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Abstract—Brain Computer Interface (BCI) applications em-
ploy machine learning to decode neural signals through time
to generate actions. One issue facing such machine learning
algorithms is how much of the past they need to decode the
present. DeepSITH (Deep Scale-Invariant Temporal History),
is a deep neural network with layers inspired by how the
mammalian brain represents recent vs. less-recent experience. A
single SITH layer maintains a log-compressed representation of
the past that becomes less accurate with older events, unlike other
approaches that maintain a perfect copy of events regardless
of how far in the past they occurred. By stacking layers of
this compressed representation, we hypothesized that DeepSITH
would be able to decode patterns of neural activity from farther
in the past and combine them efficiently to guide the BCI in
the present. We tested our approach with the Kaggle ”Grasp
and Lift challenge” dataset. This motor movement dataset has
12 subjects, 10 series of 30 grasp and lift trials per subject,
with 6 classes of events to decode. We benchmark DeepSITH
performances on this dataset against another common machine
learning technique for integrating features over extended time
scales, long short-term memory (LSTM). DeepSITH reproducibly
achieves higher accuracy in predicting motor movement events
than LSTM, and also takes significantly fewer epochs and
less memory to train, in comparison to LSTM. In summary,
DeepSITH can efficiently process more data, with increased
prediction accuracy and learning speed. This result shows that
DeepSITH is an advantageous model to consider when developing
BCI technologies.

I. INTRODUCTION

People who suffer from severe motor disabilities need assis-
tive technologies to interact with their environment [1]. Brain
Computer Interfaces (BCI) support this need by allowing users
to directly control external devices, e.g. computer, wheelchair,
or a neuro-prosthesis, independent of peripheral nerves and
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muscles [2]. Most BCIs use electroencephalography (EEG)
signals as the inputs because of their non-intrusive character-
istics [3]. EEG signals are made up of complex spatial and
temporal patterns, so successful EEG-based BCI systems are
heavily dependent on how much of the past they use to decode
the present and on the underlying machine learning model’s
ability to effectively decode the past in real-time [2].

The goal of this project is to evaluate the utility of temporal
event compression on BCI applications by comparing the
performance of DeepSITH against LSTM. Using a “Grasp
and Lift challenge” dataset consisting of EEG signals for six
different hand movements across 12 subjects, we compare the
accuracy and training time of DeepSITH (Deep Scale-Invariant
Temporal History), a deep neural network with layers inspired
by how the mammalian brain represents recent experience,
against long short-term memory (LSTM).

LSTM is a favored machine learning approach because of
its ability to process entire sequences of data as opposed
to relying on short buffers of data points. However, LSTM
models are limited by the amount of data they can process
because they must learn to maintain an exact representation
of relevant features from the past to guide decisions in the
present. Unlike LSTM, DeepSITH maintains a log-compressed
representation of the past that, in cases where the time scale
of relevant information is unknown, provides an optimal fuzzy
integration of the past [4]. Although the SITH representation
decreases in temporal precision the farther an event occurred
in the past, it also compresses the signals such that more data
can be used to inform the model. By comparing DeepSITH
with LSTM, we demonstrate the tradeoff of memory require-
ments vs. event description accuracy and inform the utility of
including DeepSITH in the development of BCI technologies.
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II. BACKGROUND

A. Summary of BCI + EEG data

Traditional BCI systems consist of several components:
brain signal acquisition, signal preprocessing, feature extrac-
tion and classification through machine learning, and the trans-
lated physical action [5]. EEG signals are the most common
brain signals in BCI applications because they are relatively
non-invasive. The method of collecting EEG signals involves
attaching conductive electrodes to a subject’s scalp to measure
the voltage change resulting from ionic activity within neural
populations. While non-invasive and extremely common, the
EEG signal quality is rather poor and intensive signal prepro-
cessing such as signal filtration or signal reduction is often
required for physical actions to be properly translated [6].

B. Current BCI techniques

In previous BCI applications, signal-to-action classification
has employed simple machine learning techniques such as lin-
ear classifiers, Bayesian classifiers, artificial neural networks,
and ensemble methods involving all three [7]. As mentioned
before, the noise associated with EEG signals makes them
difficult to decode with just feature extraction or data prepro-
cessing methods due to the tremendous time complexity and
the risk of information loss. Common techniques for multi-
class motor action classification with EEG data generally yield
accuracy below 80% due to the dynamic and noisy signal.
Therefore, researchers have shifted to investigate deep learning
techniques, which have proved to be more powerful than the
conventional classifiers mentioned [6].

