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a b s t r a c t 

Frontal midline theta oscillatory dynamics have been implicated as an important neural signature of inhibitory 

control. However, most proactive cognitive control studies rely on behavioral tasks where individual differences 

are inferred through button presses. We applied computational modeling to further refine our understanding 

of theta dynamics in a cued anti-saccade task with gaze-contingent eye tracking. Using a drift diffusion model, 

increased frontal midline theta power during high-conflict, relative to low-conflict, trials predicted a more con- 

servative style of responding through the starting point (bias). During both high- and low-conflict trials, increases 

in frontal midline theta also predicted improvements in response efficiency (drift rate). Regression analyses pro- 

vided support for the importance of the starting point bias, which was associated with frontal midline theta over 

the course of the task above-and-beyond both drift rate and mean reaction time. Our findings provide a more 

thorough understanding of proactive gaze control by linking trial-by-trial increases of frontal midline theta to a 

shift in starting point bias facilitating a more neutral style of responding. 
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. Introduction 

A growing body of work implicates perturbations of frontal and cen-

ral midline theta oscillations [ ∼4–8 Hz] as a robust, domain-general

eural marker of cognitive control processes ( Cavanagh and Shack-

an, 2015 , Cavanagh and Frank, 2014 , Eisma et al., 2021 ). It is believed

hat there are two independent, but concurrently active, generators of

rontal midline theta (FMT) in the anterior cingulate cortex, where the

MT response is thought to not only relate to conflict but also conflict-

ndependent processes associated with response slowing ( Töllner et al.,

017 , Zuure et al., 2020 ). Despite the breadth and extent of this work,

ost cognitive control-related studies rely on behavioral tasks where

ifferences in attentional resources are inferred from button presses.

aze-contingent eye tracking allows for attention-related cognitive con-

rol to be linked more directly to changes in the experimental paradigm.

iven the broad interest in visual attention training to target a range of

sychiatric disorders ( Hallion and Ruscio, 2011 , Shagan et al., 2018 ,

oekar et al., 2017 , Javadipour et al., 2018 , Archambault et al., 2021 ,

ell et al., 2009 , Finn and McDonald, 2011 , K ł osowska et al., 2015 ,

eard et al., 2012 , Mogg et al., 2017 , Fodor et al., 2020 , Boettcher et al.,

013 , Armstrong and Olatunji, 2012 , Habedank et al., 2017 ), it is impor-

ant to understand how visual attention is controlled to properly design
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uch trainings. While there is ample evidence how FMT is critical to re-

ctive and proactive control, it is unknown whether these past findings,

ased on manual responses, generalize to gaze control. Reactive control

s characterized by a response to a cue/event in the environment fol-

owing the initiation of the response process. Proactive cognitive con-

rol, in contrast, involves a preparatory process which affects whether

he response process is initiated ( Aron, 2011 ). Therefore, studying gaze

ehavior directly may further our understanding of the cognitive pro-

esses central to visual attention training interventions. We propose a

rst step in this direction by combining trial-by-trial EEG neural dynam-

cs and computational modeling using a cued anti-saccade task to allow

or a more nuanced examination of proactive cognitive control, directly

tudied at the level of gaze behavior. 

Theta oscillations increase in power following response errors

 Holroyd and Coles, 2002 , Gehring et al., 2018 , Yeung et al.,

004 ) and negative feedback ( Walsh and Anderson, 2012 ), in re-

ponse to unexpected events ( Cavanagh et al., 2012 , Mas-Herrero and

arco-Pallarés, 2014 ), during inhibitory control ( Nigbur et al., 2012 ,

igbur et al., 2011 ), when resolving competition between different

esponses ( Oehrn et al., 2014 ), adjusting response strategies to task

emands ( López et al., 2019 , McKewen et al., 2020 ), and following

vents that are novel or ambiguous in terms of performance feedback
uary 2023 
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o  

t  
 Sandre and Weinberg, 2019 , Wessel et al., 2012 ). Several studies re-

ort that modulation of frontal midline theta (FMT) varies in relation to

ingle trial behaviors, including accuracy ( Cohen and Donner, 2013 ),

esponse adjustments following errors ( Kalfao ğlu et al., 2018 ), reac-

ion times ( McKewen et al., 2020 ), and learning from feedback to

dapt future responses ( Cavanagh et al., 2010 ). Stimulation studies of-

er more direct evidence, as the manipulation of increasing FMT activ-

ty has positive impacts on behavior ( Klink et al., 2020 , Voelker et al.,

021 ). For example, transcranial alternating current stimulation in

he theta range applied over frontal regions results in immediate im-

rovements in behavioral adjustments following errors ( Reinhart et al.,

015 ), not simply attributable to a tradeoff between speed and accuracy

 Fusco et al., 2018 ). Conversely, disrupting frontal theta oscillatory dy-

amics leads to performance decrements ( Reinhart, 2017 ). Direct evi-

ence that frontal theta dynamics are critical for goal-directed behaviors

omes from intracranial recordings. Similar to the scalp derived FMT

ignatures observed in humans, intracranial recordings taken from sin-

le frontal midline neurons in non-human animals reveal the presence

f theta oscillations that mediate encoding of stimulus-response map-

ings ( Womelsdorf et al., 2010 ), error commission ( Narayanan et al.,

013 ), and on-going response adjustments ( Womelsdorf et al., 2010 ,

omelsdorf et al., 2010 ). Deactivation of medial frontal function results

n a reduction in theta to errors and impaired response adjustments fol-

owing errors ( Narayanan et al., 2013 ). Collectively, these studies sug-

est that FMT oscillations are indicative of cognitive control processes,

erhaps providing a rhythmic temporal structure in the theta range to

oordinate activity across neural systems that mediate complex goal-

irected behavior ( Fiebelkorn and Kastner, 2019 ). 

A critical aspect of adaptive goal-directed behavior is appropriate

esponse preparation. Often cognitive control is partitioned into what is

eferred to as reactive and proactive control mechanisms ( Braver, 2012 ,

affard et al., 2007 , Jaffard et al., 2008 , Meyer and Bucci, 2016 ). The

ormer generally refers to a reaction to a cue/event in the environ-

ent following the initiation of the response process. Proactive cog-

itive control, in contrast, involves a preparatory process which affects

hether the response process is initiated ( Aron, 2011 ). In non-human

nimals, FMT oscillations show behavioral selectivity and sensitivity to

hoice-relevant information —rhythmic theta activity increases prior to

 behavioral response and is predictive of stimulus-response mapping

hoices ( Womelsdorf et al., 2010 ). Similarly, studies on proactive cogni-

ive control in humans also suggest that FMT activity is engaged during

esponse preparation. For example, using a cued (low-/high-conflict)

ental calculation task, De Loof and colleagues ( De Loof et al., 2019 )

bserved increases in frontal theta power leading up to task onset on

ifficult trials, which correlated with behavior across participants, and

ingle trials. Other studies report increased frontal theta during the

ue-target interval when individuals were made aware (i.e., cue) that

he upcoming target trial (i.e., target) required a switch between task

ets ( Cooper et al., 2015 , Cooper et al., 2017 , Sauseng et al., 2019 ).

