EEG synchronization pulsing (sync-pulsing) in PyEPL is one instance in which cross-
platform uniformity is not possible. Most Intel-based Linux systems have parallel ports
which can be used for sending transistor-transistor logic (TTL) pulses for synchronization.
On Macs, which lack parallel ports, we send sync-pulses from an ActiveWire USB card.9 Our
sync-pulsing routines check which platform they are running on, and select the appropriate
port.

Virtual Reality (VR)

PyEPL uses another C library, the Open Dynamics Engine (ODE10; Smith, 2005),
together with PyGame and OpenGL to create a VR API. PyEPL uses ODE to manage non-
graphical aspects of VR. This includes modeling the boundaries of the virtual environment,
the locations and trajectories of objects in it, and their interactions. Interactions generally
correspond to the action of a force, either mechanical (as in a collision) or the presence
of friction or gravity; any or none of these interactions may be included in a given virtual
world. PyEPL visualizes this nonvisual environment by maintaining a special virtual object,
called an Eye, that selects a specific view of the virtual world. In a VR program, PyEPL

runs in a loop that computes what the Eye currently sees, and uses OpenGL to render
this view to the screen. As mentioned above, PyEPL uses PyGame to receive input from
hardware controllers, such as a joystick or keyboard.

Sound

PyEPL’s sound module is another component implemented in C but exposed to
Python. Using the cross-platform RtAudio (Scavone, 2005) library to gain low-level access
to the audio devices, we coded two circular buffers, one providing read (record) functional-
ity, the other providing write (play) functionality. This code is exposed to Python with the
SWIG (Beazley, 2005) utility.

Sound-file I/O is implemented with the libsndfile (Castro Lopo, 2005b) and libsam-
plerate (Castro Lopo, 2005a) libraries. These enable PyEPL to play sound from all conven-
tional file formats and sampling rates. File output is currently restricted to 44100 Hz WAV
format.

9Mac OS X drivers provided by Keck (2005).
10Accessed via the PyODE module (Baas, 2005).

PYEPL: A CROSS-PLATFORM EXPERIMENT-PROGRAMMING LIBRARY 16

State Management

For experiments run in noncontrolled environments, easy interruption and resump-
tion of experiments is critical, and requires saving to disk (serializing) one or more program
variables. For example, if the participant is a hospital patient, the testing session may
be interrupted for various non-experimental exigencies like administration of medication
or physiological diagnostics. To cope with these possibilities, convenient stopping and re-
sumption of the experiment is essential. The implications for the experiment program are
as follows. In general, experiment programs consist of a loop that iterates through a list of
trials, so this state-management task entails, at a minimum, saving both the list of trials
and the index of the trial to be run. PyEPL uses the Python pickle serialization module
to record experimental state variables.

Conclusions

PyEPL makes the coding of feature-rich experiments quite easy. The sample experi-
ments described above can, with a modicum of effort, be scaled up into real experiments.
Furthermore, the features made accessible by PyEPL are provided by very few programming
utilities that are currently available. Future directions for PyEPL development include en-
hancing our documentation and sample code base and streamlining the installation of PyEPL

and its dependencies.

Resources

As of March 2006, PyEPL is available from http://pyepl.sourceforge.net. This
website provides instructions for PyEPL installation, documentation, a user forum, and the
PyEPL distributions themselves. Currently, installation instructions are available for Mac
OS X (both PowerPC and Intel) as well as Linux. PyEPL has been downloaded over 300
times this year and its user base continues to grow.

References

Baas, M. (2005). PyODE: Python bindings for the Open Dynamics Engine. [Computer Software].
Retrieved December 29, 2005, from http://pyode.sourceforge.net.

Bates, T., & D’Olivero, L. (2003). Psyscript: A Macintosh application for scripting experiments.
Behavior Research Methods, Instruments & Computers, 4, 565-576.

Beazley, D. (2005). SWIG: Simplified Wrapper and Interface Generator. [Computer Software].
Retrieved December 28, 2005, from http://www.swig.org.

Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 443-446.
Castro Lopo, E. de. (2005a). libsamplerate. [Computer Software]. Retrieved December 28, 2005,

from http://www.mega-nerd.com/SRC/.
Castro Lopo, E. de. (2005b). libsndfile. [Computer Software]. Retrieved December 28, 2005, from

http://www.mega-nerd.com/libsndfile/.
Cohen, J. D., MacWhinney, B., Flatt, M., & Provost, J. (1993). PsyScope: A new graphic interactive

environment for designing psychology experiments. Behavior Research Methods, Instruments
& Computers, 25 (2), 257–271.

Ekstrom, A. D., Kahana, M. J., Caplan, J. B., Fields, T. A., Isham, E. A., Newman, E. L., et al.
(2003). Cellular networks underlying human spatial navigation. Nature, 425, 184–187.

Keck, D. (2005). ActiveWire USB card drivers for Mac OS X. [Computer Software]. Retrieved
December 28, 2005, from http://www.docdave.com/apps/activewire.html.

PYEPL: A CROSS-PLATFORM EXPERIMENT-PROGRAMMING LIBRARY 17

MacWhinney, B., St. James, J., Schunn, C., Li, P., & Schneider, W. (2001). STEP—a system for
teaching experimental psychology using E-Prime. Behavior Research Methods, Instruments &
Computers, 33 (2), 287–296.

Pelli, D. G. (1997). The videotoolbox software for visual psychophysics: Transforming numbers into
movies. Spatial Vision, 10, 437-442.

Plant, R. R., Hammond, N., & Turner, G. (2004). Self-validating presentation and response timing in
cognitive paradigms: how and why? Behavior Research Methods, Instruments & Computers,
36 (2), 291–303.

PyGame. (2005). [Computer Software]. Retrieved December 28, 2005, from http://www.pygame.

org.
Scavone, G. P. (2005). RtAudio. [Computer Software]. Retrieved December 28, 2005, from http:

//www.music.mcgill.ca/∼gary/rtaudio/.
Simple DirectMedia Layer. (2005). [Computer Software]. Retrieved December 28, 2005, from http:

//www.libsdl.org.
Smith, R. (2005). Open Dynamics Engine. [Computer Software]. Retrieved December 28, 2005,

from http://www.ode.org.
Straw, A. (2006). VisionEgg. [Computer Software]. Retrieved January 25, 2006, from http:

//visionegg.org.