C. Deep learning methods

Deep learning is a special area of machine learning in which
features and the model parameters are learned directly from
the data and are less reliant on time-consuming preprocessing
and feature extraction steps necessary for complex data [7].
The field of deep learning was inspired by the structure
and function of the brain; artificial neurons are the simple
building blocks that communicate with one another to create
complex neural networks, which are capable of processing
large amounts of data and detecting patterns for use in decision
making. Deep neural networks have shown increased success
in addressing the challenges of low classification accuracy be-
cause they can capture both high-level features and underlying
dependencies in the EEG signals through their non-linear and
deep structures [6].

D. Deep learning and long-range temporal dependencies

The main challenge with deep neural networks is the perfect
storage of all historical data for accurate model predictions.
Perfect storage is currently impossible as it is extremely
expensive to store the data and equally costly to train a model.
Usually the cost of memory storage must be balanced with
model prediction accuracy, therefore, less historical data stored
entails a less accurate model.

One popular current approach to represent historic data is
maintaining a fixed buffer size of past data, which uses a

first-in first-out mechanism to store relevant historical data.
A fixed buffer constrains the available temporal interval over
which detailed event information can be stored [8]. In addition,
the fixed buffer also generates deep networks that ignore the
mutual information between long-range time points, causing
the overall accuracy of the model to decrease [9].

Neural networks have improved in terms of enabling an
accurate storage of information over time, especially with the
emergence of recurrent neural networks (RNNs) and long-
short term memory networks (LSTMs). Unfortunately, these
network structures still face the issue of exploding/vanishing
gradients, which is when a time series is fed to the network,
and then the gradient of the loss function is calculated at the
end of the sequence [9]. After each sequence, the gradient will
either increase or decrease via backpropagation. An exploding
gradient occurs when the gradient increases exponentially,
and a vanishing gradient occurs when the gradient decreases
exponentially. This is a current issue with RNNs because a
vanishing gradient acts similarly to a small buffer, in that
information from the distant past does not have a significant
effect on network weights regarding a current prediction. This
means that information from too far into the past will likely
be ignored by the network when making a prediction [10].
LSTMs attempt to address the exploding/vanishing gradient
problem by encoding long-range dependencies and relations
in the LSTM cell state vectors. However, LSTMs are not
successful when the time scale is too long-range and the LSTM
model parameters must be continuously adjusted to learn the
relevant time scale [9].

E. Scale invariant techniques and SITH

To address the problem, researchers have looked at the
way the human brain maintains a logarithmically-compressed
representation of past experience for inspiration. Prior work in
several modalities, from delayed match to sample reinforce-
ment learning, has demonstrated that time is represented in
the brain in a scale-invariant fashion [11] [12]. Scale invariant
features, such as events recorded in time, do not change if the
time scale of the event is dilated or compressed by a scalar
factor. That is, regardless of how much the scale of time is
zoomed in or out, the relationship between events represented
at any particular scale will not change [13]. In the hippocam-
pus, individual time cells show spiking activity at specific
temporal intervals. They are sequentially-activated time cells
and exhibit behavior that suggest time-scale invariance. When
graphed, the firing fields of time cells that fire later in a delay
period are wider than the firing field of time cells that fire
earlier in the delay period, meaning that the further in the past,
the lower the temporal specificity becomes. Scale invariance
of episodic representation in the brain provides the basis for
an individual to use the same set of mechanisms to integrate
information and make decisions over different time scales.

Scale-Invariant Temporal History (SITH) is built on the
concept of time being represented in a scale-invariant fashion
and may be a better alternative to both fixed length buffer
and LSTM approaches. When given a time series as input,
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SITH encodes an approximation of the input via a family of
logarithmically-spaced impulse response functions represent-
ing temporal receptive fields centered on times τ∗ with widths
that increase as a function of time into the past (see bottom of
Fig. 1). SITH was first tested within an artificial intelligence
framework on the video game Flappy Bird, where the model
was trained via deep reinforcement learning to play variants
of the game with and without long temporal information
gaps. It proved to be surprisingly successful in spanning long
time periods with no meaningful input, whereas fixed buffers
with the identical memory use failed to learn to span these
temporal gaps [8]. DeepSITH extends this original approach
to a deep neural network architecture made up of many
SITH layers, greatly improving the time scales over which
it can integrate information while still overcoming the issue
of exploding/vanishing gradients by providing a complete state
of the history to the model at every time step [9].