lthough evidence is accumulating that FMT supports these context-

ependent adjustments in cognitive control, most studies employ cogni-

ive control paradigms requiring a motor response via a button press,

ne step removed from the gaze behavior under study. In fact, re-

ent work has highlighted the advantage of gaze-contingent eye track-

ng paradigms when studying cognitive control during multiple-target

earch ( van Driel et al., 2019 ). Examining the theta dynamics of proac-

ive cognitive control, we previously reported similar findings using

 cued anti-saccade task ( van Noordt et al., 2017 ). Participants were

nformed as to whether the upcoming response probe required a pro-

accade (low-conflict) or an anti-saccade (high-conflict) gaze response

 van Noordt et al., 2017 ). In addition to the well documented increase

n post-error theta power, we observed robust FMT activity during the

elay period that was greater for correct anti-saccade, relative to pro-

accade, trials ( van Noordt et al., 2017 ). These findings indicate that

MT is engaged during proactive cognitive control, particularly when

uccessfully preparing a challenging behavioral response. 
2 
The conventional approach to analyzing task performance involves

ehavioral summary statistics such as mean reaction time and accu-

acy, assessed via button-presses. However, these metrics are not well-

uited to fully unpack the complex interaction within and among the

arious brain networks involved in inhibitory control ( Cavanagh et al.,

011 ). Computational approaches ( Adams et al., 2016 , Collins and

henhav, 2021 ) aim to address this problem through modeling task-

ased behavioral and neural data (joint modeling) into separable pro-

esses. The goal of this approach is to identify whether these pro-

esses deepen our understanding of the mechanistic explanations for

erturbed cognitive functioning. Process models, such as the drift dif-

usion model, provide additional information beyond traditional mea-

ures (mean reaction time) about underlying latent cognitive pro-

esses and their intraindividual variability across experimental trials

 Cavanagh et al., 2011 , Ratcliff, 1978 , Ratcliff, 1985 , Ratcliff and

hilders, 2015 , Ratcliff and McKoon, 2008 , Ratcliff and Rouder, 1998 ,

atcliff et al., 2016 , Stone, 1960 ). More recent advances in computa-

ional approaches have led to the development of programs to model

ehavior from a hierarchical drift-diffusion framework ( Wiecki et al.,

013 ). These model-based approaches have proven useful in delin-

ating underlying latent cognitive processes of complex task perfor-

ance, trial by trial ( Cavanagh et al., 2011 ). A handful of studies

ave demonstrated greater precision and specificity when relating task

erformance to behavior by applying a drift-diffusion approach to in-

ibitory control as measured by the anti-saccade task ( Cavanagh et al.,

011 , Tannous et al., 2019 , Wiecki et al., 2016 ). The models include

rift rate, decision threshold, and starting point bias latent parameters to

haracterize cognitive processes as latent variables thought to underlie

nhibitory control. For example, in a study of individuals with comorbid

ocaine/alcohol use disorders, Tannous et al. (2019) found that, com-

ared to controls, individuals with substance use disorder demonstrated

 decrease in subjective difficulty (i.e., larger drift rates, more efficient

rocessing) during cocaine-cued trials of the modified anti-saccade task

hen modeled from a drift diffusion framework. In another study, tra-

itional metrics (e.g., reaction time, error rates) could not differentiate

ontrol participants from those with pre-Huntington’s disease, while la-

ent computational modeling parameters (i.e., drift rate, decision thresh-

ld) provided increased specificity in correct classification ( Wiecki et al.,

016 ). 

To our knowledge, only one study to-date has leveraged compu-

ational modeling to relate changes in theta dynamics to trial-by-trial

hanges in cognitive control ( Cavanagh et al., 2011 ). The results of

his study showed that trial-to-trial FMT activity predicted an increased

hreshold for evidence accumulation (i.e., decision threshold) during

onflict. Moreover, after deep brain stimulation of the subthalamic nu-

leus in patients with Parkinson’s disease, this relationship was found

o be reversed, resulting in impulsive responding; increasing FMT was

ssociated with a reduction of the decision threshold during conflict

 Cavanagh et al., 2011 ). However, studies modeling gaze-contingent

roactive cognitive control have primarily focused on drift rate and

ecision threshold parameters, seldomly examining whether the inclu-

ion of the starting point bias parameter improves model fit. From our

iewpoint, it is conceivable that the strength of the prepotent response

s captured, at least partially, by a general bias towards a pro-saccade

low conflict) response; while less information is needed for compul-

ory pro-saccade (expediating the more common task response), more

vidence accumulation is needed for an anti-saccade (high conflict). It

ould follow that a burst FMT, following the preparatory cue, may fa-

ilitate overcoming this bias to accurately respond during high-conflict

rials. 

.1. Current study 

While literature strongly indicate that theta rhythms are indicative

f the need for a spontaneous controlled behavioral response (i.e., reac-

ive cognitive control) ( Cavanagh and Shackman, 2015 ), and our recent
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c  
ork suggests that this neural signature may relate more to context-

ependent adaptations in cognitive control (i.e., proactive cognitive

ontrol) ( van Noordt et al., 2017 ), the neurophysiological underpinnings

f controlled (proactive) gaze behavior are not well understood. The

ued anti-saccade task is well suited to examine the links between theta

nd proactive cognitive control, as saccades are the fastest and perhaps

he most prepotent behaviors. Here we apply a cued anti-saccade task

o model changes in theta dynamics and trial-by-trial performance as-

essed via gaze behavior. We posit that distinct parameters of the drift

iffusion model (that reflect different, discrete aspects of inhibition)

ill relate to the trial-by-trial changes in theta oscillatory dynamics.

onsistent with similar past work ( Tannous et al., 2019 , Wiecki et al.,

016 , Cavanagh et al., 2014 ), we hypothesize that individual differences

n FMT will relate to changes in participant’s drift rate (response effi-

iency), decision threshold (amount of evidence needed for a decision),

nd starting point bias (amount of evidence for one decision inversely

ffecting the alternative) during the course of this proactive cognitive

ontrol task. To our knowledge, previous work has not specifically ex-

mined the drift diffusion starting point bias parameter as it relates

o performance on the anti-saccade; however, recent work has found

he inclusion of the bias parameter useful in modeling an orienting re-

ponse ( Jha et al., 2022 ). Therefore, we examined whether the addition

f bias improved model fit in an exploratory nature. Finally, in an ef-

ort to demonstrate the utility of deconstructing participants behavior

hrough computational mathematical modeling, we posited that drift

iffusion model parameters would predict mean FMT during the anti-

accade task, above-and-beyond that of reaction time alone. 

. Methods 

.1. Participants 

Twelve healthy young adults participated in the current study, all of

hom were right-handed and had normal or corrected-to-normal vision.

ne participant was excluded due to excessive movement and muscle

rtifacts, resulting in more than 60% of in-task time being flagged during

utomated pre-processing. The final sample of 11 participants included

even 7 males and 4 females, with a mean age of 25 years ( SD = 2.87

ears). Participation was voluntary and involved no monetary incen-

ives. The study received clearance from the Brock University Bioscience

esearch Ethics Board and all participants provided informed consent. 

.2. Cued pro-/anti-saccade delay task 

Participants completed a cued anti-saccade task where they were re-

uired to make pro-saccades and anti-saccades to peripheral probes. For

he duration of the task, three squares remained on the screen: a cen-

ral square where the trial type cue was presented, and two peripheral

quares (left and right) where the saccade response probes appeared (see

ig. 1 ). Trials were initiated after participants focused their gaze behav-

or on the central square for 200 ms, at which point a fixation cross was

resented for 50 ms. The color of the fixation cross was either white or

lack and signaled whether that trial required a pro-saccade (e.g., white

xation) toward, or an anti-saccade (e.g., black fixation) away from the

eripheral response probe. After a fixed delay of 800 ms the response

robe flashed for 50 ms in one of the peripheral squares. A fixation of

t least two consecutive cycles ( ∼33 ms) on a peripheral square was re-

uired for saccade responses to be logged. Immediately following the

accade response, feedback was presented for 200 ms in the form of a

heck mark for correct responses or an “X ” for incorrect responses. 

