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Abstract

Healthy aging is associated with deficits in performance on episodic memory tasks. Popular verbal 

theories of the mechanisms underlying this decrement have primarily focused on inferred changes 

in associative memory. However, performance on any task is the result of interactions between 

different neurocognitive mechanisms, such as perceptuomotor, memory, and decision-making 

processes. As a result, age-related differences in performance could arise from multiple processes, 

which could lead to incomplete or incorrect conclusions about the sources of aging effects. 

In addition, standard statistical comparisons of group-level summary statistics, such as mean 

accuracy, may not provide sufficient information to allow detailed mechanistic explanations of 

age-related change. We argue that these and other drawbacks of relying exclusively on verbal 

theories can hamper replicability, transparency, and scientific progress in aging research and 

psychological science more generally, and that computational modeling is a tool that can address 

many of these limitations. Computational models make mathematically transparent claims about 

how latent processes give rise to observed behavior, and decompose an individual’s performance 

into model parameters governing hypothesized mechanisms. In this work, we present a short 

memory task designed for and analyzed with mechanistic model-based approaches. We provide 

an example of a computational model, and fit the model to data from young and older adults 

with hierarchical Bayesian techniques in order to (1) detect differences in latent cognitive 

processes between young and older adults (as well as individual participants), (2) quantitatively 

compare models to assess different processes that could underlie performance, and (3) simulate 

data to make predictions for future experiments based on model mechanisms. We argue that 

computational modeling is a powerful tool to examine age differences in latent processes, make 

theories more transparent, and facilitate discovery in cognitive aging research.
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The field of psychological science has received criticism for difficulty replicating many 

findings in different participant samples, and in some cases even difficulty reproducing 

the results of statistical analyses of the same sample (Anvari & Lakens, 2018; Maassen, 

Assen, Nuijten, Olsson-Collentine, & Wicherts, 2020; Open Science Collaboration, 2015). 

A popular recommendation for addressing these concerns is to increase transparency by 

pre-registering study predictions, publishing null findings, and by making experimental 

paradigms, data, and analyses publicly available (Asendorpf et al., 2013; Nosek et 

al., 2015). Despite these efforts, however, challenges to replicability remain. Some 

researchers have suggested that an additional way to improve replicability and make 

psychological science more rigorous may be to increase the transparency of psychological 

theories by mathematically instantiating them in generative computational models of latent 

neurocognitive mechanisms (Farrell & Lewandowsky, 2010, 2018; Guest & Martin, 2021; 

Haines et al., 2020; Jolly & Chang, 2019; Oberauer & Lewandowsky, 2019a; Smaldino, 

2020).

Generative computational models, often called explanatory models or cognitive process 

models, are systems of equations that mathematically instantiate an explicit theory of latent 

mechanisms. Such models are called generative because they provide an explanation for how 

the brain could generate observed behavior, albeit at varying levels of abstraction. A more 

common approach is to design experiments and base hypotheses on a purely verbal theory 

of a proposed process or how a process might differ within or between individuals, e.g., 

due to aging or the onset of a disease. As we argue below, verbal theories are often lacking 

in mechanistic specificity and can be interpreted differently by researchers. Generative 

computational models, by contrast, make theories transparent in that the mathematical 

equations that instantiate a model specify the operations of latent processes and remove 

the need for subjective interpretations of a theory that could vary between researchers (Guest 

& Martin, 2021).

In addition to making theories more transparent, more widespread application of 

computational modeling may increase replicability by creating stronger links between theory 

and experimental hypotheses (Muthukrishna & Henrich, 2019; Oberauer & Lewandowsky, 

2019a; P. L. Smith & Little, 2018). In some cases, a theory may be too vague to provide 

sufficient guidance on what experiments would provide strong support either for or against 

it (see Oberauer & Lewandowsky, 2019a for discussion). Relatedly, research is sometimes 

conducted in an exploratory way, without strong ties to a specific theory. Some exploratory 

hypotheses are faulty but may still result in statistically significant results by chance that 

are unlikely to replicate. Findings that were hypothesized as a way to test the predictions 

of an explicit mechanistic theory, however, may be more likely to replicate because the 

hypotheses are born out of a line of reasoning and previous research in a principled way. 

By implementing a theory as a computational model, the researcher is (a) obliged to specify 

mechanistic details of the theory that would likely remain vague in a verbal theory, and 

(b) able to simulate data for different experiments that provide explicit hypotheses based 

directly on the model that can be compared to observed data. Cases when model predictions 

are not compatible with observed data, or when a predicted finding does not replicate, 

provide opportunities to reassess the model and iterate towards better theories (Guest & 
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Martin, 2021). For these reasons, computational modeling may help make psychological 

theories more robust to replication failure.

Models are most often employed for the purpose of developing and testing mechanistic 

theories of cognitive processes in healthy, and typically young, adults (Weichart et al., 

2021). Increasingly, however, modeling frameworks have been applied to jointly test theories 

and gain insight into mechanistic differences between individuals from distinct groups. For 

example, a central goal of the nascent field of computational psychiatry (Huys, Maia, & 

Paulus, 2016; Maia, Huys, & Frank, 2017; Wiecki, Poland, & Frank, 2015) is to apply 

computational models to gain insights into how neurocognitive processes are affected by 

various neurological and developmental disorders (Braver, Barch, & Cohen, 1999; Cockburn 

& Holroyd, 2010; Cohen et al., 1996; Frank, 2008; Frank, Santamaria, O’Reilly, & Willcutt, 

2007).

One domain in which computational modeling is still relatively rare is research on 

cognitive aging, despite long-standing arguments from influential researchers in the field 

on the potential benefits of this approach (Salthouse, 1988). Thankfully, however, a 

number of exceptions have been presented (Benjamin, 2010; Healey & Kahana, 2016; 

Howard, Kahana, & Wingfield, 2006; Kliegl & Lindenberger, 1993; Li, Naveh-Benjamin, & 

Lindenberger, 2005; Myerson, Hale, Wagstaff, Poon, & Smith, 1990; Ratcliff & McKoon, 

2015; Ratcliff, Thapar, Gomez, & McKoon, 2004; Starns & Ratcliff, 2010; Stephens & 

Overman, 2018; Surprenant, Neath, & Brown, 2006), in which researchers have applied 

models to make their theories transparent and detect mechanistic changes between young 

and older adults, and in some cases have quantitatively compared mechanistic theories of 

aging.

In the current work, we discuss advantages of a computational modeling framework and 

provide examples of specific modeling techniques that we believe would particularly benefit 

research on aging. Our aim in this work is to encourage further adoption of computational 

modeling in the study of cognitive aging. We present a computational model of episodic 

memory, and apply hierarchical Bayesian techniques to fit the model to data from young and 

aging adults. We apply this approach to (1) examine mechanistic differences between age 

groups and individual participants in latent processes proposed to underlie task performance, 

(2) compare different models to test specific mechanistic ideas, and (3) generate data 

to make model-based quantitative predictions for unobserved experimental outcomes. We 

begin by discussing benefits of computational modeling in the context of aging effects on 

episodic memory.

Verbal versus computational models of episodic memory and aging

A great deal of experimental work has suggested that episodic memory declines with age 

(Cansino, 2009; Mitchell, Brown, & Murphy, 1990; Nilsson, 2003; Tromp, Dufour, Lithfous, 

Pebayle, & Després, 2015). Performance on episodic memory tasks such as free recall 

(Craik, 1968), serial recall (Golomb, Peelle, Addis, Kahana, & Wingfield, 2008), cued recall 

(A. D. Smith, 1977; Taconnat, Clarys, Vanneste, Bouazzaoui, & Isingrini, 2007), source 

memory (Dodson, Bawa, & Slotnick, 2007; Schacter, Kaszniak, Kihlstrom, & Valdiserri, 
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1991), and associative recognition (Castel & Craik, 2003; Naveh-Benjamin, Guez, Kilb, & 

Reedy, 2004; Old & Naveh-Benjamin, 2008) is typically less accurate in older adults than 

young adults. However, performance tends to be less affected by age on other memory tasks, 

such as item recognition (Naveh-Benjamin, 2000; Naveh-Benjamin, Guez, Kilb, & Reedy, 

2004) and vocabulary tests (Verhaeghen, 2003).

A number of verbal theories have been proposed to explain this pattern of deficits, including 

developmental changes in attention (Craik, Luo, & Sakuta, 2010), inhibition (Hasher & 

Zacks, 1988; Healey, Hasher, & Campbell, 2013), and processing speed (Salthouse, 1996). 

One of the most popular theories of episodic memory change is the associative deficit 

account, which suggests that the age-related decline in episodic memory is primarily due 

to deficits in forming associations between items, whereas item familiarity is relatively 

intact (Naveh-Benjamin, 2000). Verbal theories such as these help guide the field and 

our conceptualization of how cognition is affected by aging. However, this approach has 

a number of important limitations that we argue can be addressed with a computational 

modeling approach (for similar arguments, see Farrell & Lewandowsky, 2018; Guest & 

Martin, 2021; Haines et al., 2020; Oberauer & Lewandowsky, 2019a; Salthouse, 1988; 

Smaldino, 2020).