III. METHODOLOGY

A. Dataset

To identify relationships and patterns that occur between
EEG signals collected from the brain and hand movements
collected from participants, the WAY consortium organized the
2015 Grasp-and-Lift EEG Detection Challenge. The dataset
from the competition contains scalp EEG data sampled at a
frequency of 500 Hz from over 12 participants that conducted
over 300 tasks. The outcome of the challenge was being able
to detect 6 events that represented different hand movements
that were made by the participants. [14]

We divided every series into 4-second (i.e., 2000-sample)
segments with a step size of 2 seconds (1000 samples). For
the purposes of building our model, the dataset was broken
down into a training and validation split for each subject, with
the first 80% of the subject batches being used for training
and the remaining 20% being used for testing and validating
model. We note that this approach to a training and test split
may result in the generation of test samples that could be
slightly dependent on data used in the training set, possibly
inflating AUC values relative to an independent test set for the
original competition. Thus, we focus below on the comparison
of models trained and tested under identical conditions.

B. Preprocessing

One challenging aspect of working with EEG data is
the amount of noise or artifacts present in the data. These
artifacts are simply undesirable signals that originate from
the environment and contaminate the quality of the EEG
signal. Furthermore, the intensity of EEG signals captured
by the sensors varies across the electrodes in the scalp EEG
setup. This means that preprocessing steps need to be taken
before event detection modelling can take place. The two
main preprocessing tools that we employed were filtering
and standardization. Filtering is one of the most widely used
preprocessing techniques used for activity detection. [15]
However, one of the conditions of the challenge associated
with the dataset was ensuring that no data from the future

was used when training the model. In order to eliminate the
undesirable signals, we applied a minimum phase low pass FIR
filter at 30 Hz from the MNEtools package to isolate grasping
frequencies. [16] The use of a causal filter ensured that data
from the future was not used to help our model learn in order to
mimic real-time BCI preprocessing strategies. Furthermore, a
simple z-score standardization was also performed to compare
the signals from different channels on the same scale. The
preprocessing approaches were implemented using a 2 second
or 1000 sample wide sliding window with a step size of 1
sample.

C. DeepSITH Architecture

DeepSITH architectural layers extract information at differ-
ent temporal scales. Each DeepSITH layer tracks the histories
of an arbitrary number of input features. Each SITH layer
outputs the activation levels of Nτ ∗ Nfeatures log-spaced
τ∗ values representing the peak of the temporal receptive
fields. With these activation levels, the network has access
to the conjunctive representation of ”what happened, when”
in a reduced form. A set of τ∗s exist for each feature, and
is passed through a linear layer that allows the network to
make associations between features and time. The output of
this hidden layer, with a ReLU activation function, is then
passed as the input into the next DeepSITH layer. After the last
DeepSITH layer, a linear layer then transforms the DeepSITH
output into the size appropriate for the task at hand.

Each DeepSITH layer has six hyperparameters that need to
be tuned for each specific task. These are τmin, τmax, k, dt,
Nτ , and Nhidden. Nhidden dictates the size of the output of
the linear layer after the SITH layer. The other five hyper-
parameters dictate the number and size of the τ∗ temporal
receptive fields. Normally, we choose taumin = dt = 1,
and we have τmax increase logarithmically. k is chosen via a
special minimization function dictated in [9]. Nτ is the same
on each layer, but chosen to be a small number.

D. DeepSITH Network and Tuning

Consistent with the work of Jacques et al. [9], we used a
PyTorch [17] implementation of the SITH layer that approxi-
mates the temporal history of the input function f(t) through
the use of a discrete approximation to the inverse Laplace
transform. By finding the approximate values of f(t) at any
scale, we are able to utilize scale-invariant reconstructions of
the temporal relationships within the input feature in our deep
learning algorithm.