Features of this cued anti-saccade task were modeled from a response

ueing paradigm ( Roger et al., 2010 , Mensen and Khatami, 2013 ), which

ncludes multiple response contexts that varied in the predictability of

nti-saccade trials. For the current study we focus on the response con-

ext that included a combination of both pro- and anti-saccade trials.

he color of the fixation cross indicating pro-saccade and anti-saccade
3 
rials was counterbalanced across all participants and peripheral probes

ppeared equally at left and right locations. A total of 192 pro-saccade

nd 128 anti-saccade trials were used in the current study. The imbal-

nce is due to the blocked structure of the task, similar to a go/no-go

ask. See Fig. 1 for a summary of trial details. 

During data collection participants were seated 16 inches (40.64 cm)

rom the presentation monitor with their chin secured in a chin rest that

as placed at a fixed height to minimize neck tension, head movements,

nd changes in visual angle to the screen during the task. The approx-

mate visual angle was 0.57 degrees for the saccade cue, 1.72 degrees

or borders, 0.57 degrees for error feedback, and 0.59 degree for correct

eedback. The distance, in visual angle, between the response cue and

eripheral probes was 14.6 degrees. This study relied on the integration

f the E-Prime (version 2.0, Psychology Software Tools, Inc.), Smart Eye

ro (60 Hz sampling rate: version 5.8, Smart Eye AB), and Net Station

version 4.5.1, EGI, Inc.) for stimulus presentation, eye-tracking, and

EG acquisition. 

.3. Electrophysiological recordings and data reduction 

EEG data were acquired using a 128-channel HydroCel Geodesic Sen-

or Net (HCGSN; EGI, Inc.), equipped with Ag/AgCl electrodes, and a

00 series amplifier. Signa Gel (Cortech Solutions, Inc.) was used as an

lectrolyte medium. Impedances were verified at 100 kOhms or lower

rior to recording. Data were acquired at a sampling rate of 500 Hz,

ith a 100 Hz low pass filter, 0.1 Hz high-pass and referenced online

o site Cz. 

A series of automated pre-processing procedures were executed in

ctave 3.6.3 on the Shared Hierarchical Academic Research Comput-

ng Network (SHARCNet). The preprocessing trajectory involved flag-

ing channels and time points that reflect spatial and temporal non-

tationarity. The pre-processing stream follows closely the steps de-

cribed previously ( Desjardins and Segalowitz, 2013 , Desjardins et al.,

021 , van Noordt et al., 2015 ). In-task time was distinguished from out-

ask time (e.g., instruction period, task lead up, breaks) and the follow-

ng procedures were performed only on in-task time points. The con-

inuous EEG was filtered from 2 Hz to 30 Hz and re-referenced to the

verage. This filtering was done as nonstationary artifacts tend to be

ade up of large, low frequency oscillations (e.g., movement artifact

nd sweat artifacts), and ICA decompositions are more reliable when a

igh pass filter is applied to the data [e.g., 1–2 Hz; ( Debener et al., 2010 ,

inkler et al., 2015 )]. The data were put through a series of common cri-

eria functions to flag signals or time points based on a specific property

e.g., voltage variance). This process involved calculating the measure

f interest, comparing the measure against a distribution, and assessing

hether the channel or time point should be flagged as an outlier. First,

he continuous data were windowed into 50% overlapping 600 ms win-

ows. For each of these windows the maximum correlation coefficient r

f each channel and its three nearest neighbors was calculated to yield

 channel correlations. The 99% confidence interval of the r values for

ach window was calculated and a given channel was flagged if the r

as outside the 99% confidence intervals and was flagged for the du-

ation of the recording if it was deemed an outlier in more than 10%

f time windows. Bridged electrodes were identified using a composite

easure to identify high and relatively invariable correlations between

eighboring channels, specifically dividing each channel’s mean r value

y its standard deviation. Channels were flagged if their composite score

as greater than 8 standard deviations from the 25% trimmed mean of

he composite scores across channels. The maximum neighbor correla-

ion was then recalculated, and the 99% confidence interval was taken

or each channel across the time windows. The time window was flagged

f the r value was lower than the 99% confidence interval for a given

hannel. The time window was flagged for removal if more than 10%

f the channels were considered outliers. 

The data were concatenated back into a continuous signal with dis-

ontinuities marked by boundary events. An initial Infomax ICA de-
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Fig. 1. Saccade trial sequence. Central fixation was re- 

quired (200 ms duration) in order to initiate the trial. 

The saccade cue was presented centrally (50 ms) and in- 

dicated whether the current trial required a pro-saccade 

(i.e., look toward) or an anti-saccade (i.e., look away) re- 

sponse. A fixed delay of 800 ms followed before the pre- 

sentation of the peripheral probe (50 ms) on either the 

left or right of the screen. Feedback was presented (200 

ms) once the participant fixated on one of the peripheral 

probe locations for a minimum of ∼33 ms (2 consecutive 

cycles, 60 Hz sampling rate). 
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omposition was performed, and the component time-course activations

ere used to identify additional time periods for rejection. Specifically,

he continuous data were again windowed into 50% overlapping 600

s windows and the standard deviation of activation was calculated for

ach IC in each time window. The 99% confidence interval of the stan-

ard deviation was calculated for each IC across time windows and the

ame flagging and rejection criteria used for channel activation was ap-

lied. The data were concatenated back into the continuous signal and

 second ICA was then applied to the remaining continuous signal that

as not flagged in order to produce a more stable decomposition as the

raining data does not include time periods with unusually high levels of

ctivation in at least 10% of the components. A single dipole was fit to

ach IC (dipfit plug-in for EEGLab) ( Oostenveld et al., 2011 ). ICs were

emoved if the residual dipole variance was greater than 15% or manual

eview of their topographies and continuous activation revealed sources

f known biological (i.e., EMG, ECG, EOG) or single channel artifacts

e.g., line noise). We have found a semi-automated approach enhances

ata retention and signal quality compared to a fully automated flag-

ing procedure ( Desjardins et al., 2021 ). The flagged time points and

on-cortical ICs were then purged to remove them from the data, the

CA weights were re-applied to the original time series. The remaining

ignal was filtered 1 to 30 Hz and re-referenced to the average of 19 in-

erpolated sites. Across subjects an average of 12 cortical ICs ( SD = 4.42,

a  

4 
anging from 6 to 21) were retained. Overall, the EEG recordings in the

emaining 11 participants were stable based on the automated proce-

ures, such that an average of 94.51% ( SD = 5.31%) of the in-task time

as retained with all participants having more than 80% of in-task time

etained (min = 83.65%, max = 97.86%). 