One limitation of verbal theories is that they can be understood in different ways, as 

communicating a verbal theory necessarily involves some amount of interpretation and 

inference, which may differ between researchers (Farrell & Lewandowsky, 2010, 2018). As 

pointed out by Castel and Craik (2003), for example, the word “association” could mean 

different things in relation to memory, including integrating features together to form a 

conjunctive object or scene, integrating an item with its context, or forming a link between 

separate items. It is not difficult to imagine that even these more specific descriptions 

could be understood differently between researchers. Relatedly, verbal theories often do 

not provide mechanistically detailed explanations (Haines et al., 2020). For example, one 

can theorize that older adults have difficulty with associative memory, but it is unclear 

how associations are learned or retrieved, or even what aspects of an experience are 

associated together. Computational modeling, however, forces the researcher to make their 

theory mathematically transparent, without relying on language that could be interpreted in 

different ways, and to consider the specific implementation of proposed mechanisms.

For example, a number of computational models have instantiated specific mechanisms that 

could underlie episodic memory (for a review, see Sederberg & Darby, under review). One 

model that has proven especially successful at explaining episodic memory phenomena is 

the temporal context model (TCM; Howard & Kahana, 2002; Sederberg, Gershman, Polyn, 

& Norman, 2011; Sederberg, Howard, & Kahana, 2008). In TCM, temporal context is 

defined as a recency-weighted representation of experience, and is instantiated as a vector 

of feature activations that change across time. This contextual change is driven primarily 

by items that are presented to participants in the memory task, such that when an item is 

presented it becomes strongly activated in context, whereas the activations of less recently 

presented items decay. Critically, associative encoding in TCM occurs through binding each 

item to the state of temporal context at the time when the item is presented, and retrieval 

is driven by reinstating past states of context that have been associated with tested items. 
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These processes are mathematically defined according to the equations that make up the 

model. Computational models such as TCM, then, can provide a rich and transparent theory 

of memory processes such as recall and recognition. In the current work, we apply TCM to 

better understand age-related changes in episodic memory processes.

In addition to transparency and level of mechanistic detail, another difference between 

verbal and computational models is that the former typically address a proposed process, 

such as associative memory, in isolation, without considering other processes that could 

affect performance. However, no task is process-pure, and performance will necessarily be 

the result of interactions between multiple mechanisms, such as memory, perceptuomotor, 

and decision-making processes, all of which can vary between individuals and even within 

individuals across time or development. These additional sources of variability decrease 

our ability to make mechanistic inferences: if both memory and decision-making processes 

contribute to accuracy on a given task, for example, it may be difficult to assess the 

extent to which an age difference is due to changes in memory, decision-making, or 

both. Computational models, by contrast, decompose task performance into proposed latent 

mechanisms that are typically governed by model parameters that may be allowed to 

vary between individuals and/or groups. This is a particularly useful feature for research 

on aging: by comparing parameter values, the researcher can gain insight into specific 

processes that may be expected to differ (or not) between age groups, while accounting for 

other mechanisms with separate parameters. As an example, Howard, Kahana, & Wingfield 

(2006) applied TCM to examine age differences in free recall and found evidence that (1) 

older adults were less able to form new associations between items and temporal context, 

and that (2) older adults’ associations were noisier, with a greater tendency to include 

irrelevant information in the associations that they did form. By contrast, they did not find 

evidence that older adults differed in item-context associations that had been formed prior to 

the experiment, analogous to pre-existing semantic knowledge.

Another benefit of generative computational models is that they can be employed to simulate 

data, such as trial-level choices and RTs, which can be compared to observed data. While 

model-based simulations that closely match the pattern of observed data can provide 

evidence in favor of a theory’s legitimacy, a poor fit provides evidence that a theory, as 

implemented in the model, should be revised or even abandoned (Guest & Martin, 2021; 

Oberauer & Lewandowsky, 2019a). Crucially, model-generated data can be examined to 

quantitatively adjudicate between theories through formal model comparison. This process 

consists of comparing how well two or more models quantitatively fit the same observed 

set of data, while accounting for potential differences in model complexity (Myung, 2000; 

Pitt, Myung, & Zhang, 2002). An example of this process in the cognitive aging literature 

was provided by Healey & Kahana (2016), who applied a variant of TCM (Lohnas, Polyn, 

& Kahana, 2015; Polyn, Norman, & Kahana, 2009) to develop a larger theory of aging 

deficits in episodic memory. These authors systematically compared models that instantiated 

differences between young and older adults in inhibition, attention, associative binding, and 

processing speed, and found that age differences in a subset of model parameters related 

to all four of these processes were necessary and jointly sufficient to account for aging 

effects on free recall performance. Formal comparison of computational models is relatively 
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straightforward, but it is more difficult to compare different verbal theories, which lack 

quantitative ways of assessing model fit, prediction, and complexity.

Model-generated data can also be employed to make formal, quantitative hypotheses for 

new experiments. Simulating data with a model could serve as a powerful basis for pre-

registering a future experiment, as this would not only allow for qualitative predictions 

(e.g., older adults are expected to perform worse than young adults in Condition A, but not 

Condition B), but also quantitative predictions (e.g., the expected magnitude of performance 

measures in each condition and age group) before any data are collected. This process could 

also assist the researcher in creating an experimental design with the goal of adjudicating 

between theories that predict maximally different patterns of performance. The ability to 

quantitatively simulate data based on a theory is a tool that is unavailable to researchers 

relying purely on verbal theories.

Current work

Despite notable exceptions, the great majority of work on cognitive aging has relied on 

verbal theories and standard inferential statistical models (Benjamin, 2010). In the current 

work, we provide an example of a generative model to investigate episodic memory in 

young and older adults in an effort to demonstrate various ways a model-based approach 

may be beneficial to research on cognitive aging.

The model we apply is a variant of TCM. We chose TCM because it is a well-established 

model of episodic memory that is able to provide a principled and mechanistic explanation 

of many behavioral findings (Lohnas, Polyn, & Kahana, 2015; Sederberg, Gershman, Polyn, 

& Norman, 2011; Sederberg, Howard, & Kahana, 2008). In addition, two studies have 

applied TCM and related models to provide compelling explanations for deficits in episodic 

memory in older adults, as described above (Healey & Kahana, 2016; Howard, Kahana, & 

Wingfield, 2006). We expand on prior work with this model in important ways. First, TCM 

has been primarily applied as a model of free recall, including in the work on aging. We 

extend the model to account for a different episodic memory task – associative recognition 

– which has been one of the most widely used paradigms in research on aging deficits 

in episodic memory (Castel & Craik, 2003; Chen & Naveh-Benjamin, 2012; Greene & 

Naveh-Benjamin, 2020; Light, Patterson, Chung, & Healy, 2004; e.g., Naveh-Benjamin, 

2000; Naveh-Benjamin, Guez, Kilb, & Reedy, 2004; Overman & Becker, 2009; Ratcliff & 

McKoon, 2015; Stephens & Overman, 2018).

We also extend TCM to implement a new learning mechanism. Most work with TCM 

has instantiated what is known as Hebbian learning (Hebb, 1949), by which a simple 

association is formed between the presented item and current state of context to the extent 

that item and context features are co-active. However, Hebbian associations can grow 

without bound when items are presented multiple times, as items become associated with 

more and more contextual features (see Gershman, Moore, Todd, Norman, & Sederberg, 

2012, for discussion). Because the associative recognition task we created contains multiple 

repetitions of items, as we describe below, we employ a different learning mechanism in 

which associations are formed based on prediction errors. Specifically, we examine the 
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possibility that the memory system makes predictions about what stimuli will be presented 

next based on learned associations with temporal context, and that learning occurs to the 

extent of a mismatch between observed and predicted stimuli. Recent work has found 

evidence of prediction error signals during human retrieval of episodic memories (Haque, 

Inati, Levey, & Zaghloul, 2020), and it has been suggested that changes in prediction-driven 

learning may play an important role in age-related memory decline (Ofen & Shing, 2013). 

In addition, work on prediction error-based reinforcement learning has suggested neural 

asymmetries between positive prediction errors, which occur when an unexpected event 

takes place, and negative prediction errors, which occur when expected events do not take 

place (Cavanagh, Frank, Klein, & Allen, 2010). In the current work, we explore whether 

asymmetries may occur between the magnitude of positive and negative prediction error 

learning in young and older adults.