DeepSITH network layers are governed by a few key
hyperparameters - τmin, τmax, k, dt, Nτ and g - which we
needed to tune in order to optimize our results. The τmin and
τmax variables identify the center of the receptive fields for
the first and last τ∗ values, respectively, within the ensemble
of reconstructed timescales. Together, the two variables define
the range of the receptive fields. The value of k identifies the
temporal specificity or the sharpness of the receptive fields,
with larger k giving rise to more narrow impulse response
functions. dt represents the time delta of the model. Nτ sets
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Fig. 1. A visualization of the DeepSITH classifier network. The DeepSITH
network used here is made up of several DeepSITH layers which consist of a
SITH layer followed by a linear layer and an activation layer. Adapted from
[8]. The bottom panel shows impulse responses of 5 SITH filters for the last
layer of our DeepSITH model.

the size of the ensemble and finally g sets the scale of the
model. Finally, we can also define the number of hidden layers
which can also be thought of as approximately the number of
associations that are extracted from the temporal history of the
decomposed SITH layer input features.

For the purposes of event detection, we tune our Deep-
SITH network parameters using the methodology suggested
by Jacques et. al [9]. The τmax was set to logarithmically
increase from layer to layer while the τmin was kept constant.
The network was also found to perform optimally at 3 layers in
depth with each layer having a hidden layer of size of 20. The
value of k was calculated at each layer by finding the value
that minimized the ratio of the standard deviations to the sum
of all scale-invariant filters and the sum of alternating scale-
invariant filters. By calculating the k value in this manner,
we were able to make sure that the amount of information
stored from the past decays with time. This optimization of the
temporal specificity of the scale-invariant filters allows us to
represent the impulse response at each reconstructed timescale,
τ∗ such that each response shares information while preventing
unnecessary overlap between them. The number of receptive
fields in the model, Nτ , was kept low to sufficiently decrease
model complexity. Furthermore, a 10% drop-out layer was
added to increase model generalizability. The total number
of tunable parameters was 14,000.

E. LSTM Network

For evaluation against the DeepSITH Network, we used a
3-layer deep LSTM network along with a 10% dropout layer
for improved model generalizability. Each LSTM layer was
chosen to have 25 hidden nodes in an effort to obtain a similar

TABLE I
DEEPSITH PARAMETERS

Layer 1 Layer 2 Layer3

τmin 1 1 1
τmax 50 200 800
k 23 12 7
dt 1 1 1
Nτ 10 10 10
g 0 0 0
hidden size 20 20 20

number of tunable parameters to the DeepSITH network. The
LSTM network contained 17,000 tunable parameters.

F. Model Evaluation

We evaluated DeepSITH and LSTM performance on four
different metrics, namely mean column-wise area under re-
ceiver operating characteristics curve (AUC), precision, recall
and F1 scores (Table II). Mean column-wise area under
receiver operating characteristics curve (AUC) is the offi-
cial evaluation metric for the EEG Grasp-and-Lift Kaggle
competition. Receiver operating characteristics (ROC) shows
the changes of the true positive rate with respect to the
false positive rate, and the AUC takes into consideration all
thresholds, showing an objective classification accuracy for
the model regardless of the choice of threshold. Precision,
recall and F1 scores can provide an intuitive grasp on the
performance of these models on real-world BCI applications.
Specifically, precision measures the true positives amongst
all of the positive classifications made by the classifier. This
provides insight into our classifier’s ability to accurately distin-
guish the positive class. Recall measures our classifier’s ability
to discriminate between both the positive and negative classes
against the entire set of positive classes. F1 score is then the
harmonic mean of precision and recall. We picked a threshold
of 0.3 to binarize the probability outcomes derived from the
models, which gives relatively high F1 score for both models.

article array booktabs

IV. RESULTS

In order to test the training speed of DeepSITH, we com-
pared a DeepSITH model with a similarly structured LSTM
model. The LSTM model we used had the same number
of layers and training hyperparameters. The LSTM model
also had slightly more total number of tunable parameters
than DeepSITH (DeepSITH: 14,000, LSTM: 17,000), since
we want to make sure both models have enough capacity to
learn the complex tasks. DeepSITH could achieve significantly
higher validation accuracy than LSTM after only a few epochs
of training (Fig. 2.). In fact, DeepSITH on average only takes
2 to 3 epochs to achieve 0.8 validation AUC as indicated by
the purple dashed line shown in the figure, whereas it takes
significantly longer for LSTM to reach the 0.8 level.