.4. Functional classification of independent components 

From the remaining cortical ICs, we classified in each participant

hose ICs having spatial field projections and functional dynamics repre-

enting known medial EEG frontal sources by isolating ICs with a fronto-

entral medial topography that accounted for the spatial variance in the

lobal field amplitude for the difference between error and correct trials,

s these evoked responses are known to reflect medial frontal activity

uring performance monitoring ( van Noordt and Segalowitz, 2012 ). In

ach participant, we ranked remaining cortical ICs based on their per-

entage of variance accounted for in the difference between error and

orrect responses associated with the error-related negativity and feed-

ack related negativity. Percentage of variance accounted for reflects the

otal spatial variance (i.e., all cortical ICs projected back to the scalp)

inus the variance of the current IC (projected back to the scalp), di-

ided by the total scalp variance. In this process, ICs were sequentially

dded based on their contribution in accounting for the spatial vari-
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nce in the global field amplitude until they accounted for at least 60%

f the spatial variance at the scalp. For two participants, this criterion

as increased to include the medial frontal projecting IC that differ-

ntiated between correct and error trials (70% [ n = 1], 80% [ n = 1]).

n seven participants, a single medial frontal project IC was found to

ontribute to the spatial scalp variance that differentiated correct from

rror trials. The remaining four participants had 2 medial frontal pro-

ecting ICs and the mean projections of these two ICs was used. A similar

pproach has been used to classify medial frontal ICs that differentiate

etween error and correct responses ( Wessel et al., 2012 , Gentsch et al.,

009 , Hoffmann and Falkenstein, 2010 , Roger et al., 2010 ) or stimu-

us cues that signal potential changes in response demands ( van Noordt

t al., 2015 ). The classification of ICs was based on functional dynam-

cs to task events that were temporally distinct from the activity that

ccurred during the delay period (i.e., between saccade cue and periph-

ral probe) that was used for hypothesis testing. For the purpose of dis-

riminant validity and specificity of the medial frontal ICs representing

ask-based changes in response preparation, we also performed analyses

n the residual EEG data which reflects all remaining cortical ICs that

ere not classified as representing a medial frontal source. 

.5. Time-frequency decomposition of classified independent components 

Epochs were time-locked to the onset of saccade cues from -2000ms

o 2850ms, separately for pro- and anti-saccade trials. Following pre-

rocessing, there was an average of 158 and 96 trials available for pro

nd anti-saccade conditions, respectively. The correlation of trial num-

ers between the conditions was strong ( r (10) = .88, p < .001), in-

icating that overall levels of artifact identified during pre-processing

ere similar across participants. The single trial event-related dynamics

or each IC in the medial frontal cluster were convolved using complex

orlet wavelets (EEGLab function newtimef ) to generate spectral power

stimates from 1–30 Hz. For purposes of convergent validity, we also

xtracted theta for the residual EEG data. Specifically, theta power was

alculated for all ICs excluding the classified medial frontal ICs. Examin-

ng the spectral power dynamics in the residual EEG can help to further

stablish whether the activity in classified sources is important for single

rial modulation of behavior based on the extent to which it uniquely

elates to task relevant behaviors. In addition, we implemented a ro-

ust approach to assess the spatial-temporal dynamics of theta power

or both the fronto-central and residual ICs. Specifically, we performed

ndependent samples, two-tailed cluster permutation tests using thresh-

ld free cluster enhancement ( Mensen and Khatami, 2013 ). Threshold

ree cluster enhancement is similar to other established cluster-based

pproaches (e.g., cluster max, cluster mass) ( Bullmore et al., 1999 ,

roppe et al., 2011 , Groppe et al., 2011 , Maris, 2004 , Maris and Oosten-

eld, 2007 ), with the exception that threshold free cluster enhancement

onsiders the spatial and temporal dependencies in the EEG data by

eing sensitive to both strong(er)-narrow and weak(er)-broad effects,

hich minimizes the trade-offs between sensitivity and control of Type

 error rate or the use of potentially arbitrary cut-offs for defining cluster

hresholds. Threshold free cluster enhancement is capable of effectively

aintaining family-wise alpha at 0.05 and control Type I error rates for

ultiple comparisons across all EEG channels and time points. Based on

he results from Mensen and Khatami ( Mensen and Khatami, 2013 ), we

et E = 0.66 and H = 2. See Fig. 2 for a summary of the IC functional

lassification and theta dynamics. 

.6. Statistical analyses 

.6.1. Drift diffusion modeling 

We chose to conduct the specific sequential sampling method known

s drift diffusion modeling ( Ratcliff, 1985 , Ratcliff and Childers, 2015 ,

atcliff and McKoon, 2008 , Ratcliff and Rouder, 1998 , Stone, 1960 ,

mith and Ratcliff, 2004 ), as it has been established as the standard

or modeling response-time data from simple two-alternative forced
5 
hoice decision-making tasks ( Smith and Ratcliff, 2004 ) (see Fig. 3 ).

pecifically, hierarchical Bayesian parameter estimation using Markov-

hain Monte-Carlo was used to estimate posterior distributions of the

rift-diffusion parameters via the Hierarchical Drift Diffusion Modeling

HDDM 0.8.0) Python toolbox ( Wiecki et al., 2013 ). Due to our interest

n the inclusion of the starting point bias parameter as potentially cap-

uring individuals’ prepotent (pro-saccade) response, stimulus-coding

as utilized for all models. It is important to note that this deviates from

he conventional interpretation of the bias parameter. Here, the starting

oint bias is conceptualized as facilitating in a stimulus-response map-

ing; thus, from this viewpoint, individuals need to overcome the bias to

rovide the prepotent pro-saccade response created by the true bias in

he stimulus mapping (e.g., more pro-saccade versus anti-saccade trials).

To gain a deeper understanding of how anti-saccades can be re-

ected in cognitive control performance, we were interested in three

rift diffusion model parameters across the two task conditions: drift

ate, response threshold ( Cavanagh et al., 2011 , Tannous et al., 2019 ,

iecki et al., 2016 , Nayak et al., 2019 ), as well as starting point bias

 Jha et al., 2022 ) using stimulus-coding. First, two null models (both

ssuming that parameters do not vary as a function of pro- versus anti-

accade conditions) only differed on whether they included the bias

arameter to determine if the inclusion of this optional parameter im-

roved overall model fit. Next, depending on the best-fitting null-model

i.e., with or without the bias parameter), a series of models were com-

ared varying on either the two (i.e., drift rate and decision threshold)

r three (i.e., drift rate, decision threshold, and starting point bias) pa-

ameters split by task condition to determine the best-fitting model. 

Group models do not have the power to detect the effect of condition

n a within-subject effect (e.g., condition on an individuals’ parameter

stimate), as there would be large posterior variance in all of the drift

ates, for example, that overlap with one another. The within-subject

odel, in contrast, estimates a large variance in the intercept while

llowing the model to infer a non-zero effect of condition with high

evel of precision. Within-subject models were then conducted to fur-

her probe the effect of task condition on individual subjects’ parameter

stimates; a particular parameter’s intercept is used to capture overall

erformance in the low-conflict condition as a baseline, which is then

xpressed relative to the high-conflict condition. Within subject models

ere run separately for each split parameter from the best-fitting group

odel. 

.7. Within-subject drift diffusion regressor models 

On the basis of past work with similar cognitive control tasks

 Cavanagh et al., 2011 ), we examined the within-subject effects of trial-

y-trial changes in frontal midline theta (FMT) on diffusion parameters

hile also allowing for different difficulty levels to exert influence via

 hierarchical drift diffusion regression model. Drift diffusion param-

ters and the effect of participants’ trial-by-trial changes in FMT dur-

ng the anti-saccade task on the parameters of interest were estimated

ithin the same hierarchical Bayesian framework. The regressor model

llowed for trial-by-trial influences of FMT on parameters across the en-

ire task to be examined within-subject. The formula: drift diffusion pa-

ameter = a + e 𝜃 x 𝜃, where a reflects the intercept, e 𝜃 reflects the effect of

MT on the parameter of interest, and 𝜃 reflects the single trial-estimated

heta-band activity. To test the assumption that potential effects are spe-

ific to FMT, a second drift diffusion regression model was created in an

dentical manner predicting residual FMT . To do so, Bayesian hypothe-

is testing was employed, where the probability mass of the respective

arameter region (e.g., percentage of posterior samples less than zero)

as analyzed to provide a direct probability measure (i.e., P), which is

nterpreted in a similar way to frequentist p- values. 