More broadly, the model makes our theoretical account of the mechanisms underlying 

associative recognition mathematically transparent. We fit the model with hierarchical 

Bayesian methods, allowing estimation of group-level age differences in latent cognitive 

processes, as well as differences in these processes between individual participants. We also 

provide an example of employing model comparison techniques to test different mechanistic 

explanations, and an example of generating data to make predictions for future experimental 

manipulations. We emphasize that these examples are not meant to provide an exhaustive 

search for the best model of associative recognition or aging differences therein. Our goal is 

to provide an example of what a generative model looks like and a roadmap of some ways 

that such models may be applied to benefit research on cognitive aging. After presenting 

these examples, we close by discussing implications of this work for episodic memory and 

aging research in relation to transparency, replicability, and discovery.

Method

Participants

Eighty-two young adults (Mage = 19.8 years, SDage = 1.7, rangeage = 18 – 29) and 52 

healthy older adults (Mage = 71.5 years, SDage = 5.1, rangeage = 63 – 83) participated in the 

experiment. Four additional young adults participated but were excluded from the analysis 

because of failure to record their age. The young adults were recruited via flyers at The 

University of Virginia, and the older adults were recruited via phone and email from the 

existing participant pool of the Virginia Cognitive Aging Project (VCAP). Young adults 

received $10/hr for participating, and older adults received $50 per session, which included 

an MRI scan and other neuropsychological tests unrelated to the associative recognition task 

we focus on below. This project was approved by the Institutional Review Board of the 

University of Virginia.

Stimuli

Participants were presented with images of real-world objects. These images were part of 

a “massive memory” database of 2400 images (Brady, Konkle, Alvarez, & Oliva, 2008), 

which is publicly available (http://olivalab.mit.edu/MM/uniqueObjects.html). The collection 

of images was pruned to exclude human faces, text, and images deemed inappropriate, 

Darby and Sederberg Page 7

Psychol Aging. Author manuscript; available in PMC 2023 March 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://olivalab.mit.edu/MM/uniqueObjects.html


including weapons and religious symbols; 1996 images were included in the stimulus set. 

A total of 24 different objects were presented to the participant in each block of the task; 

the images presented in a block were selected randomly, with the constraint that images 

could not be seen in more than one block for any participant, and could not be presented 

in multiple sessions. Objects were presented to participants side-by-side on white squares 

located at the center of the screen with a grey background.

Design and Procedure

To probe episodic memory, we developed a variant of an associative recognition task. 

Typically, associative recognition tasks include a study phase, in which pairs of items are 

encoded, and a separate test phase, in which some pairs are presented intact, and others are 

recombined into new pairs (Castel & Craik, 2003; Cox & Criss, 2020; Craik, Luo, & Sakuta, 

2010; Gallo, Sullivan, Daffner, Schacter, & Budson, 2004; Greene & Naveh-Benjamin, 

2020; Hockley & Consoli, 1999; Naveh-Benjamin, 2000; Ratcliff & McKoon, 2015). In our 

variant, participants were asked to respond “old” or “new” to every presentation of a pair 

in a continuous stream of trials, without separate study and test phases (see Chen & Naveh-

Benjamin, 2012; Hockley, 1992 for other continuous variants of associative recognition). 

All items were presented in both intact and recombined pairs. In addition, intact pairs were 

presented multiple times, before and after the items were recombined, allowing for analysis 

of repetition and interference effects between different pairings, and for assessment of how 

well a prediction error-based learning mechanism could account for these effects. We refer 

to this paradigm as the continuous associative recognition (CAR) task.

On every trial of the CAR task, participants were shown a pair of object images, and were 

asked to respond whether the pair was “new” or “old.” A pair was considered new either 

if the objects were novel, or if they were repeated, but in a novel pairing; a pair was old 

only if the objects had been presented previously in the same pairing. There were four types 

of pairs: New (the first presentation of two new objects), Intact 1 (the first repetition of the 

same pair), Intact 2 (the second repetition of the pair), and Recombined (a new pair made 

up of objects from two different previously presented pairs). Each object was presented 

four times, once for each pair type, such that each object was repeated in both intact and 

recombined pairs. See Figure 1 for a visualization of each pair type.

As in other associative recognition tasks, the most critical manipulation in this task is the 

distinction between Recombined and repeated Intact pairs. In both cases, the presented 

items have been seen previously, and so are familiar to the participant. Despite this, the 

participant’s task is to determine whether the two familiar items were previously presented 

in the same pair, as in Intact 1 and Intact 2 pairs, or in different pairs, as in Recombined 

pairs. This distinction requires associative memory for the specific pairings of objects.

The point at which a Recombined pair was presented varied across three within-subject 

conditions (Table 1). In the Weak condition, recombined objects had each been seen once 

(i.e., in New pairs), whereas in the Medium and Strong conditions, recombined objects had 

been seen two or three times, respectively, in the initial pairings. The strength manipulation 

was inspired by prior work suggesting that young adults may make fewer false alarms 

to Recombined pairs following multiple repetitions of the original pairings, whereas older 
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adults may make comparable or even greater numbers of false alarms under those conditions 

(Gallo, Sullivan, Daffner, Schacter, & Budson, 2004; Light, Patterson, Chung, & Healy, 

2004; Overman & Becker, 2009). Thus, we expected that false alarms would decrease from 

the Weak to the Strong condition in young adults, but not older adults. We were also 

interested in how the recombined pairs would affect memory for repeated pairs. Given that 

items that were recombined are later seen again in their initial intact pairings in the Weak 

and Medium conditions, we expected that memory for Intact 1 pairs in the Weak condition 

and Intact 2 pairs in the Medium condition would be reduced due to interference from the 

Recombined pairs (Darby & Sloutsky, 2015; Postman & Underwood, 1973).

On each trial, a pair of objects was presented for 2.5 seconds. If the participant responded 

before this amount of time, a black rectangle appeared behind both objects to indicate that a 

response had been made. Whether or not a participant made a response in 2.5 seconds, the 

objects disappeared after that time before the start of the next trial. The screen was empty 

during the interstimulus interval, which was jittered between 0.5 and 1.0 s.

Young adults completed between two and four blocks of the CAR task in a single session 

(most participants completed four, with a few exceptions due to computer or experimenter 

error). Older adults completed between two and five blocks across either one or two sessions 

(most completed two blocks per session). Each block of the task contained 48 trials (four 

trials for each of the 12 conditions listed in Table 1), and lasted approximately 2.5 minutes. 

In addition to the CAR task, all participants completed other tasks from a larger cognitive 

battery (Weichart et al., 2021), which we do not address in the current manuscript. At 

least one intervening task was presented between each block of the CAR task. In addition, 

the objects presented in the CAR task did not repeat across sessions or blocks, and in all 

analyses below we make the simplifying assumption that performance in each block was 

independent.

Results

To avoid including data from participants who did not understand or were unable to perform 

the CAR task, or were not paying attention, we assessed participants’ performance in each 

block separately. We excluded blocks in which overall accuracy was not above chance 

(50%). We also excluded blocks in which responses were severely biased toward either 

“new” or “old” responses; to do so, we required that the percentage of “old” responses be 

significantly below 90% and significantly above 10%, as determined by one-tailed binomial 

tests. These criteria resulted in exclusion of 0.30% of data from young adults, and 4.25% 

of data from older adults. All participants performed at least one block that qualified for 

analysis (Myoung = 3.9 blocks; Molder = 3.5 blocks).

In addition, we excluded individual trials from the analysis that (1) we deemed too fast 

to be deliberate (i.e., faster than 0.35 s), which resulted in exclusion of 1.0% of trials for 

young adults, and 0.3% of trials for older adults, or (2) were outliers based on RTs. Outliers 

were detected for each participant separately by first applying a Box-Cox transformation to 

all RTs for that participant, in order to approximate a normal distribution. Then, the mean 

and standard deviation of the transformed distribution were calculated, and any trials with 
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a response time (RT) greater than three standard deviations away from the mean in either 

direction were discarded. This process was repeated until no outliers were detected for that 

participant. This resulted in exclusion of 0.1% of the remaining trials for young adults, and 

0.1% of trials for older adults.

We took a two-pronged approach to analyze the data. We performed conventional regression 

models on the responses and RTs, as well as a generative computational model. For 

both approaches, we fit the models to the data with hierarchical Bayesian techniques, 

which simultaneously estimated group-level hyper-parameters and individual participant-

level parameters. To examine potential differences between age groups, we focused our 

analyses on the group-level hyper-parameters. For each hyper-parameter, we calculated 

the 95% highest posterior density (HPD) of the posterior distribution, reflecting the most 

probable parameter values. To assess age differences in parameters, we applied an index 

of distributional similarity based on probability density function estimates of the hyper-

parameter posteriors (Pastore & Calcagnì, 2019). This index, η, may be thought of as 

the proportion of overlapping regions compared to the total area of the two distributions, 

such that η = 1 would indicate identical distributions, and η = 0 would indicate completely 

non-overlapping distributions. Although this is a continuous measure, for ease of exposition 

we consider η < .05 to constitute strong evidence of a difference in parameters between age 

groups.