DeepSITH also achieved significantly higher AUC for every
subject than LSTM. We then evaluated DeepSITH perfor-
mance on precision, recall and F1 scores, which require

2021 Systems and Information Engineering Design Symposium (SIEDS)

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on May 11,2023 at 00:03:53 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II
SUBJECT-LEVEL PREDICTION FOR DEEPSITH AND SIMILARLY STRUCTURED LSTM

Subject AUC Precision Recall F1

DeepSITH LSTM DeepSITH LSTM DeepSITH LSTM DeepSITH LSTM
1 0.997 0.967 0.813 0.597 0.905 0.722 0.856 0.647
2 0.980 0.912 0.697 0.424 0.743 0.444 0.715 0.421
3 0.990 0.913 0.768 0.498 0.834 0.541 0.798 0.517
4 0.992 0.960 0.788 0.599 0.853 0.645 0.818 0.619
5 0.987 0.913 0.749 0.444 0.802 0.374 0.774 0.378
6 0.991 0.951 0.729 0.530 0.815 0.550 0.769 0.526
7 0.989 0.955 0.697 0.505 0.795 0.568 0.737 0.525
8 0.983 0.927 0.731 0.532 0.794 0.568 0.760 0.543
9 0.992 0.962 0.767 0.537 0.833 0.644 0.798 0.582
10 0.991 0.944 0.749 0.486 0.815 0.583 0.778 0.512
11 0.981 0.938 0.744 0.557 0.732 0.601 0.737 0.571
12 0.987 0.936 0.674 0.510 0.733 0.539 0.702 0.517

Fig. 2. Loss and validation AUC curve for subject-level training. The mean
and 95% confidence interval for each event across all subjects are shown. The
purple dashed lines indicate validation AUC of 0.8. Each epoch consisted of
one pass over the entire training set for a particular subject and event.

a hard threshold on the final probability outputs. Due to
the imbalanced nature of this dataset (approximately 1 to
50), it remains challenging to accurately classify every time
point without sacrificing either precision or recall. LSTM can
achieve great prediction AUC that is similar to what was
previously reported, but precision, recall and F1 remain low
for most of the subjects (TABLE II). In contrast, we show that
precision, recall and F1 are all in the 70% to 80% range with a
single threshold of 0.3 for DeepSITH. For further comparisons
with other public methods on this dataset, we will submit our
predictions to Kaggle to get a final AUC on the public test
dataset.

V. DISCUSSION

BCI applications require powerful technological advances
to assist individuals with disabilities through multiple aspects
of their lives. The success of these technologies is heavily
dependent on a robust, underlying algorithm that can accu-
rately generate predictions while efficiently incorporating past
information to decode intentions in real-time. The analysis
detailed in this paper focuses on evaluating training time and
accuracy values across two different BCI learning approaches,
DeepSITH and LSTM. We conclude that adding DeepSITH
layers improves training time and accuracy values over LSTM
models, but also want to note that there are other metrics that
can further inform DeepSITH’s impacts on a machine learning
model.

For our analysis we primarily focused on accuracy, mea-
sured by AUC. AUC is indifferent to class imbalances so it was
not impacted by a skewed dataset. Different BCI applications
can be informed by data with varying skewness levels, so
it is important to further understand the effects of a skewed
dataset on DeepSITH performance. To provide this insight we
recommend that future research evaluate changes to precision
and recall. In a physical sense, low precision means that a
model labeled negative samples positive (the BCI technology
grasps an object but the user did not intend to grasp it).
Low recall means that a classifier is not able to identify all
of the positive samples, resulting in more false negatives (a
user wants to grasp an object but the BCI technology does
not respond). Understanding how precision and recall values
vary when DeepSITH layers are introduced will inform a more
holistic approach to improving BCI technologies. Furthermore,
it is important to duplicate the analysis of DeepSITH’s effects
on training time, accuracy, precision, and recall against other
EEG datasets. From motor movement to motor imagery, the
identification of a machine learning approach that can suc-
cessfully and efficiently generate accurate predictions across a
diverse range of applications can inform and improve the BCI
field as a whole.
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