For each model (group as well as within-subject), 30,000 sam-

les were generated from the posteriors with the first 10,000 serving

s a burn-in, every second sample was discarded as part of a thin-

ing procedure, and four chains were run. Trace, autocorrelation, and
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Fig. 2. Top panel shows topographical maps for fronto-central (left) and 

residual (right) ICs for both anti (orange) and pro-saccade (blue) condi- 

tions. The bottom panel shows theta power waveforms for fronto-central 

(left) and residual (right) ICs, with vertical lines denoting the delay pe- 

riod between the onset of the saccade cue (time 0 ms) and the periph- 

eral response probe (time 800 ms). The heat maps show the channel (y- 

axis) by time (x-axis) array for robust theta differences between condi- 

tions ( p < .05), as determined by threshold free cluster enhancement and 

non-parametric permutation testing using Monte Carlo (masked for sig- 

nificance). 
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arginal posterior plots of model parameters were inspected to infor-

ally test model convergence. The Gelman-Rubin statistic ( Gelman and

ubin, 1992 ) was calculated to provide a method to formally test con-

ergence by comparing within- and between-chain variance of differ-

nt runs of the same model. Convergence was assessed for all mod-

ls examined. This statistic should be close to 1.0 if the samples of

he different chains are indistinguishable. The Gelman-Rubin statis-

ic was calculated (10,000 iterations, 1000 burn-in each) for each

articipant and found to be < 1.1. The deviance information cri-

erion ( Dickerson and Kemeny, 2004 ) and posterior mean deviance

 Dickerson and Kemeny, 2004 , Spiegelhalter et al., 2002 ) were used for

odel comparison, where lower scores indicate a better fitting model.

eviance information criterion ( Dickerson and Kemeny, 2004 ) values

 10 has been used by others as indicating a particular model meaning-

ully improved fit ( Nayak et al., 2019 , Herz et al., 2016 ). The hierarchi-

al drift diffusion model package was run in Python and correlational

nalyses were computed in R. Data and scripts can be obtained from our

nline data repository. 

.8. Correlation & regression analyses 

We examined the relationship between individual parameter esti-

ates of the best fitting model, neural signatures (i.e., FMT), and task

erformance (i.e., percent correct, reaction time, RT) via Pearson cor-

elations. Next, a single regression model predicting FMT power was

onducted where the first step included participants’ reaction time dif-
6 
erence score during the task, and the second step included drift rate and

ias difference scores. Difference scores were calculated to provide a

etric for the within-subject changes in performance between task con-

itions and were all calculated in the same manner; mean pro-saccade

rial (low conflict) scores minus anti-saccade trial (high conflict) scores.

hese analyses were included to test the assumption that drift diffu-

ion model parameters would provide additional information regarding

roactive control above-and-beyond simple reaction time. 

. Results 

.1. Behavioral 

Behaviorally, as reported in ( van Noordt et al., 2017 ) participants

id significantly better during pro- ( M = .96, SD = .06) when compared

o anti-saccade ( M = .85, SD = .15) trials, t (10) = 4.07, p < .01, Cohen’s

 = 1.23. In contrast, there was not a significant difference between

eaction times during the pro- ( M = .30, SD = .03) and anti-saccade

 M = .32, SD = .10) conditions, t (10) = -1.85, p = .09, Cohen’s D = -.56.

.2. Drift diffusion model convergence 

We fit participants’ performance to the most widely used mathemat-

cal model of two-alternative forced-choice decision-making: a drift dif-

usion model ( Ratcliff and Childers, 2015 , Ratcliff and McKoon, 2008 ,

atcliff and Rouder, 1998 , Stone, 1960 ). To assess model convergence,
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Fig. 3. Simulated trajectories of the two drift-processes (blue and red lines). 

Evidence is noisily accumulated over time (x-axis) where the (average) drift-rate 

(v) continues until it reaches one of two boundaries, with a degree of separation 

defined by threshold (a), is crossed and a response is initiated. An individual’s 

starting point along the y-axis is defined by the bias (z) parameter. Upper (green) 

and lower (orange) panels refer to density plots over for the two responses. 

The horizontal solid boxed line in the beginning of the drift-processes indicates 

the non-decision time (t), NDT, where no accumulation happens. Colored lines 

within the boundaries indicate two hypothetical trials. While simulation data is 

depicted here, hierarchical drift diffusion model uses a closed-form likelihood 

function. 
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Table 1 

Convergence statistics of models examined. Note. DIC = deviance information 

criterion; pD = posterior mean of the deviance minus the deviance of the poste- 

rior means; bold = best fit; Δ Null Model = change in DIC/pD from null model 

with bias; Δ Best Fitting Model = change in DIC/pD from model 8. 

Model DIC pD 

1. Null Model (Without Bias) -4127 31 

2. Null Model (With Bias) -4260 37 

3. Threshold Only Model -4426 41 

Δ Null Model -166 + 4 
Δ Best Fitting Model + 474 -17 

4. Drift Only Model -4455 42 

Δ Null Model -195 + 5 
Δ Best Fitting Model + 455 -16 

5. Bias Only Model -4711 46 

Δ Null Model -451 + 9 
Δ Best Fitting Model + 189 -12 

6. Bias & Threshold Model -4765 46 

Δ Null Model -505 + 9 
Δ Best Fitting Model + 135 -12 

7. Drift & Threshold Model -4640 51 

Δ Null Model -380 + 14 

Δ Best Fitting Model + 260 -7 

8. Drift & Bias Model -4900 58 

𝚫 Null Model -640 + 21 

𝚫 Best Fitting Model 0 0 

9. Drift, Threshold, Bias Model -4850 59 

Δ Null Model -590 + 22 

Δ Best Fitting Model + 50 + 1 
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e started with a visual inspection of the trace, autocorrelation, and

he marginal posterior for the parameters. There were no major devia-

ions in trace, such as drifts or large jumps, across parameters. Similarly,

utocorrelation of all parameters dropped to zero rather quickly, well

maller than 50, when considering the influence of past samples. Finally,

he histograms indicate all parameters are fairly normally distributed

See Fig. 4 ). Consistent with informal evidence of model convergence,

ll participants included in our analyses had an Gelman-Rubin statis-

ic ≤ 1.1, suggesting that the samples of the four different chains were

ndistinguishable and again provide support for model convergence. 

The standard drift diffusion model includes the drift rate, decision

hreshold, and non-decision time parameters and includes an option for

ncluding a starting point bias parameter ( Wiecki et al., 2013 ). The re-

ponse bias is captured by a change in starting point of the drift process.

herefore, we first set out to compare two null models to determine

hether the inclusion of the bias parameter along with the three stan-

ard drift diffusion parameters [( Voss et al., 2004 ) and non-decision

ime] improves overall model fit. We use the null model to refer to the

implest model that does not allow parameters to vary by condition. The

urpose of this comparison was to determine if the subsequent model

ariations examined would focus on the three- or four-parameter drift

iffusion model. As shown in the first two rows of Table 1 , the four-

arameter model that included the bias parameter was a better fit to

articipants’ anti-saccade task performance. 