Measures of choices (hits and false alarms) and RTs for each task condition in young and 

older adults are presented in Figure 2. To assess performance with standard statistics, we 

performed a series of hierarchical Bayesian regression models. The methods and results 

of these analyses are presented in the Supplementary Material. Overall, the results suggest 

that older adults’ responses in the CAR task were generally slower and less accurate, 

while replicating previous work demonstrating older adults’ greater difficulty discriminating 

between Intact and Recombined pairs (Castel & Craik, 2003; Naveh-Benjamin, 2000). We 

also found evidence of a repetition effect resulting in higher hit rates to Intact 2 compared 

to Intact 1 pairs, in both young and older adults, as well as interference effects in both age 

groups resulting in lower hit rates for Intact pairs after they were recombined (specifically, 

Weak Intact 1 and Medium Intact 2 pairs). However, standard statistical estimation of these 

effects provide limited insights into the cognitive processes underlying task performance and 

how these processes may differ due to age. Many mechanistic questions remain unanswered, 

such as, what information is associated together, how does this learning transpire, how do 

item repetitions affect encoding processes, and how does age affect these mechanisms? 

To provide more transparent and mathematically explicit hypotheses about these latent 

processes, we developed a computational model.

Computational model

We now provide a conceptual overview of the mechanisms of the model, the mathematical 

details of which are presented in the Supplemental Material. Our model is a variant of 

TCM (Howard & Kahana, 2002; Sederberg, Gershman, Polyn, & Norman, 2011; Sederberg, 

Howard, & Kahana, 2008), in which memory retrieval is tied to states of temporal context. 

Temporal context is primarily made up of features corresponding to the items presented 
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during the CAR task, which become activated when an item is initially presented in the task. 

This activation then decays as other items are presented, such that context changes across the 

course of the task. The extent to which the current context decays when a pair of items is 

presented is modulated by a change rate parameter ρ, as well as the extent to which the items 

are already activated in context (see the Supplemental Material for details).

Associative learning takes place by binding the pair of items to the state of context when the 

pair was presented; these associations are stored in a matrix M. Item-context binding occurs 

via prediction error learning, a process thought to play a key role in episodic memory (Bar, 

2009; Mizumori, 2013), and aging-related changes in memory and other cognitive processes 

(Federmeier, Kutas, & Schul, 2010; Ofen & Shing, 2013; Samanez-Larkin, Worthy, Mata, 

McClure, & Knutson, 2014). The idea is that participants predict what items are likely 

to be presented on each trial based on past learning, and associations are modified to 

the extent that these predictions are incorrect. Specifically, the model uses M to make a 

prediction of what items it expects based on the current state of context. These predictions 

are then compared to the items that are actually presented on that trial. Positive prediction 

error learning increases the association between current context and the presented items 

to the extent that these items could not be predicted by the model. By contrast, negative 

prediction error learning decreases the association between current context and items that 

were predicted but not actually presented. A free parameter α controls the extent of 

prediction error learning overall. A second parameter κ controls the extent of negative 

prediction error learning as a proportion of α, such that if κ = 1 positive and negative 

prediction error learning are symmetric, whereas κ < 1 would indicate greater positive 

prediction error learning, and κ > 1 would indicate greater negative prediction error learning.

The model assesses the activation of items in context and the item-context associations 

stored in M to estimate the “strengths” of memory supporting the new versus old choice 

for each presented pair of items. Some strength supporting an “old” response is provided 

by familiarity with each item, estimated as the extent of the item’s activation in the 

current state of temporal context. The familiarity signal is constrained by a parameter 

λ controlling the maximal or asymptotic level of familiarity, as well as a parameter 

τ controlling the sensitivity of familiarity strength to differences in item activations in 

context due to factors like recency. The model also probes associations learned in M by 

retrieving the states of context previously bound to each of the two objects. The extent 

of match (or overlap) of the two retrieved contexts provides evidence that the pair is 

old. In addition, the mismatch (or difference) between the contexts provides evidence that 

the pair is new. These match and mismatch mechanisms are analogous to the idea of 

recall-to-accept and recall-to-reject processes in associative recognition (Rotello & Heit, 

2000). Recall-to-accept has been proposed as a process that contributes evidence that a pair 

is old when retrieved associations match the presented pairing, whereas a recall-to-reject 

process has been proposed to contribute evidence that a pair is “new” when the presented 

pairing is different from the associations stored in memory. In the current model, the extent 

of overlap between the contexts retrieved from the presented items provides evidence for 

“old,” whereas the extent to which they are different provides evidence for “new.” Given 

suggestions that older adults, and especially those with Alzheimer’s disease, may be less 
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proficient at recall-to-reject processes (Cohn, Emrich, & Moscovitch, 2008; Gallo, Sullivan, 

Daffner, Schacter, & Budson, 2004), we allowed the context mismatch strengths to be scaled 

by a free parameter γ. Finally, the model estimates a baseline level of novelty-based strength 

supporting a “new” response with a free parameter ν.

For every trial of the experiment, these sources of strength (familiarity, match, mismatch, 

and baseline novelty strength) are combined into an overall memory strength, which is then 

passed to a decision-making component that simulates a response (“new” or “old”) and 

RT for that trial. This decision-making component is instantiated as a sequential sampling 

model (Navarro & Fuss, 2009; Ratcliff & McKoon, 2008; Stone, 1960), in which evidence 

accumulates across time toward a threshold for a “new” or “old” response, determined 

by a parameter a, whereas a potential bias toward “new” or “old” responses is estimated 

by a parameter w. Whether the accumulated evidence reaches the threshold for “new” or 

“old” first determines which response is made by the model, and the time required to 

reach one of these thresholds determines the decision time. This decision time is added to 

an estimate of time required for perceptuomotor processes unrelated to the decision itself, 

called non-decision time, determined by parameter t0. Sequential sampling models have 

been applied in a number of studies of cognitive aging, and typically provide evidence of a 

higher threshold for evidence accumulation in older adults (i.e., a in the current model), as 

well as longer non-decision times (t0; see Theisen, Lerche, von Krause, & Voss, 2020 for 

a meta-analysis). A schematic of the processes in our model is presented in Figure 3; we 

provide the mathematical implementation of these processes in the Supplemental Material.

Bayesian model-fitting.—Most computational models, including ours, involve free 

parameters that must be “fit” to observed data, which is akin to turning knobs to reduce 

or heighten effects of different cognitive mechanisms. One popular method for fitting the 

parameters of a model is maximum likelihood estimation (Myung, 2003), which attempts 

to find the single set of parameter values that best fit a set of observed data. However, this 

approach does not allow for assessment of uncertainty, as each parameter is estimated as 

a single value. Bayesian methodologies, by contrast, enable estimation of entire posterior 

distributions of parameter values that could have generated the observed data. This allows 

for proper assessment of uncertainty, which is an invaluable feature because it provides 

information about how confident researchers should be in the parameter estimates. We 

therefore chose to fit our model to the observed data with Bayesian techniques implemented 

within the RunDEMC Python library (https://github.com/compmem/RunDEMC). By fitting 

the model hierarchically we were able to estimate age group-level parameter distributions 

while accounting for participant-level variability within each group.

We fit the model to all trial-level choices and RTs simultaneously. The model contained 

a total of ten free parameters, which are summarized in Table 2. We fit all of the model 

parameters to each participant’s data hierarchically, with the exception of t0, which we fit 

independently for each participant, as this parameter was constrained by each participant’s 

minimum RT. The other subject-level parameters were constrained by hyper-parameters 

governing the mean and standard deviation across participants within each age group. 

To assess age differences in latent mechanisms we compared the mean hyper-parameters 
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between age groups. See the Supplemental Material for details on model priors and hyper-

priors for each parameter.

Computational model fit.—To assess model fit, we first computed the maximum a 

posteriori, or MAP, estimates of each parameter, for each participant. We employed these 

MAP estimates to generate choices and RTs for every trial for every participant. If the model 

is able to capture the latent cognitive processes underlying participants’ performance on the 

CAR task, there should be a close correspondence between model-predicted and observed 

performance.

Figure 2 shows a close qualitative fit between the choices and RTs in each condition of 

the CAR task. We also quantitatively assessed model fit in terms of its ability to capture 

individuals’ overall performance, taking into account both accuracy and RTs. To assess both 

aspects of performance simultaneously, we calculated each participant’s rate correct score, 

or RCS (Woltz & Was, 2006), which is calculated as:

RCS = c
∑RT ,

where c is the total number of correct responses in the task, which is divided by the sum 

of all RTs (in seconds). This metric may be interpreted as the number of correct responses 

per second of effort, and has performed favorably in studies comparing different speed-

accuracy measures (Vandierendonck, 2017). To assess how well the model could account 

for participants’ overall performance, we calculated each participant’s overall RCS for 

both observed and model-generated performance. Figure 4 shows the correlations between 

observed and model-predicted RCS values for young and older adults (rs >= .93). We also 

calculated d′ for the observed as well as model-generated performance: d′ = z(H) – z(F), 

where H is the hit rate averaged across all Intact 1 and Intact 2 pairs, F is the false alarm 

rate across all Recombined pairs, and z(.) designates the inverse of the Gaussian cumulative 

distribution function. This metric estimates the ability of the participant to discriminate 

“old” responses between repeated Intact and Recombined pairs. Similar to RCS, there was 

high correspondence between the observed and model-predicted d′ scores (rs >= .94). We 

conclude that the model was able to capture overall performance on the CAR task very well 

for both age groups.

Given that the model provides an adequate fit to the data, how can a generative 

computational model provide greater insights into effects of aging, while supporting 

transparency, replicability, and scientific discovery? We argue that aging research could 

particularly benefit from three aspects of modeling: (1) examining hierarchical hyper-

parameter distributions to gain insight into cognitive mechanisms affected by aging, (2) 

formally comparing different hypothesized mechanisms via model comparison techniques, 

and (3) generating data independent from the observed data used to fit the model in order 

to either validate the model or make formal hypotheses for future experiments. We provide 

examples of these approaches below.
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Age group comparisons.—A central goal of this work was to decompose observed 

performance into latent cognitive mechanisms via model parameters. With a hierarchical 

model-fitting approach, we could compare the posterior hyper-parameter distributions to 

examine differences in hypothesized latent processes between age groups. We expected 

to find the strongest evidence of age differences in parameters governing learning of 

associations between items and context. Figure 5 presents the posterior distributions of the 

hyper-parameters governing the mean parameter values for each age group, along with η, a 

measure of the overlap between distributions. There was strong evidence of age differences 

for a number of parameters. First, older adults showed reduced item–context associative 

learning, as estimated by the α parameter, η < .001, which is consistent with prior studies 

applying TCM to examine age differences in free recall (Healey & Kahana, 2016; Howard, 

Kahana, & Wingfield, 2006). Interestingly, although young adults’ item-context binding 

was stronger overall, the parameter controlling negative prediction error learning, κ, was 

higher in older adults than young adults (η = .042). This suggests that older adults’ learning 

was characterized more by forgetting associations between context and items that were 

incorrectly predicted based on prior learning compared to young adults’ learning. This age 

difference was unexpected, and should be interpreted with caution, although it does suggest 

an interesting potential mechanistic source of age differences between young and older 

adults. We also found evidence that young adults were more sensitive to the mismatch 

between retrieved contexts, as estimated with the parameter γ (η = .005), which may be 

thought of as a recall-to-reject mechanism (Rotello & Heit, 2000), as discussed above. 

Therefore, these results support prior work hypothesizing that older adults may have a deficit 

in recall-to-reject processes (Cohn, Emrich, & Moscovitch, 2008).

Additionally, we found evidence that memory strengths in general were higher in young 

adults, including the maximum level of familiarity, λ (η < .001), and the baseline novelty 

strength supporting a “new” response, ν (η < .001). Consistent with prior work (Theisen, 

Lerche, von Krause, & Voss, 2020), we also found evidence of a higher decision threshold 

in older adults, a, η = .028, suggesting that older adults required more memory-driven 

evidence to make a decision than did young adults. Despite these differences between age 

groups, we found little evidence of differences in rate of contextual change, estimated by 

parameter ρ (η = .372), differences in sensitivity to variations in familiarity (e.g., due to 

recency), estimated by τ (η = .189), or differences in decision bias, estimated by w(η = .589). 
Because we did not fit the t0 parameter hierarchically, instead allowing the parameter to vary 

independently between all participants, we do not make inferences about age differences 

in non-decision time. Overall, these results point to a number of age-related differences 

in cognitive processes, including differences in associative learning, with weaker overall 

item-context binding, but proportionally stronger negative prediction error learning, in older 

adults. At the same time, the model results point to processes that were comparable between 

age groups, including context change rate, changes in familiarity due to recency, and old-

new decision bias.

The memory and decision-making processes these parameters represent provide evidence of 

mechanistically interpretable differences between young and older adults. By contrast, the 

regression models presented in the Supplemental Material provide evidence of differences 
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in performance between the age groups, but require additional inferences on the part of 

the researcher to provide mechanistic insights. The insights that we might gain from those 

statistics, such that older adults are generally slower and less accurate, and even that older 

adults have greater difficulty with associative memory (as could be inferred from differences 

in the d′ statistic between Intact and Overlapping pairs), provide very little insight into why 
these effects were found.

Individual participant comparisons.—It is generally very difficult to make inferences 

about differences between individuals’ task performance because conventional metrics such 

as task accuracy are typically summarized by a single number, with no ability to assess 

uncertainty. However, Bayesian approaches allow us to gain insight into the uncertainty 

of model estimates through the posterior distributions of parameters. As a result, we can 

make comparisons between parameter estimates for individuals and make inferences about 

differences between participants in the mechanisms generating the observed behaviors.

Recall that we can generate data with our model, given a set of parameter values. Because 

we have entire posterior distributions for the parameters, we can generate data using many 

parameter estimates drawn from the posterior distributions for each participant, creating a 

distribution of predicted overall performance scores, called a posterior predictive distribution 

(PPD). The PPD estimates how the participant would be expected to perform given the 

model and uncertainty in the parameter estimates, were the participant to perform the 

identical task many times. In the upper-left (boxed) plot of Figure 6, we present the 

observed d′ as dots, along with the corresponding PPDs as split-violin plots, for four sample 

participants: an older adult and a young adult with low overall performance, and a different 

older adult and young adult with high performance. Within each of these dyads, the two 

participants performed similarly, with PPDs almost entirely overlapping, whereas across the 

two dyads, performance was quite different, with little overlap between PPDs. Critically, we 

can examine the posterior distributions of each model parameter to estimate the cognitive 

processes that may have differed (or not differed) between individuals.

Despite the very similar performance within each low- and high-performing dyad, clear 

differences emerge in model parameters. Values of the item-context association (α) 

parameter were consistently higher in the high-performing dyad than the low-performing 

dyad. In these particular participants, values of the maximum item familiarity (λ) parameters 

tended to be higher in the two young participants than the two older participants, whereas 

the the decision threshold (a) and non-decision time (t0) tended to be higher in the older 

participants, despite very similar overall performance within the two participant dyads. This 

example illustrates the power of computational models coupled with Bayesian approaches to 

make inferences about latent processes, even in individual participants. This approach could 

be particularly useful in case studies or clinical settings in which cognitive mechanisms 

within the individual are of interest, or could be applied to track longitudinal changes within 

individuals as they age, identifying new cognitive aging phenotypes that summary statistics 

are not sensitive enough to detect.

Model comparisons.—We have presented a model that is able to account for age 

differences in performance on the CAR task, but there could be other models that account 
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for these differences as well or better by applying different mechanisms than the model 

just described. Theoretical progress through computational modeling depends to a large 

degree on a process of model comparison. In what follows, we describe two variants of 

the prediction error learning mechanisms that could be reasonably supposed to underlie 

performance on this task.

Associative learning in our variant of TCM involves prediction error learning, as described 

above. This process includes positive prediction error learning, in which the presented items 

are bound to the current context to the extent that those items could not be predicted from 

associations already formed with features in context. Perhaps a more controversial aspect of 

this learning is negative prediction error learning, in which features that were predicted, but 

are not presented in the given pair of items, are unbound from features to the extent they 

are active in context. This may be considered a mechanism for unlearning, a concept that 

is often maligned in theories of memory, which often prefer to ascribe forgetting of learned 

information to interference from other learned information, rather than unlearning of the 

information itself (Slamecka, 1966).

One possibility is that negative prediction error learning is not necessary: perhaps 

participants learn based only on positive prediction errors, without the unlearning process 

based on negative prediction errors. To assess this possibility we simply fixed the negative 

prediction error learning rate parameter κ to zero and otherwise left the model intact. A 

second possibility is that negative prediction error learning does occur, but that positive and 

negative prediction error learning are symmetric, such that it is unnecessary to allow for a 

second learning rate (κ) in our model. We assessed this possibility by fixing κ to 1.

Figure S4 presents the fit of these alternative models to the observed data. The model 

fixing κ to 0 over-predicted false alarms to Recombined pairs, and predicted higher false 

alarm rates for higher strength conditions. Inspection of the model-generated sources of 

memory strength indicated that without negative prediction error learning, there was a strong 

retrieved context match signal for recombined pairs, which increased with more repetitions 

of the intact pairings. In addition, the modified model was unable to sufficiently capture 

interference effects (i.e., the drop in performance for Weak Intact 1 compared to the other 

Intact 1 conditions and the drop for Medium compared to Weak and Strong Intact 2 pairs), 

suggesting that negative prediction error learning was necessary in order to account for these 

effects. This was somewhat surprising, as we expected interference between non-matching 

contexts due to recombining the pairs would likely be sufficient to explain the drop in 

performance. Although fixing κ to zero resulted in a qualitatively poor fit, the model fixing 

κ to 1 qualitatively fit the data relatively well, as shown in Figure S4.