Next, a series of models were constructed differing on which a com-

ination of drift rate, decision threshold, and bias parameters were split

y low- and high-conflict conditions (i.e., pro- and anti-saccade). Split-

ing parameters by task condition creates different parameter estimates

or each condition for each participant. Seven models (i.e., a decision

hreshold only, drift rate only, bias only, bias and decision threshold,

rift rate and decision threshold, drift rate and bias, and finally a drift

ate, decision threshold, bias model) were examined to explore which

atent parameters, when allowed to vary by task condition, provide the

est fit to participants’ performance. Table 1 provides the fit statistics

f the seven models examined. Results indicated that the model that

llowed both the drift rate and bias parameters to vary by condition

rovided the best fit to the behavioral data. While model nine had a
7 
lightly greater pD value (i.e., 59 versus 58), we gave preference to

odel parsimony when model comparison metrics slightly diverged.

pecifically, when compared to the null model with bias, the best fit-

ing null model, where no parameters were allowed to vary as a func-

ion of condition, the deviance information criterion and the pD were

oth meaningfully lower ( ΔDIC = -640, ΔpD = -637), where lower val-

es indicate better model fit. Fig. 4 (top) provides a visualization of the

osterior probability of the drift rate (pro-saccade: M = 4.46, SD = .70;

nti-saccade: M = 7.76, SD = .74) and bias (pro-saccade: M = 0.77, SD

 .04; anti-saccade: M = 0.47, SD = .07) parameters split by task condi-

ion. Bayesian hypothesis testing indicated that both drift rate ( P = .001)

tarting point bias parameter ( P = .009), meaningfully differed by con-

ition. Thus, the parameters were extracted from this best-fitting model

o examine their relationship with FMT power during the anti-saccade

ask ( Fig. 5 ). 

Within-subject models are helpful to further explore the effects of a

ask condition on individual subjects’ parameter estimates; the intercept

s used to capture overall performance in the pro-saccade (low-conflict)

ondition as a baseline and expressed relative to the anti-saccade (high-

onflict) condition. A within-subject model was conducted in the same

anner as the group model. As shown in Fig. 4 (bottom), the drift rate

ntercept, referring to the low-conflict condition, is positive, as is the

ithin-subject effects of the high-conflict condition (i.e., anti-saccade),

nd neither overlap with zero (both P < .00001). In contrast, the within-

ubject effects of the high-conflict condition (i.e., anti-saccade) on the

ias is negative, moving the starting point closer to the boundary ini-

iating an anti-saccade response; the intercept (i.e., pro-saccade, low-

onflict condition) is entirely positive, and, again, neither overlap with

ero (both P < .00001). Taken together, we found a strong positive bias

n the low-conflict condition, suggesting that participants are perform-

ng a pro-saccade with more ease, as less evidence is necessary to cross

he pro-saccade threshold. In the high conflict condition, there is a neg-

tive bias with respect to the intercept, providing a buffer such that

articipants are less prone to (incorrectly) perform a pro-saccade. IT is

orth mentioning, however, that the overall bias is still relatively neu-

ral (0.4).These results indicate that the cued high-conflict stimuli (i.e.,

nti-saccade trials) increased processing efficiency (i.e., drift rate) and

acilitated a shift in starting point bias. 
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Fig. 4. Posterior plots for the group mean of the threshold (top right), drift rate (top left), bias (bottom left), and non-decision time (bottom right) parameters of the 

null model, which were nearly identical to those of models allowing parameters to vary by condition. Posterior trace (upper left in lay), autocorrelation (lower left 

in lay), and marginal posterior histogram (right in lay), where the solid black line denotes posterior mean and dotted black line denotes 2.5 and 97.5% percentiles, 

are provided. 

Table 2 

Correlations among drift diffusion parameters, anti-saccade task performance, and frontal midline theta. Note . bold = p < .01; Anti = anti-saccade trials; 

Pro = pro-saccade trials; ∆ = Difference; FMT = frontal midline theta. 

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 

1. Drift Rate (Pro) –

2. Drift Rate (Anti) .42 –

3. Bias (Pro) -.64 .01 –

4. Bias (Anti) .36 -.58 -.42 –

5. Threshold .23 .69 -.17 -.28 –

6. Non-decision Time .00 -.22 .30 .40 -.20 –

7. ∆Drift Rate .36 -.69 -.52 .89 -.53 .23 –

8. ∆Bias -.65 .18 .89 -.64 -.06 .14 -.70 –

9. Performance .59 .82 -.15 -.20 .76 -.05 -.38 -.07 –

10. Reaction Time -.38 -.30 -.10 .17 .39 .23 .01 -.13 -.05 –

11. ∆Reaction Time -.21 .12 -.34 -.54 .11 -.58 -.29 -.13 -.17 .09 –

12. FMT (Pro) .76 -.19 -.75 -.27 -.09 .25 -.42 -.71 -.44 .17 .11 –

13. FMT (Anti) .40 .69 .29 .49 -.42 .24 .39 .10 -.46 .23 .53 .38 –

14. ∆FMT .41 .38 .49 -.66 .25 .05 .72 -.61 .05 .02 .33 .66 -.45 –

15. Residual FMT .37 .09 -.27 .07 .10 .22 .20 -.25 .33 .08 -.04 -.29 -.01 -.28 
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.3. Correlational & linear regression analyses 

We next examined the Pearson correlations between drift diffusion

arameter estimates (as well as difference scores of split parameters), re-

ction time (and reaction time difference score), task performance (per-

ent correct), frontal midline theta (FMT), and the residual FMT during

he anti-saccade task. As shown in Table 2 , drift rate during low- and

igh-conflict trials was significantly (positively) related mean FMT dur-

ng low- and high-conflict conditions, respectively ( r = .76, P < .01; r

 .69, P < .02). Bias parameter estimates during low-conflict trials was

ignificantly (negatively) associated with mean FMT during these trials
8 
 r = -.75, P < .01). Increased processing efficiency (i.e., drift rate) during

igh-conflict trials were related to increased FMT. 

A single linear regression was conducted predicting mean FMT dur-

ng the task to examine the assumption that drift diffusion parameter

stimates provide additional information regarding cognitive control

bove-and-beyond simple reaction time. Thus, the first step included re-

ction time difference scores and the second step included both drift rate

nd bias difference scores. All predictor variables were centered prior

o analysis. As shown in Table 3 , the first step including only ∆reaction

ime was not a significant predictor, t (10) = 1.85, p = .10. The second

tep significantly improved overall model fit, ∆F(3, 10) = 4.06, P < .05,
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Fig. 5. Posterior probabilities of drift rate (left) and bias (right) group means during pro-saccade (blue) and anti-saccade (red) trials (top); within-subject model group 

mean posterior probabilities of drift rate (left) and bias (right) during pro-saccade (blue) and anti-saccade (red) trials (bottom). The drift rate and bias posteriors 

depicted show the effect of the pro- and anti-saccade conditions on the parameter coefficients, where less distribution overlap indicates a larger conditional effect 

on the parameter estimate. 

Table 3 

Linear regression: reaction time (first step), bias, and drift rate(second step) 

predicting frontal midline theta during anti-saccade task. Note. Predictors were 

converted to z-scores; 𝛽 = standardized beta; SE = standard error. 

Frontal Midline Theta 95% CI 

𝛽 SE t p Lower Upper 

1st Step 

∆Reaction Time .32 .17 1.85 .10 -.07 .71 

2nd Step 

∆Reaction Time .17 .15 1.16 .29 -.18 .53 

∆Bias .55 .21 2.63 .03 .05 1.04 

∆Drift Rate .40 .21 1.60 . 09 -.09 .89 

Model 

R 2 .64 

Adj. R 2 .48 

F(3, 10) 4.06 

∆  
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9 
R 

2 = .64, Adjusted R 

2 = .48. While ∆drift rate was not a significant, pre-

ictor ( 𝛽 = .40, t (10) = 1.60, p = .09, CI Lower = -.09, CI Upper = .89), ∆bias

as a significant, positive predictor ( 𝛽 = -.55, t (10) = 2.63, P < .05,

I Lower = .05, CI Upper = 1.04) of FMT during the anti-saccade task. 