To assess the fit of these models more quantitatively, we calculated the Bayesian predictive 

information criterion (BPIC), a metric of model fit that accounts for differences in the 

number of parameters, for each model and each participant. Models with lower BPIC values 

are preferred. For each participant, we mean-centered the BPIC values for the three models, 

including the full model, and found that the centered BPIC values were on average lowest 

for the full model in young adults (MBPIC = −12.7), with the full model preferred for 

69.5% of participants, followed by the model with κ set to 1 (MBPIC = −9.1), which best 
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accounted for the performance of 26.8% of participants. Interestingly, however, the same 

was not true of older adults, 92.3% of whom were best fit by the model with κ set to 1 

(MBPIC = −8.8), with only 1.9% of participants best fit by the full model (MBPIC = −4.6). 

The model without negative prediction error learning, such that κ was set to zero, performed 

poorly for both young (MBPIC = 21.8), and older adults (MBPIC = 13.4). Overall, these 

results suggest that negative prediction error learning was necessary to fit the data, given the 

other mechanisms of the model. For young adults, prediction error learning was asymmetric, 

such that positive prediction error learning was stronger than negative prediction error 

learning, whereas in older adults the two learning processes were symmetric. This pattern 

of differential development of positive and negative prediction error learning would be very 

difficult to conclude without a generative mechanistic model, although we emphasize the 

possibility that other model frameworks or other variants of TCM could fit the data as well 

or better than the models we have presented.

Novel model-generated hypotheses.—An important advantage of a generative model 

is that it allows one to make precise quantitative predictions about independent data. 

This can be an important way to validate the model, if a model is fit to one set of 

data and then is able to accurately account for performance on a different set of data, 

particularly if the independent data is from a different task (for an example, see Healey 

and Kahana’s, 2016, demonstration of fitting a model to free recall data in young and older 

adults and accurately predicting the same individuals’ performance on a recognition task). 

This process can also be applied to generate formal hypotheses for future experiments. 

In other words, by generating data for a new experiment, one is able to qualitatively and 

quantitatively hypothesize what the results will be, according to the theory implemented 

in the computational model, which one could use to design a task that is better able to 

distinguish between alternative models.

We illustrate this process by examining model predictions for a hypothetical experiment, 

in which Recombined pairs are repeated a second time. In this case, the first time 

a Recombined pair is seen, the correct response is “new,” whereas upon the second 

presentation the correct response is “old.” To simplify the design, we removed the second 

repetition of intact pairs (i.e., Intact 2 pairs), and all trials in the Strong condition (see 

Table 3). To examine predictions of the model for this design, we created 10 lists of item 

pairs according to the design, and simulated data for each of these lists according to the 

best-fitting model parameters for every young and older participant in our sample.

The model-generated predictions for young and older adults for this hypothetical experiment 

are presented in Figure 7. Several general observations may be made. First, the model was 

more likely to identify the Recombined pairs as “old” the second time they were observed, 

as we expected, since these pairs were indeed repeated. However, the model was less likely 

to correctly identify a repeated Recombined pair as “old” compared to a repeated Intact pair, 

especially in the Medium condition. This is because the Intact pairs were always observed 

at least once (as New pairs) before the Recombined pairs, such that contexts reinstated 

from Recombined pairs, repeated or not, would be partially mismatching, and therefore 

more likely to be judged as “new.” In addition, the model predicts an effect of the strength 

conditions, such that hit rates are lowest for repeated Recombined 2 pairs in the Medium 
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condition, at least in young adults, because the Intact pairs were associated with more states 

of temporal context prior to being recombined, which generates a strong mismatch signal. 

Finally, the model predicts a very strong interference effect for Weak Intact pairs, compared 

to Medium Intact pairs, especially for young adults. This is because at the time these pairs 

are presented, the Intact pair would have only been seen once, whereas the Recombined 

pairs would have been seen twice, generating strong interference. The model predicts greater 

interference for these pairs in young adults, due to the higher values of context mismatch 

sensitivity parameter γ. These model-generated data are, of course, only predictions, and it 

remains to be seen whether performing the experiment would result in the predicted patterns.

Discussion

In this work, we have provided examples of generative computational modeling approaches 

that we believe could facilitate greater transparency, replicability, and discovery in cognitive 

aging research. To do so, we applied a model to decompose associative recognition 

performance of young and older adults into latent mechanisms of episodic memory and 

decision-making. This approach made our hypotheses and assumptions mathematically 

transparent, with no need for other researchers to make subjective inferences about 

what is meant by a verbal theory’s explanation of the mechanisms proposed to underlie 

performance. We fit the model with hierarchical Bayesian techniques, allowing examination 

of differences in parameters between age groups and individual participants, such that we 

could make inferences about latent cognitive processes underlying performance and how 

they may be affected by aging. We also compared the model with variants implementing 

alternative assumptions about associative learning processes. Finally, we demonstrated the 

application of a generative model to simulate data for a hypothetical new experiment, 

making quantitative predictions of future data we would expect to observe from young 

and older adults. In what follows, we discuss these approaches and how a generative 

computational modeling framework could increase transparency, replicability, and discovery 

in cognitive aging research.

We have argued that a computational model provides greater transparency and mechanistic 

specificity to theory than is typically provided by purely verbal accounts. The model 

we applied as an example is a variant of TCM, a well-established model of episodic 

memory that instantiates encoding and retrieval mechanisms that are centered around a 

representation of context that varies across time as items are presented in a memory task. 

These mechanisms are defined mathematically and controlled by parameters, allowing 

for estimation of how latent processes may differ between individuals and age groups. 

Therefore, the model goes beyond demonstrating that young and older adults differ in 

episodic memory (as has been demonstrated many times, e.g. Castel & Craik, 2003; Chen 

& Naveh-Benjamin, 2012; Gallo, Sullivan, Daffner, Schacter, & Budson, 2004; Golomb, 

Peelle, Addis, Kahana, & Wingfield, 2008; Healey & Kahana, 2016; Howard, Kahana, 

& Wingfield, 2006; Li, Naveh-Benjamin, & Lindenberger, 2005; Naveh-Benjamin, 2000; 

Naveh-Benjamin, Guez, Kilb, & Reedy, 2004; Oberauer & Lewandowsky, 2019b; Old & 

Naveh-Benjamin, 2008; Ratcliff & McKoon, 2015), and provides a mechanistic explanation 

of why they differ.
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The model’s explanation of why young and older adults’ performance differs on episodic 

memory, as measured by the CAR task, hinges on contextually mediated associative learning 

and retrieval. In our TCM-based model, associations are not formed directly between items 

within a pair, but between individual items and the state of context when the items are 

presented. However, because each item was presented multiple times over the course of 

the CAR task, we did not instantiate Hebbian associations between items and context, 

as in a number of prior versions of TCM, as this could result in unbounded associative 

strengths as items are repeated (see Gershman, Moore, Todd, Norman, & Sederberg, 2012, 

for discussion). In the current work, we explored a different mechanism: prediction error 

learning, which only modifies associations to the extent of discrepancies between what items 

the model predicted based on the current context and the actually presented items. Others 

have suggested that predictions and prediction errors play important roles in learning and 

memory (Haque, Inati, Levey, & Zaghloul, 2020), and researchers have suggested that aging 

differences in prediction error learning could play a role in changes in memory (Ofen & 

Shing, 2013), as well as processes like reinforcement learning (Samanez-Larkin, Worthy, 

Mata, McClure, & Knutson, 2014) and language processing (Federmeier, Kutas, & Schul, 

2010).

The current work explored effects of aging on both positive and negative prediction error 

learning, investigations that would not have been straightforward without a computational 

model. When we allowed parameters for both kinds of learning to vary, we found 

evidence of stronger positive prediction error learning in young adults than in aging adults. 

Interestingly, however, we also found that older adults exhibited evidence of proportionally 

greater negative prediction error learning. This suggests that while young adults were 

better able to learn new associations based on the presence of unexpected items, older 

adults were more likely to unlearn associations between contextual features and items 

that were predicted but not presented. In addition, through formal model comparison 

we found evidence that negative prediction error learning was a necessary mechanism 

to account for the data of both age groups, given the other processes of the model. 

These results are suggestive that prediction error learning may play an important role 

in associative recognition, at least in situations like the CAR task in which items are 

repeated during learning. The results also suggest the exciting possibility that positive 

and negative components of prediction error learning may differ across development, 

with negative prediction error having a greater impact on memory in aging adults than 

in young adults. Although others have suggested that prediction is an integral aspect of 

episodic memory across the lifespan (Ofen & Shing, 2013), we are unaware of other work 

suggesting potential developmental dissociations between positive and negative prediction 

error learning in episodic memory. The model-based pattern of aging effects on prediction 

error learning is intriguing and suggests avenues for future research. However, the estimation 

of proportionally stronger negative prediction error learning in older adults was not expected 

a priori, and we emphasize that caution is needed in interpreting these results.