.4. Drift diffusion neural regressor model 

Finally, we examined within-subject effects of trial-by-trial changes

n FMT on drift rate and starting point bias parameters via a single drift

iffusion regression model. The aforementioned pairs were informed by

ur previous correlation analyses and consistent with the best-fitting be-

avioral model, both drift rate and bias parameters were also allowed

o function by condition within a single model. Instead of estimating

 fixed parameter estimate per participant across trials, the regression

odel allows the respective parameter to vary on each trial as a func-

ion of their measured FMT activity during the task, as well as whether

his effect interacts with the high-conflict condition (i.e., anti-saccade).
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Fig. 6. Group mean posterior probabilities of frontal 

midline theta power within-subject effects on drift rate 

(left) and bias (right) during pro-saccade (blue) and 

anti-saccade (red) trials (top); group mean posterior 

probabilities of residual frontal midline theta power 

within-subject effects on drift rate (left) and bias (right) 

during pro-saccade (blue) and anti-saccade (red) trials 

(bottom). The drift rate posteriors show that the ef- 

fect of trial-to-trial variations in frontal midline theta 

are to increase the estimated drift rate; the regression 

coefficient is positive for both conditions, and more 

than 99% of it is greater than zero (top left). The bias 

parameter posteriors (top right) show that the effect 

of trial-to-trial variations in frontal midline theta are 

to decrease the estimated bias but only for the anti- 

saccade condition; the regression coefficient of bias 

during the pro-saccade condition, in contrast, directly 

passes through zero. 
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hus, the effect of FMT on parameter estimates is examined separately

or low- and high-conflict trials. The posteriors depicted in Fig. 6 il-

ustrate the effect of trial-to-trial variations in FMT on drift rate and

ias parameter estimates, respectively. When the regression coefficient

s positive (e.g., the posterior is meaningfully greater than zero) the ef-

ect of FMT is linked to increased parameter estimates; when negative,

he effect of FMT is linked to decreases in parameter estimates. As shown

n Fig. 6 (top), the drift rate in high-conflict trials increased in proportion

o the degree of FMT ( P < .001), as well as low-conflict trials ( P < .001).

owever, the effect of FMT on drift rate did not meaningfully differ as

 function of condition ( P = .42). In contrast, bias during high conflict

ecreased in proportion to the level of FMT during high-conflict trials

 P < .001), but this effect was absent during low conflict, as evidenced

y the posterior distribution passing through zero. There was a meaning-

ul difference between the effect of FMT on the starting point bias by task

ondition ( P < .001). Importantly, a neural regression models replacing

MT with residual FMT were not meaningful; both posterior distribu-

ions passed through zero regardless of condition, indicating that there

ere no meaningful associations observed between residual FMT, drift

ate, and bias during either the low- or high-conflict trials (see Fig. 6 ,

ottom). In other words, trial-by-trial FMT sources captured meaning-

ul variation in decision-making given that their removal gives rise to

 loss of robust associations between the residual EEG source signal(s)

nd task behavior. 

. Discussion 

To enhance our understanding of proactive cognitive control of

aze behavior, we combined a gaze-contingent cued anti-saccade eye-

racking paradigm with concurrent EEG assessment. We examined the

elationship between trial-by-trial EEG theta dynamics and latent behav-

oral processes derived within a drift diffusion modeling framework. We

ypothesized that individual differences in frontal midline theta (FMT)
10 
uring the anti-saccade task would relate to changes in participants’ re-

ponse efficiency (drift rate), their starting point bias (bias parameter),

nd the amount of evidence needed for a decision (decision threshold)

uring the task. While theta rhythms are thought to be indicative of

he need for a controlled behavioral response ( Cavanagh and Shack-

an, 2015 ), we sought to build on our prior work indicating that this

eural signature may also relate more strongly to being cued of an up-

oming need to exercise cognitive control ( van Noordt et al., 2017 ). 

Our findings support the hypothesis that effortful control of gaze be-

avior relates to FMT through dissociated latent decision parameters of

rift rate (processing efficiency) and the starting point bias during a cued

nti-saccade task. We found support for our hypothesis at both between-

ondition (group) and within-subject (individual) level analyses. These

esults were also complimented by our correlational and regression anal-

ses. Overall, our findings indicate that it is possible to predict variance

n FMT, at a task- and trial-level through distinct latent decision pro-

esses. Specifically, latent parameters thought to capture processing effi-

iency and response bias (i.e., starting point bias parameter), were found

o meaningfully relate to FMT during the gaze-contingent eye tracking

aradigm (correlational analyses). However, our regression analyses in-

icate that variance associated with the starting point bias, and not drift

ate nor reaction time, predicted participant’s FMT response. Critically,

e did not find any evidence of a relationship between FMT and tradi-

ional metrics of task performance such as mean reaction time. In other

ords, applying a drift diffusion model to gaze performance was nec-

ssary for the relationship between task behavior and FMT to become

alient. Moreover, we did not find any link between model parameters

nd residual (non-medial frontal) EEG sources. 

At a between-condition level, our finding is indicating trials requir-

ng the inhibition of a prepotent gaze response (i.e., look away from the

ue) increased efficiency in processing. It is possible that being cued of

he upcoming difficult trial (i.e., anti-saccade, high conflict) prompted

ndividuals to increase attentional resources to subsequent stimulus fea-
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ures improving task proficiency. Cued (proactive) control also had a

eaningful effect on participants starting point bias; during low conflict

i.e., pro-saccade trials), participants had a strong bias requiring little

nformation to correctly provide a pro-saccade response. This bias was

ound to shift downward to a more neutral starting point during high

onflict (i.e., anti-saccade trials), where approximately equal evidence

as required for either response. Behaviorally, our model results may in-

icate that when cued of an upcoming challenge (i.e., proactive control),

ndividuals attempt to compensate by processing the stimulus more ef-

ciently, while also shifting their bias such that they are more neutral

n responding (when compared to low-conflict trials); rather than need-

ng little evidence to respond in one direction (and thus, much more

o accumulate to respond alternatively), approximately equal amounts

f information was needed for either decision (i.e., a middle starting

oint). 

While not the conventional interpretation of the bias parameter as an

mplicit propensity to respond a certain way, its inclusion in the model

s posited to facilitate in a stimulus-response mapping. An individual

s presented with a cue indicating a low conflict response on relatively

ore trials, naturally leading to a bias towards needing less evidence to

rovide a pro-saccade response (and more information to anti-saccade).

o overcome this tendency, after being cued of the upcoming high-

onflict trial, our findings indicate that participants tended to shift their

ias to a more neutral starting point; they need less evidence to respond

orrectly in an effort to overcome the strong bias fostered to provide

 pro-saccade (low conflict) response. While individual differences in

he decision threshold parameter reflects a cautious or hasty decision-

aking style – an identical magnitude of evidence is needed to choose

ither of the two options – the starting point bias favors one decision

oundary to the detriment to the alternative boundary; less information

s required to make a correct response, but more evidence is needed for

n incorrect response (or contrariwise). 

Additional evidence supporting our hypothesis that parameters re-

ecting underlying processes of controlled gaze behavior relate to task-

ased changes in FMT came from our regressor model of neural dynam-

cs and task behavior at the individual level. The aim of these analy-

es was to examine whether within-subject changes in FMT through-

ut the task (i.e., trial-by-trial changes) were associated with variance

uctuations in response (gaze) preparation and effortful control of gaze

ehavior. We found that an individuals’ trial-by-trial changes in drift

ate under both trials varied as a function of FMT; more theta power

as associated with an enhanced drift rate (i.e., increased processing

fficiency). Interestingly, the effect of FMT on drift rate appears to be

imilar across both low- and high- conflict conditions. 

Increased FMT was also related to goal-directed gaze behavior

hrough the starting point bias, shifting participants’ starting point to

equire less evidence to accumulate to make the anti-saccade response

and therefore, more information was needed to make an incorrect pro-

accade response). This is in contrast to low-conflict trials, where esti-

ates of participants’ starting point bias suggested a very strong pref-

rence for a (correct) pro-saccade response, and therefore, a great deal

f evidence was needed to accumulate to incorrectly identify the trial

s an anti-saccade. Consistent with our hypothesis regarding the utility

f applying computational modeling to elucidate brain-behavior rela-

ionships, only the starting point bias parameter displayed incremental

alidity in predicting mean FMT, above-and-beyond that of both reac-

ion time and drift rate. Taken together with our behavioral results, it

ay be speculated that while FMT is important in preparing an indi-

idual for a cued challenge, FMT likely does not solely account for the

ncrease in subsequent processing efficiency. This would appear to be

onsistent with our regression results where drift rate did not predict

MT when accounting for variance related to the starting point bias and

ask reaction time. 

Broadly, our results are consistent with that of Cavanagh and col-

eagues ( Cavanagh et al., 2014 ) who utilized a hierarchical drift diffu-

ion framework to model gaze behavior. They found independent con-
11 
ributions of the drift rate and decision threshold parameters on task

erformance, although the starting point bias parameter was not ex-

lored. Task differences (i.e., probabilistic learning task) also make a

irect comparison difficult. In another study, Tannous et al. (2019) also

sed a hierarchical drift diffusion framework to model a modified anti-

accade task, though these researchers did not conduct model compar-

son and focused strictly on differences in the drift rate parameter be-

ween groups. Thus, it is unknown if, similar to our findings, a model

llowing both drift rate and starting point bias parameters to vary by

ondition was the best fit to participants’ performance in their data. 

These findings are comparable to those reported in stimulation stud-

es of frontal midline theta, where increased activity has been shown to

ave positive impacts on behavior (i.e., behavioral adjustments follow-

ng errors) ( Klink et al., 2020 , Voelker et al., 2021 ). Transcranial stim-

lation in the theta frequency range over frontal regions, specifically,

ave been found to cause immediate improvements in behavioral adjust-

ents following errors ( Reinhart et al., 2015 ). Notably, these positive

ffects on behavior were not solely accounted for by a change in speed

ersus accuracy tradeoff ( Fusco et al., 2018 ), which is generally linked

o the decision threshold parameter, and therefore, consistent with our

ndings implicating the importance of the starting point bias. These

ndings contribute to growing evidence of FMT as a robust marker of

roactive cognitive control processes ( Cavanagh and Shackman, 2015 ,

avanagh and Frank, 2014 , Eisma et al., 2021 ), consistent with a large

iterature linking FMT oscillations with responses during inhibitory con-

rol ( Nigbur et al., 2012 , Nigbur et al., 2011 ), resolution of competing

esponses ( Oehrn et al., 2014 ) and adjusting response strategies to task

emands ( López et al., 2019 , McKewen et al., 2020 ). Taken together,

MT may facilitate proactive cognitive control at the response prepara-

ion stage that either directly or indirectly affects one’s response style

hrough a bias in the amount of information needed to make a decision

nder conflict. 

It is important to note how our results relate to recent models of

daptive cognitive control ( Cohen, 2014 , Verbeke and Verguts, 2021 ,

erguts, 2017 ). The sync model emphasizes the importance of three

imensions: intensity (i.e., the required strength of control), selectiv-

ty (i.e., the task-relevant and task-irrelevant stimuli considered), and

ime scale (i.e., proactive, or slow time scale, versus reactivity, or fast

ime scale) ( Verbeke and Verguts, 2021 ). Briefly, the number of theta

ursts from the medial frontal cortex determines the intensity of con-

rol required; the lateral frontal cortex, tracking the demands of a task,

istributes theta bursts to eligible task-specific neural populations to fa-

ilitate gamma synchrony modulating the selectivity dimension of cog-

itive control ( Verbeke and Verguts, 2021 , Verbeke et al., 2021 ). Put

imply, this model speculates that the medial and lateral frontal cortex

etermines the intensity and selectivity, respectively, of adaptive cog-

itive control. At the within-subject trial-by-trial level, we found that

MT power was positively associated with increased efficiency during

oth pro- and anti-saccade conditions, consistent with the medial frontal

ortex generating more bursts of theta following a cue preparing the par-

icipant of an upcoming conflict ( Senoussi et al., 2022 ). This may also

elate to the shift in bias to a more neutral starting point, associated

ith increased FMT, and facilitating a less biased approach to respond-

ng when compared to pro-saccade trials. An alternative would be that

he change in the starting point bias parameter may be indirectly re-

ated to FMT through the lateral frontal cortex, which is hypothesized

o coordinate task rules and goals dictating behavior. 

A number of study limitations should be noted. While we relied on

 small sample of adults, we made efforts to mitigate potentially com-

itting type one error such as adopting a more conservative critical

-value and utilizing robust estimation techniques for our neural anal-

ses. Robust estimation has proven useful for dealing with small sam-

le sizes and preventing issues that arise when violating assumptions

f traditional parametric tests ( Wilcox, 2011 ). Moreover, the utility of

obust parameter estimates in EEG allow for greater control over mea-

ures of location, alpha levels, and unrepresentative confidence inter-
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als ( Wilcox, 2011 , Wilcox and Keselman, 2003 ), quantifying effects

f event-related activity across all time points ( Desjardins and Sega-

owitz, 2013 , Rousselet et al., 2008 ). Nevertheless, readers should con-

ider our findings with the understanding that some may reflect false

ositives. We also did not conduct a parameter recovery analysis, which

s a significant limitation of the current study. 

.1. Implications and future directions 

Our findings suggest that the addition of eye-tracking measures

ay be worth considering when investigating neural systems involved

n processing efficiency (i.e., drift rate) ( Gold and Shadlen, 2007 ,

are et al., 2011 , O’connell et al., 2012 ) and the starting point bias

 Cavanagh et al., 2011 , Domenech and Dreher, 2010 , Fisher, 2021 ,

orstmann et al., 2010 ), not only during reinforcement-based decision

aradigms ( Cavanagh et al., 2011 ) but also, as we demonstrate here,

asks requiring proactive cognitive control. Such research on the neural

ynamics and substrates that facilitate controlled and/or the inhibition

f gaze has crucial implications for how gaze affects the value of choice

lternatives ( Smith and Krajbich, 2019 , Mormann and Russo, 2021 ),

urchasing decisions ( Krajbich et al., 2012 , Shimojo et al., 2003 ,

rmel et al., 2008 ), moral judgments ( Newell and Le Pelley, 2018 ), as

ell as attentional bias for threat in individuals suffering from anxi-

ty disorders ( Armstrong and Olatunji, 2012 , Bar-Haim et al., 2007 ,

eierich et al., 2008 ) and/or major depression ( Sears et al., 2011 ,

ears et al., 2010 , Peckham et al., 2010 ). Further, given that some stud-

es report the utility of including pupil dilation in conjunction with gaze

 Cavanagh et al., 2014 ), along with their dissociable roles as correlates

f attention function and performance, it would be beneficial to con-

ider both gaze and pupil dilation in inhibitory control. Future studies

irectly comparing the neural correlates involved in cognitive control

equiring different behavioral responses (i.e., a button press versus a

accade) would likely be beneficial to the larger literature. 
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