In addition, we acknowledge the possibility that models employing other associative 

mechanisms could capture the pattern of observed results in our task as well or better 

than the model we have presented here. A clear advantage of computational models over 

verbal theories is that computational models can be quantitatively compared with formal 
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model comparison techniques. We demonstrated the application of such techniques in the 

current work to assess different ways that prediction error learning could be implemented. 

Beyond these, there may be other variants of TCM that could capture the results with 

alternative mechanisms of item-context binding. It is also possible that models of associative 

recognition that are not based on TCM could account well for the currently presented 

data. For example, most models of associative recognition instantiate direct associations or 

conjunctions formed between the items in each pair (Gillund & Shiffrin, 1984; Hintzman, 

1984; Li, Naveh-Benjamin, & Lindenberger, 2005), unlike the indirect associations between 

items and context in TCM. For example, Cox and Criss (2020) recently presented an 

associative recognition model in which conjunctions of paired items are encoded slowly in 

working memory based on features of each separate item, which are encoded more rapidly. 

These working memory representations are stored in long-term memory, and retrieval is 

a process of comparing representations of tested pairs to all representations stored in long-

term memory. Although neither TCM nor the model of Cox and Criss were specifically 

designed to investigate aging differences, comparing the ability of these models to account 

for CAR task performance and age differences therein would be an interesting avenue of 

future research.

Some computational models of associative recognition have been proposed specifically 

to account for effects of aging. A neural network model by Li, Naveh-Benjamin and 

Lindenberger (2005) was designed to provide a neuromodulatory instantiation of the 

associative deficit account, which proposes that aging results in greater impairments in 

associative compared to item-based memory. In this model, associations are formed between 

features within each item, and across each item in a pair. Aging is modeled by varying the 

distinctiveness of internal representations, such that representations are less discriminable 

in simulations of older adults, which affects associative binding between items to a greater 

degree than memory for individual items. An alternative model was proposed by Benjamin 

(2010), who suggested that older adults do not have a deficit that is selective to associative 

memory per se, but instead have a global deficit in memory fidelity, such that all memory 

representations are generally more sparse and less valid in older adults. Interestingly, this 

model (the density of representations yields age-related dissociations model, or DRYAD) 

makes no distinction between item and associative information at all. Smyth and Naveh-

Benjamin debated with Benjamin in an exchange in Psychology and Aging on whether older 

adults’ memory deficits should be considered global or specific to associative aspects of 

memory (Benjamin, 2016; Naveh-Benjamin & Smyth, 2016; Smyth & Naveh-Benjamin, 

2016). This debate has not been settled in a satisfactory way, and we do not attempt to do 

so here. TCM instantiates explicit associations between items and context, which is perhaps 

more conceptually compatible with an associative deficit account. Our current model is 

not well-suited to examine the potential age differences in representations proposed by 

DRYAD, as the representations that we instantiated are quite simple. However, it would 

be possible to explore potential age effects on representations within the TCM framework 

in the future. As we have noted, an advantage of computational modeling is the ability 

to quantitatively compare different theories, and an exciting avenue of future work is to 

formally compare models implementing aging deficits in different ways to iterate toward a 

better understanding of the mechanistic sources of behavioral deficits.
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In addition to conducting model comparison, an important way for the field to better 

understand latent cognitive processes and how they change due to aging is to assess how 

well models can provide an explanation of performance across multiple tasks. Although 

our model was able to account for performance on the CAR task, a stronger test of the 

model would be to assess how well it could also account for young and older adults’ 

performance on a variety of other memory tasks like item recognition or free recall 

(see Healey & Kahana, 2016 for a demonstration of fitting item recognition performance 

with a different TCM-based model of free recall). This is especially important as effects 

of aging on performance tend to vary a great deal between paradigms (with greater 

deficits on associative compared to item-based tasks, for example), such that models of 

episodic memory and effects of aging therein should be able to provide an explanation of 

performance on a variety of paradigms.

In this work, we have focused on benefits of computational modeling to cognitive aging 

research in terms of theory development, such as how generative models provide theoretical 

transparency, mechanistic specificity, and the ability to formally compare competing models. 

An additional benefit of modeling may be to increase the replicability of psychological 

findings. Some researchers have argued that the field’s difficulty with replication may be 

due to weak links between a psychological theory and the experimental hypotheses that are 

tested (Oberauer & Lewandowsky, 2019a; P. L. Smith & Little, 2018). Theories provide 

a systematic and experimentally supported framework to understand cognition, and, as 

a result, hypotheses that are derived from a theory already have support from our prior 

understanding of neurocognitive processes. Hypotheses that are more exploratory, without 

strong links to a theory, lack this support. As a result, statistically significant results of 

more exploratory studies may be more likely to be spurious, resulting in replication failures 

(see Oberauer & Lewandowsky, 2019a for a systematic and quantitative approach to this 

issue). Computational models make specific claims about cognitive processes, as well as 

quantitative hypotheses about expected results given a set of parameters and experimental 

design. In addition, established models like TCM have been strongly supported by past 

findings. As a result, designing experiments and making hypotheses based on computational 

models may be a way to improve replicability. Although we did not directly investigate 

replicability in the current work, we suggest that more widespread use of computational 

modeling may be a way to improve replicability in cognitive aging research, and encourage 

future research to investigate this possibility systematically.

Limitations and alternative approaches

While there are many strengths of computational modeling, one limitation of this endeavor 

is that every model is necessarily “wrong” to some extent (Box, 1976), just as a map could 

never be a perfect representation of a geographical area. A model attempts to provide a 

useful simplification of the brain’s mechanisms underlying observable behavior, but it is 

important to remember that simplifications have necessarily been made (McClelland, 2009). 

In addition, since latent processes are not observable, it is impossible to directly verify that 

a modeled process exists in the brain, although the recent emergence of joint modeling 

approaches show promise for helping researchers constrain computational theories with both 

behavior and neural activity (Palestro et al., 2018; Turner, Rodriguez, Norcia, McClure, & 
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Steyvers, 2016; Turner, Sederberg, Brown, & Steyvers, 2013). Even in the absence of neural 

data, we argue that because generative models provide precise, quantitative predictions about 

behavior, which can be formally compared between different models, it is possible to iterate 

toward more and more useful approximations of the computations taking place in the brain 

and how they differ due to aging.

Relatedly, it is important to bear in mind that the interpretation of parameter differences 

between young and older adults depends in part on the specification of mechanisms in 

the model. Modifying the mechanisms of the model will likely lead to changes in how 

parameters act and interact, which can have an effect on how model results are interpreted. 

An important advantage of model comparison, however, is that it is possible to test different 

models to assess what model, and by extension what interpretation of model parameters, is 

best able to account for the data.

We also note that while we have focused on generative computational models in this 

paper, there are alternative ways to address mechanistic questions. One approach is to 

apply measurement models, which are informed by a theory but, in contrast to generative 

models, do not attempt to directly instantiate explanatory mechanisms. These can be very 

helpful tools, particularly in terms of estimating latent processes via parameters. A recent 

example of this was provided by Oberauer and Lewandowsky (2019b), who developed 

a series of simple measurement models to estimate contributions of different facets of 

working memory, such as memory for individual elements, associative memory between 

elements, and filtering of irrelevant information in young and older adults (note, however, 

that although the model estimated the contributions of these processes, the processes 

themselves were not mechanistically instantiated, as in a generative model). These authors 

found evidence that older adults’ working memory was impaired for associations, but not 

for individual elements. In another recent study, Greene and Naveh-Benjamin (2020) applied 

a multinomial processing tree (MPT) model to estimate the contribution of specific and 

gist-like associative processes to memory in young and older adults, and found that older 

adults were only impaired in retrieving more specific associations. We applaud these efforts 

and believe that measurement models such as these can be quite useful. However, we 

argue that where it is possible to develop a more-complete theory, generative computational 

models are even more powerful, as they take the extra step of instantiating the mechanisms 

needed to explain behavior as a function of the representations, associations and dynamics of 

cognition.

We also acknowledge that it is possible to provide support for or against verbal theories 

with carefully constructed experiments and conventional inferential statistical models like 

regression. A verbal theory that older adults have a selective deficit in associative memory 

to a greater degree than item memory is supported by an inferential statistic demonstrating 

a greater aging deficit in performance on an associative compared to an item memory 

task. Thus, inferential statistics and careful experimental design are important and necessary 

tools to make theoretical progress. However, as we have argued in this paper, we believe 

that a generative computational model is a powerful tool because it actually instantiates 

how behavior could be generated from latent processes, making the theory mathematically 

transparent while allowing for direct model comparison to test different theories of 
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cognition and developmental change, as well as allowing for model simulations to construct 

quantitative hypotheses directly based on the model.

Finally, it is important to note that how one fits a model also affects the potential 

interpretation of the results. In this work, we fit all models with hierarchical Bayesian 

approaches in order to properly account for uncertainty in our parameter estimates as well 

as variability within age groups. Although Bayesian methods are increasing in popularity 

(Van De Schoot, Winter, Ryan, Zondervan-Zwijnenburg, & Depaoli, 2017), the vast majority 

of standard statistical work in psychology relies on the p-value, a single number used 

to determine the significance of an effect. As others have pointed out, the p-value can 

be easily abused (Wagenmakers, 2007), such as by “p-hacking,” or continuing to collect 

data until p<.05 for the statistical test of interest. Part of the problem with the p value 

is that it gives no indication of uncertainty, with convention dictating that p<.05 indicates 

significance. Over-reliance on the all-or-nothing p value has been offered as a contributor 

to the replication crisis in psychology (Anderson, 2020). An alternative to this approach is 

Bayesian model-fitting, by which effects of interest may be tested through distributions of 

statistical parameter values that inherently indicate uncertainty, in that more dispersion of 

parameter values indicates more uncertainty. This approach provides much more information 

that can inform scientists’ confidence in the robustness of a finding, which in turn can help 

scientists better assess the amount of evidence for a given psychological effect. This may 

help the field avoid spurious findings that are unlikely to replicate. An extreme example 

of this was provided by Wagenmakers and colleagues (2011), who showed that claims 

of extra-sensory perception, supported by significant p-values in many experiments (Bem, 

2011), received very little support in a Bayesian re-analysis of the data.

Pathways forward

As noted in the Introduction, other researchers have argued that generative computational 

modeling is a powerful tool and have encouraged more widespread application of these 

methods in aging research (Benjamin, 2010; Salthouse, 1988). Despite this, the great 

majority of studies on cognitive aging, and in psychology in general, rely on verbal 

theories and standard statistical approaches. An important question is why this is the 

case. We suspect that a major barrier to computational modeling is that this approach 

requires more time and effort compared to the typical pipeline of making a hypothesis 

based on a verbal theory and analyzing experimental results with conventional models like 

regression. Although it is true that computational modeling typically requires additional 

time and effort on the part of the researcher, we argue that the benefits gained, including 

theoretical transparency, estimation of latent processes (along with comparison of such 

processes between groups or individuals), and quantitative model comparison, far outweigh 

the costs. In addition, we consider the additional investment of time and cognitive resources 

to be a benefit in many cases, as it forces the researcher to think deeply about the cognitive 

mechanisms underlying the behavior of interest, and to make mathematically explicit the 

theory that is guiding the research endeavor.

We also suspect that many researchers do not feel they have the necessary skills to develop 

or apply potentially complex computational models, or to make use of techniques like 
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Bayesian model-fitting methods. Thankfully, many resources exist to guide the novice 

modeler (Epstein, 2008; Farrell & Lewandowsky, 2018; Forstmann & Wagenmakers, 2015; 

Guest & Martin, 2021; Heathcote, Brown, & Wagenmakers, 2015; McClelland, 2009; 

Smaldino, 2020; Wilson & Collins, 2019; see Sederberg & Darby, under review, for a 

review and example implementations of popular episodic memory models). Some easy-to-

use programming packages exist that can help beginners to make use of models, such 

as the Hierarchical Bayesian estimation of the Drift-Diffusion Model in Python project, 

or HDDM (Wiecki, Sofer, & Frank, 2013), which allows researchers to apply sequential 

sampling decision-making models similar to the one applied in the current work simply 

by providing their data in a tabular form. In addition, many introductory resources are 

available on Bayesian model-fitting procedures, in general (Gelman, 2006; Gelman et al., 

2013; Kruschke, 2013; Lee, 2011; Shiffrin, Lee, Kim, & Wagenmakers, 2008).

Conclusions

In this work, we have argued that computational models make theories transparent by 

instantiating proposed neurocognitive mechanisms in explicit mathematical equations, and 

that research on the cognitive effects of aging would benefit from more widespread use of 

model-based approaches, including comparing model parameters to assess developmental 

changes in cognitive mechanisms, formally comparing models to adjudicate between 

theories, and generating data to make quantitative hypotheses. Although computational 

modeling is not an easy process, especially for beginners, we suggest that the field of 

cognitive aging would greatly benefit from more widespread adoption of these methods. 

These techniques may be applied to systematically and quantitatively iterate toward better 

theories of cognitive change due to aging. In addition, computational modeling allows the 

researcher to make quantitative hypotheses based directly on the theory as instantiated in 

the model. As other researchers have pointed out (Oberauer & Lewandowsky, 2019a; P. 

L. Smith & Little, 2018), strengthening the relation between theory and hypotheses, and 

reducing reliance on exploratory studies not driven by theory, may be a powerful way to 

increase replicability. Computational models, in sum, are a powerful tool that can help 

us to develop more robust and transparent theories to improve replicability and scientific 

discovery in psychological science and aging research.
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Figure 1. Types of object pairings presented in the continuous associative recognition task.
On every trial of the task, participants were presented with a pair of objects and asked to 

determine whether the pair was “new” or “old.” Each object was presented in four pairs: 

New, Intact 1, Intact 2, and Recombined pairs.
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Figure 2. Observed and model-simulated CAR task performance.
False alarms (for New and Recombined pairs), and hits (for Intact 1 and Intact 2 pairs) 

for each strength condition are presented in the upper panels, and log-transformed RTs (in 

seconds) are presented in the lower panels. A value of 1 was added to each RT prior to 

the log-transform so that the lower-bound of transformed values would be 0. Performance 

measures are presented for young adults on the left panels, and for older adults on the right 

panels. Mean observed performance values are plotted by bars, and mean model-simulated 

values are presented as dots. Error bars represent standard errors.
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Figure 3. Schematic summaries of encoding and retrieval processes in BigTCM for associative 
recognition
Scalar values are indicated by rounded corners, whereas arrays have square corners; 

matrices are depicted as boxes. (A) Encoding processes. Items predicted from associations 

with context are compared to the presented pair to calculate prediction error. Positive 

prediction errors are the basis of learning, and negative prediction errors are the basis of 

unlearning. Both learning and unlearning are used to update the association matrix for 

the next trial, while temporal context is updated with the presented items. (B) Retrieval 

processes. A decision and response time are simulated for each trial based on memory 

strengths supporting “old” responses (green) and those supporting “new” responses (red), a 

response bias toward “new” or “old” responses, a threshold of evidence needed to make a 

decision, and an estimate of perceptuomotor (non-decision) processing time. See the text for 

additional details.

Darby and Sederberg Page 33

Psychol Aging. Author manuscript; available in PMC 2023 March 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Correlations between observed and model-predicted performance.
The dark dashed lines indicate what would be a perfect correspondence between model-

predicted and observed data. RCS = rate correct score.
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Figure 5. Posterior hyper-parameter distributions for young and older adults.
Each plot shows the posterior distributions for one parameter, along a metric of overlap 

between the two distributions.
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Figure 6. Posterior predictive distributions (PPDs) of performance scores and posterior 
parameter distributions for four example participants.
Dyads of low-performing and high-performing participants were selected for this example. 

The top-left (boxed) panel presents the PPDs for each participant, which were constructed 

by generating data with each sample participant’s parameter posterior distributions (split 

violins plots), along with the observed d′ score for each participant (dots). The other panels 

show the posterior parameter distributions for each participant.
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Figure 7. Model-generated performance for a hypothetical CAR task variant.
False alarms (for New and Recombined 1 pairs), and hits (for Recombined 2 and Intact 

pairs) for each strength condition are presented in the upper panels, and log-transformed RTs 

(in seconds) are presented in the lower panels. A value of 1 was added to each RT prior to 

the log-transform so that the lower-bound of transformed values would be 0. Performance 

measures are presented for young adults on the left panels, and for older adults on the right 

panels. Error bars represent standard errors.
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Table 1

Strength conditions of the continuous associative recognition task. These within-subject conditions varied by 

the relative point at which intact pairs were recombined. Note that there could potentially be many trials 

between presentations of the same objects; this aspect of the task was not specifically constrained.

Weak Medium Strong

New New New

Recombined Intact 1 Intact 1

Intact 1 Recombined Intact 2

Intact 2 Intact 2 Recombined
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Table 2

Summary of free model parameters.

Memory ρ Context change rate

α Item-context associative learning rate

κ Scales negative prediction error learning

λ Maximum familiarity strength of repeated items

τ Modulates familiarity sensitivity to recency

γ Scales retrieved context mismatch strength

ν Baseline novelty strength supporting a “new” response

Decision a Decision threshold

w Decision bias toward “new” v. “old” responses

t0 Non-decision time
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Table 3

Strength conditions for a hypothetical variant of the CAR task. In this design, repetitions of the recombined 

pairs (i.e., Recombined 2 pairs) should receive an “old” response, similar to repeated Intact pairs.

Weak Medium

New New

Recombined 1 Intact

Recombined 2 Recombined 1

Intact Recombined 2
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